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1 Introduction

The binary hypercube has been widely used as the in-
terconnection network in a variety of parallel systems such
as Intel iPSC, SGI Origin 2000, nCUBE, and Connection
Machine CM-2. To extend the hypercube network such that
the size of the network can be increased with the limited
number of links per node, Li [1] proposed a new intercon-
nection network, called dual-cube. An r-connected dual-
cube consists of 2r+1 connected r-cubes (also called clus-
ters). The cube links are called cube-edges. All the clusters
are connected through the extra links, called cross edges.
Each node in a cluster has one and only one cross edge con-
necting with a node in another cluster. In such a system,
efficient communication among the processors is critical to
the performance of the system. Hence, the routing of mes-
sages is an important issue that needs to be addressed. As
the number of nodes in a multicomputer system increases,
the chance of failure also increases. The complex nature of
networks also makes them vulnerable to disturbances which
can be either deliberate or accidental. Therefore, the abil-
ity to route messages efficiently in the presence of faulty
components is becoming increasingly important.

A central issue in designing a fault-tolerant routing algo-
rithm in networks is the way fault information is collected
and used. Limited-global-information-based routing is a
compromise between local-information-based and global-
information-based approaches. In this approach, fault in-
formation is collected and packed to achieve a global ap-
proximation of the number and distribution of faulty com-
ponents based on a special coding scheme. In the safety
level model [3], an integer is associated with each node in
an n-cube representing the limited global information in the
system. In the safety vector model [2], each node is associ-
ated with a binary vector which is a refinement of the safety
level model. It can describe the distribution of faults more
precisely. Because the limited global information is easy
to update and maintain and the optimality is still preserved,
it is more cost effective than the others. In dual-cubes, the

number of links per node is limited as the number of nodes
increases. And it is less than the distance between a source
s and its destination d in most cases. Thus, the safety level
and safety vector models cannot be applied directly to dual-
cubes.

In this paper, we focus on the minimal path fault-tolerant
routing without adding any extra link. First, a depth-first
search routing is provided. Unlike the routing in [1], it can
handle more faulty components, even when the network is
disconnected. And then, it is extended by using our lim-
ited global information model. We use limited-safety-level
and limited-safety-vector to represent our limited global in-
formation in dual-cubes. In a given dual-cube, the limited-
safety-level (or the limited-safety-vector) of each node u is
its safety level (or safety vector) of the local cluster (an r-
cube). Each cluster cube maintains its own safety level and
safety vector information just like in a regular cube. Adja-
cent clusters exchange their safety information through the
cross-edge to approximate their global safety information
for the routing process. Faulty nodes and faulty links are
both considered in this paper. In each local cluster cube,
the minimal path routing will be guaranteed based on our
limited global information. We propose the whole routing
process by using segments of minimal routing paths. Com-
pared with the depth-first search routing based on neigh-
bor information, the routing based on limited global infor-
mation needs fewer extra steps by using several rounds of
neighbor information exchanges for each new fault config-
uration. The simulation results show that the limited global
information model can help our routing process to generate
a minimal path or a sub-minimal path (a path with only two
extra steps).

2 Preliminaries

Dual-cube. An r-connected dual-cube Fr consists of two
classes (class 0 and class 1) and each class has 2r clusters.
Within a cluster, 2r nodes with r links per node form an r-
cube. The cube links are called cube-edges. All the clusters
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Figure 1. An F2 sample.

are connected by the extra links between different classes,
called cross-edges. Each node in a cluster has one and only
one cross-edge. All 22r+1 nodes in an Fr are labeled from
0 to 22r+1. We use (c; r[1]; r[0]) to denote a node address.
c (2 f0; 1g) is one bit class id, which defines the class of a
node. r[c] is r-bit node id and r[c � 1] is r-bit cluster id.
Symbol � denotes the bitwise exclusive OR operation on
binary addresses. Two nodes whose addresses differ only
in one bit position in node id are connected by cube-edge.
And two nodes whose addresses differ only in class id are
connected by cross-edge. Therefore, a node in Fr has r +
1 links: r links construct a low-level r-cube and one link
constructs a high-level connection. It is noted that for a
node with different value of c, its field position (node id) in
the address is different and the dimensions of its cube-edges
are different.

