
Policy and Resource Orchestration in
Software-Defined Networks

Anduo Wang and Jie Wu
Center for Networked Computing

Temple University, Philadelphia, PA
Email: {jiewu, adw}@temple.edu

Abstract—This position paper deals with policy and resource
orchestration in large-scale software-defined networks (SDNs)
through network function virtualization (NFV). One of the key
issues in a large-scale SDN is the automated policy orchestration
and efficient resource sharing. The rich set of SDN policies that
collectively drive the behavior of a single SDN often interacts in
complex ways. With NFV, on the other hand, multiple workloads
can co-locate and use a given infrastructure simultaneously. We
examine challenges related to the automated orchestration and
provisions of SDN-enabled policies and software middleboxes.
We propose novel solutions — optimizations algorithms and
reasoning procedures — that advance the state of art SDN
orchestration service.

Index Terms—Middlebox placement, network function virtu-
alization, network policy, software-defined networks.

I. INTRODUCTION

Software-defined networks (SDN) decouples the control
plane of traditional networks devices to a distinct controller,
exposing to networks operators a high-level management in-
terface, and connects to the underlying heterogeneous network
hardware through standard protocols. As shown in Figure 1,
SDN thus provides an extremely flexible centralized alternative
to managing the distributed heterogeneous network devices.
Network operators enjoyed an unprecedented opportunity to
realize their traffic goals — traffic forwarding, fault tolerance,
resource provisioning, stateful middleboxes, service chains,
and more — by directly programming their own network
policies or adding software functions (also called, Virtual
Network Functions, VNF).

To facility network operators to create their own policies,
much efforts have been on simplifying programming. Sophisti-
cated control platforms [1–5] decouple the complex distributed
state management from the decision logic through separate
state management service, enabling centralized control that
is often drastically simpler than a distributed counterpart.
Simultaneously, a variety of network abstractions [6] which
raise the level of programming are introduced, further hide the
complexity of low-level details. However, how much SDN can
realize in terms of taming complexity of integrating network
policy still remains an open question [7, 8].

On the other hand, network function virtualization (NFV)
leverages virtualization technologies to implement network
function (traditionally implemented in hardware) in software
middleboxes, or simply middlebox. Such functions include
firewalls, network address translators, proxies, etc. SDN offers

vertically 
integrated 
heterogenous
hardware and
virtual functions

data plane

data plane

data plane

data plane

data plane

background: software-defined network (SDN)

Policy, Resource
Orchestration

controller

Fig. 1: Software defined network overview.

the new opportunity of hosting the software middleboxes, also
called VNF, by directing traffic through the VNFs and allowing
the software middleboxes to choose service locations from
multiple available servers/routers. Therefore, resource orches-
tration in terms of VNF provisioning and sharing becomes
very important in a large-scale SDN.

II. POLICY ORCHESTRATION

Software-defined networking (SDN) refactors the dis-
tributed network protocols in the network into an ensemble
of centralized programs running at a server (controller) that
is separate from the network, creating a rare opportunity
to simplify network management with modern software en-
gineering. Yet the SDN software architecture, which often
requires coordination among multiple entities over shared
states, remains monolithic. The SDN controllers, or network
operating systems [2, 3], while exposing to control software
a uniform programming interface that abstracts away details
of the network hardware, fall short in providing the operating
system functionality of coordination among those software.

The onus of combining multiple control software that col-
lectively drive the behavior of a single network is falling on
the admin to write modular programs. Modular programming,
though a natural choice at first glance, often prefixed [9, 10]
modularization support in the language features tailored to
a particular task. The modular composition itself is tightly
coupled with the code that achieves the individual target task,



and determining the composition requires clear understanding
of the joint intent of every components.

Modularization by Semantics layering
To bring modularity to SDN software, in this position

paper, we propose a drastically different approach called
semantics layering. Rather than embedding modularization in
user-supplied modular software, semantics layering realizes
modularization through a distinct orchestration service im-
plemented at the controller. Semantics layering is a general
organizational principle that is decoupled from individual
software component, it promotes, enforces, and automatically
determines modularization.

Semantics layering is built on the insight that essential to
modular composition is not the different form of network
abstractions used to realize a semantic property, but the prop-
erty itself expressible in standard logic. That is, we view the
SDN software components as semantic units that operate in a
control loop — each control module continuously monitors the
network states s against some property i, whenever a violation
of i is detected, it reconfigures s to restore the invariant by
generating some update u.