An F2 is shown in Figure 1. Nodes 01000, 01001,
01010, and 01011 form a 2-cube 010**. This cube is a
cluster in class 0. Each node inside this 2-cube, for exam-
ple, node 01001, has two cube-edges (solid links in Figure 1
connecting with nodes 01000 and 01011) and one cross-
edge (dash link in Figure 1 connecting with node 11001).

Routing in a fault-free dual-cube. For each routing mes-
sage, assume node u is the current node, s is the source
node, d is the destination node, and v is a neighbor of node
u connected by a link (u; v).

Theorem 1[1]: Assume that nodes s and d in Fr differ in k
bit-positions. The distance between s and d, D(s; d)=k+2
if s and d are in the different clusters of the same class;
otherwise D(s; d)=k.

A path connecting two nodes s and d is called minimal
path if its length is equal to D(s; d). Based on Theorem 1,
it is easy to derive that D(s; d) � 2r + 2 for any s and d

in Fr . v is called a preferred neighbor if u and v are con-
nected by a cube-edge and D(v; d) < D(u; d); otherwise,
any neighbor connected with u by a cube-edge is called a

spare neighbor. Preferred and spare neighbors are called
cube-neighbors and the neighboring node connected with
the cross-edge is called cross-neighbor. It is noted that the
definition of preferred and spare neighbors depends on the
cube-edges of the current class. If the current node changes
to another class, the dimensions of its neighbors change and
all its preferred and spare neighbors need re-calculated.

Routing in a fault-free dual-cube from a source
s(cs; rs[1]; rs[0]) to its destination d(cd; rd[1]; rd[0]) is
shown in [1] as follows. If cs = cd and rs[cs � 1] =
rd[cd � 1], then, s and d are in the same cluster and it is
the routing in this r-cube. The routing will select one of the
preferred neighbors of the current node to advance to the
destination. If cs 6= cd (s and d are in different classes),
say cs = 0 and cd = 1, we first route s to (0; rs[1]; rd[0])
where the routing exhausts all the preferred dimensions in
class 0 and finds ru[cu] � rd[cu] = 0. Such a node is also
called intermediate destination. Then, route (0; rs[1]; rd[0])
to (1; rs[1]; rd[0]) through the cross-edge (also called a
jump). After that jump, the routing enters a cluster in an-
other class and the preferred and spared dimensions are all
new. Thus, by exhausting all the preferred dimensions in
class 1, (1; rs[1]; rd[0]) can be routed to d(1; rd[1]; rd[0])
where the routing will find ru[1]� rd[1] = 0. Next, assume
cs = cd and rs[cs � 1] 6= rd[cd� 1]. s and d are in two dif-
ferent clusters of the same class, say class 0. We first route
s to its intermediate destination in class 0, (0; rs[1]; rd[0]).
Then, we route (0; rs[1]; rd[0]) to (1; rs[1]; rd[0]) through
the cross-edge (a jump). Next, we route (1; rs[1]; rd[0]) to
its intermediate destination in class 1, (1; rd[1]; rd[0]). Fi-
nally, route (1; rd[1]; rd[0]) to d(0; rd[1]; rd[0]) in one step
through the cross-edge (another jump). The procedure of
routing decision at each intermediate node u is shown in
Algorithm 1.

Algorithm 1: Routing decision at the current node
u(cu; ru[1]; ru[0]) (destination: d(cd; rd[1]; rd[0])).

1. If u=d, then stop.

2. If ru[cu] � rd[cu] 6= 0, select one of u’s preferred
neighbors in the same cluster as the forwarding node.

3. Otherwise, it is at a node so called intermediate desti-
nation. Select u0(cu�1; ru[1]; ru[0]) as the forwarding
node for a cross-edge hop (also called a jump).

For example, in an F2 (see in Figure 2), the source
s(00000) and the destination d(00011) have the same
class id and cluster id and they are in the same cluster.
The routing inside this cluster is applied: First, source s

has two preferred neighbors, nodes 00001 and 00010. One
of them, say 00001 along dimension 0, is selected as the
forwarding node and the routing message will be sent to it.
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Figure 2. Routing in a fault-free F2.

After the routing message arrives, this node (00001) has one
preferred neighbor (00011) and one spare neighbor (00000).
Node 00011 will be selected next. At last, the routing mes-
sage will reach the destination d(00011). The routing path
is shown in Figure 2 as PATH A. If the source s and the des-
tination d are in different classes, for example, 00000 and
10110, the routing will first exhaust all the preferred dimen-
sions in the cluster with the source s and arrive at the inter-
mediate destination 00010. And then, a jump from 00010 to
10010 occurs. After the routing message arrives at 10010 in
class 1, the routing will exhaust all the preferred dimensions
in the new cluster and reach the destination d. The routing
path is shown in Figure 2 as PATH B. PATH C in Figure 2
shows the routing path for the case that the source s and the
destination d (nodes 00000 and 01001) are in the same class
but different clusters. After the routing reaches its interme-
diate destination in class 0, node 00001, the routing will
select a jump to 10001. After that, the routing message will
arrive at its intermediate destination in class 1, node 11001.
At last, the routing message will reach the destination by
one jump from 11001 to 01001.

3 Fault-tolerant Routing

Depth-first search routing based on neighbors’ condi-
tion. A fault-tolerant routing scheme using depth-first
search is applied to dual-cubes in Algorithm 2. Unlike the
fault-tolerant routing in [1] that needs to identify all the
faulty nodes, our routing here only requires every node to
know the condition of its neighbors. Moreover, the routing
in [1] can only handle r � 1 faults for an Fr. Our rout-
ing here can handle more faults, even when the network is
disconnected.

Algorithm 2: Depth-first search routing at the current node
u(cu; ru[1]; ru[0]) (destination: d(cd; rd[1]; rd[0])).

1. If u=d, then stop.

2. Assume SP (u) is set of u’s non-faulty neighbors
which have not been tried before. If SP (u) = �, back-
tracking along the first incoming link is needed. If the
source needs backtracking, the routing interrupts.

3. Select the forwarding node u0 from SP (u) in the fol-
lowing priority order and forward the routing message
to u0.

(a) Select one of u’s preferred neighbor.

(b) Select the cross-neighbor for a jump if
ru[cu] = rd[cu], the intermediate destina-
tion ((0; ru[1]; rd[0]) if cu = 0; otherwise,
(1; rd[1]; ru[0])) is a faulty neighbor or has been
tried before, or there is no spare neighbor in
SP (u).

(c) Select a spare neighbor.

The routing at the current node (including the source)
will select a neighbor as the forwarding node and the rout-
ing message will be forwarded to it after the routing deci-
sion. It is noted that each neighbor tried before cannot be
selected again unless a backtracking is needed. Thus, each
routing message includes destination address and a list of
used nodes along the path. At first, the routing will try any
preferred neighbor to achieve the minimal path. If there
is no preferred neighbor available (all are faulty neighbor
or tried before), the routing will try any spare neighbor to
find another way to the intermediate destination in the cur-
rent cluster. There are several exceptions here to select the
cross-neighbor as the forwarding node. First, if the routing
is at the intermediate destination in the current cluster, the
routing has exhausted all the preferred dimensions and will
select the available cross-neighbor. By this jump the routing
can go to another class and exhaust the remaining dimen-
sions to reach the destination. Second, if the routing knows
the intermediate destination in the current cluster is a faulty
neighbor, there is no way to exhaust all the preferred dimen-
sions in this cluster. The routing needs to jump to another
class if the cross-neighbor is available. It will jump back to
a different cluster in the same class. Since each class has the
same dimensions of cube-edges, the routing will exhaust the
remained dimension and reach the destination after it jumps
back. Third, if the intermediate destination in the current
cluster has been tried before, it means that the routing just
jumped to this cluster for the second case. Selecting a spare
neighbor here will increase the length of routing path. In
our routing algorithm, the available cross-neighbor will be
selected. Finally, if there is no spare neighbor available, the
routing has no way to go and must select the only available
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Figure 3. Depth-first Routing in an F3.
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Figure 4. Routing difficulties in depth-first
search routing.