Rather than relying on the composition logic explicitly spec-
ified in the modular program for instructing the interactions
among these semantic units, semantic layering orchestrates the
network updates u by automatically inferring their impacts
on the semantic properties. The result of such automated
reasoning is semantic layering of SDN applications — the
upper layers depend on the lower ones for repairing property
violations. Whenever an application initiates an update, all
lower-layer applications are invoked as well. For example,
routing application is located below the firewall application
because the firewall, in order to enforce secure end to end
connectivity, must depend on the routing application to ac-
tually remove the switch configurations corresponding to the
insecure request.

Determining Semantics layering
The essence of semantics layering is to coordinate SDN

modules to respect the semantic properties of every individual
modules such that the updates pushed by one will not inad-
vertly hurt the properties of another. To this end, we introduce
the notion of semantics dependency: one module depends on
another module if the maintenance of its property logically
implies the maintenance of the property of the second.

To determine semantics layering, we only need to determine
semantic dependency, a problem that can be recasted as the
(database) irrelevant update problem. Given two modules x
and y, and some shared network states s; we represent s by
tables (facts), and formalize x and y as a pair of database
programs that continuously query (monitor) and update (re-
configure) the tables s. In the database terms, x depends on y
if the output of x’s query — a database view — is affected by
y’s update program, but x’s update will never alter y’s query
result. That is, we only need to check whether x’s update is
irrelevant of y’s query.

Armed with the formulation of semantic dependency as a

Ravel system overview

 13

SQL interface

PostgreSQL runtime

Network:
Mininet

base tables

operation

view viewview

notification

events control

view view

database-defined
network

cf, tp, rm

acl rtlb

orchestration

add-flow
del-flow

link 
up/down

policy
orchestration

Fig. 2: Policy orchestration, a database implementation.

database irrelevant update problem, we can determine seman-
tic dependency by database irrelevant reasoning [11–13], a
satisfiability technique that checks irrelevant updates. Once
we generate the dependency graph containing all semantic
dependencies among the modules, we can run a topological
sort to produce a hierarchy of modules — semantics layers,
in which each layer enriches and depends on the properties
maintained by the ones beneath it.

Database implementation
Having pinned down the semantics layering principle, our

goal is to implement an orchestration service that enforces
modular composition of disparate control software with cor-
rectness guarantee. We leverage our previous work Ravel [14],
a database-defined network that utilizes a standard SQL
database as “the” highly-customizable controller to manage the
network. Ravel features a plain control plane abstractions and
orchestrates control modules by user-defined priority. Ravel
represents all network states as database tables: the dataplane
as shared, stored tables, while the modules operate on derived
tables (database views); and to reduce a module x’s operations
— the checking and repairing of invariants — to a database
query (view xv and a database update (view update xU ). We
enhanced Ravel with an orchestration service by integrating
irrelevant update reasoning, as shown in Figure 2.

As an example, we show the (ir)relevant update reasoning
for firewall and routing. The routing update does not affect
firewall policy, because either deletion nor insertion on the
Ravel configuration table (cf(F,X, Y ), meaning that a flow F
at switch X will be forwarded to Y ) can affect the reachability
requirement table (rm(F, S,D) denoting a flow F between
nodes S,D) which is monitored by firewall, thus routing
update is trivially irrelevant to firewall. The firewall update,
however, does affect routing because the firewall deletion
condition rm(F, S,D) ∧ blacklist(S,D) and the condition
of firewall violation view rm(F, S,D) ∧ ¬cf(F,X, Y ), ... is



jointly satisfiable.

III. RESOURCE ORCHESTRATION

One of the key resource orchestration issues in a large-
scale SDN is the efficient resource provisioning and sharing.
With NFV, multiple middleboxes can co-locate and use a given
infrastructure simultaneously. We examine several challenges
related to provisioning and sharing software middleboxes, also
called middlebox placement.

In middlebox placement, we usually place several flows
that are required to go through several types of middleboxes,
m1, m2, ..., in a particular total order (also called service
chain), partial order, or no order (i.e., independent). We call
these requirements flow-to-middlebox constraints. The service
chain comes from the service requirement in the network. For
example, an Internet Protocol Security Decryptor (a type of
middlebox) must be placed before a Network Address Trans-
lator (NAT, another type of middlebox). The following shows
several research threads related to middlebox placement.

Graph embedding: Various service chains form a mid-
dlebox graph, Gm, of multiple service chains that needs to
be embedded in a given network graph, Gn. It is shown in
[15] that the embeddability of Gm in Gn is NP-hard under
various constraints, including node capacity, link capacity,
node placement, link placement, and latency.

Graph flow routing: This thread deals with several classic
graph flow routing algorithms such as shortest path and
maximum flow in Gn, subject to the given flow-to-middlebox
constraint. For example, the classic shortest path algorithm
has been extended [16] under the constraint that each path
must go through a given service chain that is already assigned
in Gn. The classic maximum flow problem has also been
extended [16] in such a way that the flow goes through a
given middlebox assigned in Gn; however, the hardness of the
problem in which the flow goes through several middleboxes
still remains open.