cross-neighbor. If all neighbors are not available, the rout-
ing needs backtracking. And if the source needs backtrack-
ing, the dual-cubes may be disconnected and the routing
process interrupts.

In Figure 3, an F3 has faulty nodes 0000001, 0000010,
0000100, and 0001111. The source s and the destination
d are nodes 0000000 and 0000111. The source s has three
faulty neighbors 0000001, 0000010, and 0000100. There
is no spare or preferred neighbor in SP set. The cross-
neighbor 1000000 is selected as the forwarding node. As
a node in class 1, node 1000000 has ru[1] = rd[1]. But
the cross-neighbor 0000000 has just been tried and their
connecting dimension is the incoming dimension of node
1000000. So spare neighbor 1001000 is selected next. Af-
ter that, since 1000000 has been tried, at 1001000, the rout-
ing will select its cross-neighbor 0001000. Then, the rout-
ing message will reach 0001001 and 0001011 by select-
ing a preferred neighbor from the SP set. The routing
at 0001011 will know its intermediate destination in class
0, node 0001111, is a faulty neighbor. Thus, the cross-
neighbor 1001011 from the SP set is selected. At node
1001011, a preferred neighbor 1000011 will be selected.
Since ru[1] = rd[1] at node 1001011 (the intermediate des-
tination in class 1), the cross-neighbor 0000011 will be se-
lected next. After the routing message arrives at 0000011,
it will reach the destination in the next step.

However, without fault information, the routing may en-
ter a region where all the paths to the destination are blocked
by faulty nodes. Thus, routing will try all the nodes in this

region until it goes back to the entrance of this region. The
routing needs detours and backtracking and caused routing
difficulties which will increase routing delay and traffic con-
gestion. Figure 4 shows an example of routing difficulty in
an F3. As the routing to the destination 1111001 selects
0000001 at the source 0000000, the routing message will go
to 1000001 in the next step. After that, the routing will try
node 1001001 to reach node 1111001. Since it is blocked by
faulty nodes 1011001, 1101001, and 0001001, the routing
needs backtracking to its entrance 1000001. After that, the
routing can find a path to the destination through 1100001
and 1110001.

Next, we will introduce a routing which uses our limited-
safety-level to avoid routing difficulties.
Limited-safety-level model and limited-safety-level-
based routing. In a given Fr, the limited-safety-level of
each node u, LS(u) = k, is its safety level [3] of the lo-
cal cluster (an r-cube). Each cluster (r-cube) maintains its
own safety level information in r� 1 rounds of information
exchanges among neighbors. Based on such information, a
minimal path can be guaranteed for the routing in this lo-
cal cluster. Adjacent clusters exchange their information to
approximate their global fault information for the routing
process, so that, a minimal path can be guaranteed before
the routing enters a cluster by a jump.

Definition 1: The limited-safety-level of a faulty node is 0.
For a non-faulty node u, let (LS0, LS1, LS2, :::, LSr�1)
be the non-descending limited-safety-level sequence of node
u’s r cube-neighbors, such that LSi � LSi+1 (0 � i � r�
1). The limited-safety-level of node u is defined as: if (LS0,
LS1, LS2, :::, LSr�1) � (0; 1; 2; :::; r � 1) (seq1 � seq2
if and only if each element in seq1 is greater or equal to
the corresponding element in seq2.), then LS(u) = r else if
(LS0; LS1; LS2; :::; LSk�1) � (0; 1; 2; :::; k�1)^(LSk =
k � 1) then LS(u) = k.

The limited-safety-levels can be calculated through it-
erative rounds of information exchanges among neighbors.
Initially, all faulty nodes are assigned a limited-safety-level
of 0 and all non-faulty nodes are assigned a limited-safety-
level of r. Update of each limited-safety-level within each
round is based on the limited-safety-level definition.

Based on the propositions of safety levels in hypercubes
[3], the limited-safety-level of a node u, LS(u), has follow-
ing propositions:

1. The status of limited-safety-level is stabilized exactly
in round (r � 1).

2. If the limited-safety-level of a node is k, then there is
at least one minimal path from this node to any node
within distance k in the same cluster.

It is clear that (r � 1) rounds of information exchanges
are needed in the worst case to determine limited-safety-
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Figure 5. 2 rounds of information exchanges
in deciding limited-safety-level. (a) Initially
assignment. (b) After the first round. (c) After
the second round.

levels of all nodes in a dual-cube. Figure 5 shows an ex-
ample of limited-safety-level calculation in an F3 through
2 rounds of information exchanges in a given faulty clus-
ter (3-cube) with three faulty nodes: 0000000, 0000011,
and 0000110. The number in each () represents the limited-
safety-level of that node.

It is noted that each node u has collected the limited-
safety-level of its cross-neighbor u0 (LS(u0)). LS(u0) does
not affect the update of LS(u). But it will be used in
the routing process to avoid a jump to a cluster whose r-
cube routing cannot complete due to the block by the faulty
nodes. The routing based on the limited-safety-level infor-
mation at an immediate node u is shown in Algorithm 3.

Algorithm 3: Limited-safety-level-based routing
at the current node u(cu; ru[1]; ru[0]) (destination:
d(cd; rd[1]; rd[0])).

1. If u=d, then stop.

2. Forward the routing message to (a) a preferred neigh-
bor u0 such that LS(u0) �j ru0 [cu] � rd[cu] j, or (b)
a spare neighbor u0 such that LS(u0) �j ru0 [cu] �
rd[cu] j unless (a) ru[cu] = rd[cu], or (b) node u00

((0; ru[1]; rd[0]) if cu = 0; otherwise, (1; rd[1]; ru[0]))
is a faulty neighbor or has been tried before.

3. Forward the routing message to the cross-neighbor u0

such that LS(u0) �j ru[cu � 1]� rd[cu � 1] j.

4. Otherwise, interrupted.

At the source node s, first, the routing will try a pre-
ferred neighbor or spare neighbor (which will lead to 2 ex-
tra steps) whose limited-safety-level is no less than its dis-
tance to the intermediate destination in the same cluster. A
minimal routing path or a sub-minimal path is guaranteed
here. After that, at each node, the routing will try a pre-
ferred neighbor to reach that intermediate destination. How-
ever, the limited-safety-level still cannot effectively present
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Figure 6. Cube-routing by using local safety
levels. (a) Routing without selecting spare
neighbor in the process. (b) Routing with se-
lecting spare neighbor in the process.

fault information. The routing will not know if the inter-
mediate destination is faulty or healthy until the routing
reaches its neighbor. So if that intermediate destination
is a faulty node, there is no minimal path and the routing
must interrupt. When that healthy intermediate destination
is reached, the cross-neighbor whose limited-safety-level is
no less than its distance to the intermediate destination in
the new cluster will be selected, so that, a minimal path can
be guaranteed in the new cluster. If the limited-safety-level
of the cross-neighbor is less than that distance, the routing
may enter a dangerous area. To avoid routing difficulties,
our routing will try only those nodes whose limited-safety-
levels can ensure a minimal routing path. If there is no such
an available forwarding node existing, the routing will in-
terrupt. It will be tried later after all the faults recovered.