Facility allocation: Location analysis resembles the facility
location problem that concerns with the optimal placement of
facilities to minimize transportation costs. Here facilities are
middleboxes and transportation costs correspond to incurred
flow costs when flows go through network and are possibly
detoured through middleboxes. Middlebox placement can be
also related to the generalized assignment problem [17].

Set covering: When the flow assinement is already given in
Gn and each middlebox has a capacity limit, the middlebox
placement resembles the set covering problem with some
twists [18]. The objective is usually to minimize the number of
middleboxes used (as shown below). Middlebox placement can
be better explained through the hitting set formulation which is
equivalent to set covering. The hitting set problem is described
as a bipartite graph, with right vertices (middleboxes) to be
selected to cover left vertices (flows in the network).

Although middlebox placement is similar to several classic
graph and combinatoric optimizations, it has some uniqueness.
For example, middleboxes may exhibit traffic-changing effects
[19]. For example, BCH encoder (a type of middlebox) adds

… 

m1:×0.9 m2:×1.2

1
Src Dst

0.9 0.9 0.9
1.08

(a) Independent middleboxes.

wvu

m1:×0.9m2:×1.2

1
Src Dst

1.08
1 1

m2 m1

(b) Dependent middleboxes (m2 before m1).

Fig. 3: A traffic-changing middlebox placement example.

31% to traffic volume due to checksum overhead. The Citrix
CloudBridge WAN optimizer (another type of middlebox)
reduces traffic volume by up to 80% by compressing traffic.
One interesting problem is how to place middleboxes that min-
imizes the total traffic. For example, suppose a flow that goes
through u, v, and w with a flow-to-middlebox requirement
of m1 (× 0.9, traffic-changing ratio) and m2 (× 1.2). The
optimal assignment would be m2 to u and m1 to w as shown
in Figure 1 (a). However, if m1 cannot be placed before m2,
then both m1 and m2 need to be placed in w as shown in
Figure 1 (b). When a middlexbox has flow capacity limit, the
problem becomes more challenging as shown in Figure 1 (c)
with flows f1, f2, and f3 having flow rates of 1 Mbps, 4 Mbps,
and 1 Mbps, respectively, and capacity for both m1 (× 0.9)
and m2 (× 1.2) being 3 Mbps, but without any service order.
In this case, the optimal solution in terms of minimum total
traffic is shown in Figure 1 (c), where f2 is covered twice, one
at u for a partial coverage of 3 Mbps and another at v for the
remaining coverage of 1 Mbps. Chen and Wu [20] studied an
optimal scheduling in a tree-based topology that minimizes the
combination of total traffic and total middlebox set-up costs.

Although significant efforts have been made in middlebox
placement, there are many other unexplored areas. Many
middlebox placement problems are NP-hard, and we can ex-
amine special setting where these problems are tractable, such
as by considering special network topologies such as trees.
Currently, all flow-to-middlebox conditions require that flows
must go through certain middleboxes. We can also explore
the opposite requirement that flows are forbidden to pass
through nodes with certain middleboxes (for security reasons).
Lastly, we can look into the relationship between middlebox
placement and some other classic scheduling problems, such
as flow shop scheduling in which each job needs to follow
several processing stages in a given sequence.



f1
f2

f3

u v

m2:×1.2

w

m1:×0.9 m1:×0.9

Fig. 4: A traffic-changing middlebox placement example with
a flow covered by multiple middleboxes.

IV. CONCLUSION

In this paper, we develop new solutions to policy and
resource orchestration for software-defined network. First, we
propose a new organization principle called semantic layering
that orchestrates the interactions of policies by their semantics
— the properties maintained by component policies and the
logic entailment relations among them. We develop a database
realization of semantic layering that leverages our previous
work on database-defined network, where each SDN policy is
formalized by database integrity constraints. We automatically
infer the semantic layering of the integrity constraints by
database irrelevance reasoning.

We then study the joint VNF deployment and flow allocation
problem. We aim at minimizing the total cost of deploying
VNF instances when all flows are fully processed. We assume
that all flows request the same type of network functions. We
study the heterogeneous VNF deployment in tree topologies.
We reformulate the deployment of heterogeneous VNFs in
a line and propose a performance-guaranteed strategy. An
optimal greedy solution is designed for homogeneous VNF
deployment in a line.