For example, assume the source s and destination d in
an F3 are 0000000 and 0000111. They are in the same
cluster (see in Figure 6(a)). Among three preferred neigh-
bors of the source s: 0000001, 0000010, and 0000100,
the routing will select the preferred neighbor 0000001 be-
cause LS(0000001) = 3 >j 001 � 111 j= 2. Neighbor
0000010 will be avoided because LS(0000010) = 1 <j
010 � 111 j= 2. By the same reason, the routing will se-
lect node 0000101 at node 0000001 and finally reach the
destination d. In Figure 6(b), the current node in the rout-
ing from the source 0000010 to the destination 1010111, as
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Figure 7. Limited-safety-level-based routing
for the example shown in Figure 4.

the source 0000010, may not have any available preferred
neighbor (both preferred neighbors of 0000010: 0000011
and 0000110 are faulty nodes). By selecting a spare neigh-
bor 0000000 (LS(0000000) = 3 �j 000 � 111 j), the
routing will find a path to 0000111. And then, a jump to
1000111 (LS(1000111) = 3 �j 000� 010 j= 1). Finally,
the routing will reach the destination.

For the example in Figure 4 we saw before, by using
the limited-safety-level information (see in Figure 7), af-
ter the routing arrives at 1000001, the routing will select
a preferred node 1100001 since LS(1100001) = 3 >j
100� 111 j= 2. And then, the routing will select 1110001
in the next step since LS(1110001) = 3 >j 110�111 j= 1.
Compared with the routing path in Figure 4 and that in Fig-
ure 7, our routing based on the limited-safety-level informa-
tion avoided routing difficulties and needs fewer steps.

In the above discussion, it is assumed that all faults are
node faults. To extend it to cover link faults, both end nodes
of a faulty link must be considered as faulty nodes. Next,
we use limited-safety-vector to represent fault information.
Each end node of a faulty link treats the other one as faulty,
but it does not consider itself faulty.

Limited-safety-vector model and Limited-safety-vector-
based routing. The limited-safety-vector model is an im-
provement based on the limited-safety-level model. Basi-
cally, each node u in a dual-cube is associated with an r-
bit vector V S(u) = (u1; u2; :::; ur) called limited-safety-
vector, calculated through r � 1 rounds of information ex-
changes among cube-neighbors. In a given Fr, the limited-
safety-vector of each node u, V S(u), is its safety vector
[2] of the local cluster (an r-cube). Based on such infor-
mation, a minimal path can be guaranteed for the routing
in this local cluster. Adjacent clusters exchange their infor-
mation to approximate their global fault information for the
routing process, so that, a minimal path can be guaranteed
before the routing enters a cluster by a jump. Compared
with limited-safety-levels, Limited-safety-vectors can pro-
vide more accurate information about the number and the
distribution of faults in the dual-cubes.
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Figure 8. An example of a faulty dual-cube
in F3 with its limited-safety-level and limited-
safety-vector assignments.

Definition 2:

1. The limited-safety-vector of a faulty node is
(0; 0; :::; 0). If node u is an end node of a faulty
link, the other end node will be registered with a safety
vector of (0,0,...,0) at node u.

2. Base for the first bit:

u1 =

�
0 if node u is an end-node of a faulty link
1 otherwise

3. Inductive definition for the kth bit:

uk =

(
0 if

P
1�i�r

u
(i)
k�1 � r � k

1 otherwise

Based on the propositions of safety vectors in hyper-
cubes [2], the limited-safety-vector of a node u, V S(u), has
the following proposition: If uk, the kth bit in V S(u), is 1,
there exists at least one minimal path from node u to any
node inside the cluster which is exactly distance-k away.