REFERENCES

[1] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi,
T. Koide, B. Lantz, B. O’Connor, P. Radoslavov, W. Snow,
and G. Parulkar, “Onos: Towards an open, distributed sdn
os,” in Proceedings of the Third Workshop on Hot Topics
in Software Defined Networking, ser. HotSDN ’14. New
York, NY, USA: ACM, 2014, pp. 1–6. [Online]. Available:
http://doi.acm.org/10.1145/2620728.2620744

[2] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker, “Onix: a distributed control platform for large-
scale production networks,” in Proceedings of the 9th USENIX
conference on Operating systems design and implementation,
ser. OSDI’10, 2010.

[3] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker, “Nox: Towards an operating
system for networks,” SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 3, pp. 105–110, Jul. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1384609.1384625

[4] J. Rexford, A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. My-
ers, G. Xie, J. Zhan, and H. Zhang, “Network-wide decision
making: Toward a wafer-thin control plane,” in In Proceedings
of HotNets III, 2004.

[5] P. Sun, R. Mahajan, J. Rexford, L. Yuan, M. Zhang,
and A. Arefin, “A network-state management service,”
in Proceedings of the 2014 ACM Conference on
SIGCOMM, ser. SIGCOMM ’14. New York, NY,

USA: ACM, 2014, pp. 563–574. [Online]. Available:
http://doi.acm.org/10.1145/2619239.2626298

[6] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and
R. Clark, “Kinetic: Verifiable dynamic network control,” in
Proceedings of the 12th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI’15. Berkeley,
CA, USA: USENIX Association, 2015, pp. 59–72. [Online].
Available: http://dl.acm.org/citation.cfm?id=2789770.2789775

[7] A. Vahdat, D. Clark, and J. Rexford, “A purpose-built
global network: Google’s move to sdn,” Queue, vol. 13,
no. 8, pp. 100:100–100:125, Oct. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2838344.2856460

[8] M. Casado, N. Foster, and A. Guha, “Abstractions
for software-defined networks,” Commun. ACM, vol. 57,
no. 10, pp. 86–95, Sep. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2661061.2661063

[9] N. Foster, A. Guha, M. Reitblatt, A. Story, M. J. Freedman,
N. P. Katta, C. Monsanto, J. Reich, J. Rexford, C. Schlesinger,
D. Walker, and R. Harrison, “Languages for software-defined
networks.” IEEE Communications Magazine, vol. 51, no. 2, pp.
128–134, 2013.

[10] J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker,
“Modular SDN Programming with Pyretic,” USENIX ;login,
vol. 38, no. 5, October 2013.

[11] J. A. Blakeley, N. Coburn, and P.-V. Larson, “Updating
derived relations: Detecting irrelevant and autonomously
computable updates,” ACM Trans. Database Syst., vol. 14,
no. 3, pp. 369–400, Sep. 1989. [Online]. Available:
http://doi.acm.org/10.1145/68012.68015

[12] A. Y. Levy and Y. Sagiv, “Queries independent of updates,” in
Proceedings of the 19th International Conference on Very Large
Data Bases, ser. VLDB ’93. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1993, pp. 171–181. [Online].
Available: http://dl.acm.org/citation.cfm?id=645919.672674

[13] C. Elkan, “Independence of logic database queries and update,”
in Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, ser. PODS ’90.
New York, NY, USA: ACM, 1990, pp. 154–160. [Online].
Available: http://doi.acm.org/10.1145/298514.298557

[14] A. Wang, X. Mei, J. Croft, M. Caesar, and B. Godfrey,
“Ravel: A database-defined network,” in Proceedings of the
Symposium on SDN Research, ser. SOSR ’16. New York,
NY, USA: ACM, 2016, pp. 5:1–5:7. [Online]. Available:
http://doi.acm.org/10.1145/2890955.2890970

[15] M. Rost and S. Schmid, “Charting the complexity landscape of
virtual network embeddings,” in Proc. of IFIP 2018.

[16] G. Sallam, G. R. Gupta, B. Li, and B. Ji, “Shortest path
and maximum flow problems under service function chaining
constraints,” in Proc. of IEEE INFOCOM 2018.

[17] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near
optimal placement of virtual network functions,” in Proc. of
INFOCOM 2015.

[18] Y. Chen, J. Wu, and B. Ji, “Virtual network function deployment
in tree-structured networks,” in Proc. of IEEE ICNP 2018.

[19] W. Ma, O. Sandoval, J. Beltran, D. Pan, and N. Pissinou,
“Traffic aware placement of interdependent nfv middleboxes,”
in Proc. of IEEE INFOCOM 2017.

[20] Y. Chen and J. Wu, “NFV middlebox placement with balanced
set-up cost and bandwidth consumption,” in Proc. of ICPP 2018.