Figure 8 shows an example of a cluster inside an
F3 with one faulty node 0000011 and two faulty links
(0000000,0000100) and (0000110,0000111). In this exam-
ple, the limited-safety-level of each node in this cluster (3-
cube) is either 0, 1, i.e., the current node inside this clus-
ter can only ensure a message to its neighbors. Clearly, by
inspection, the limited-safety-level information is not accu-
rate. For example, node 0000000, 0000110, and 0000010
can send a message to any nodes inside this cube through a
minimal path that are distance-2 or -3 away. This problem is
partially resolved in our limited-safety-vector model, where
the limited-safety-vector associated with nodes 0000000
and 0000010 are (0,1,0) and (1,0,1), respectively. The
reason that node 0000010 has a 1-bit at the 3rd bit of
its limited-safety-vector is that it has one cube-neighbor
0000000 with 1-bit as the 2nd bit of its limited-safety-
vector. Therefore, those faulty nodes and faulty links will
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Figure 9. Examples of limited-safety-level-
based routing and limited-safety-vector-
based routing in an F3.

not block all the minimal paths start from node 0000010 to
a node inside this cluster that is distance 3 away.

Algorithm 4: Limited-safety-vector-based routing
at the current node u(cu; ru[1]; ru[0]) (destination:
d(cd; rd[1]; rd[0])).

1. If u=d, then stop.

2. Forward the routing message to (a) a preferred neigh-
bor u0 such that u0jr

u0 [cu]�rd[cu]j
= 1, or (b) a spare

neighbor u0 such that u0jr
u0 [cu]�rd[cu]j

= 1 unless (a)
ru[cu] = rd[cu], or (b) node u00 ((0; ru[1]; rd[0]) if
cu = 0; otherwise, (1; rd[1]; ru[0])) is a faulty neigh-
bor or has been tried before.

3. Forward the routing message to the cross-neighbor u0

such that u0jru[cu�1]�rd[cu�1]j = 1.

4. Otherwise, interrupted.

The procedure of routing decision based on the limited-
safety-vector information at an immediate node u is shown
in Algorithm 4. Algorithm 4 is similar to Algorithm 3,
except for using the vector information. The limited-
safety-vector-based routing uses that vector information
which is more accurate than the limited-safety-level in-
formation. Figure 9 shows the difference between the
limited-safety-level-based routing and the limited-safety-
vector-based routing in an F3. The source and the destina-
tion are 0000000 and 1111001. Based on the limited-safety-
level information of node 1000001 at node u(0000001)
(LS(1000001) = 1 <j 000 � 111 j= 3), the limited-
safety-level-based routing at u will interrupt and can not
find the minimal routing path. Based on the limited-safety-
vector information of node 1000001 at node u(0000001)
(uj000�111j = 1), the limited-safety-vector-based routing
will select 1000001 for a jump at node u(0000001). After
that, it will reach the destination through a minimal path.
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Figure 10. F2 routings.

0

0.2

0.4

0.6

0.8

1

1.2

2 3 4 5 6 7 8

# 
of

 r
ou

nd
s 

of
 i

nf
o.

 e
xc

ha
ng

es

Number of faulty nodes

LEVEL (rounds)
VECTOR (rounds)

OPT (rounds)

0

0.2

0.4

0.6

0.8

1

1.2

2 3 4 5 6 7 8

T
im

es
 o

f 
in

fo
. 

u
p

d
at

es

Number of faulty nodes

LEVEL (x10 times)
VECTOR (x30 times)

OPT (x1000 times)

Figure 11. Comparison of information collec-
tion for different routings in an F2.
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Figure 12. F3 routings.

In the following section, we show the performance of our
routing algorithms by experimental results.

4 Performance

A simulation has been conducted on different size dual-
cubes (F2, F3, and F4) to test the average extra steps in dif-
ferent routings: depth-first search routing (DSBR), limited-
safety-level-based routing (LEVEL), limited-safety-vector-
based routing (VECTOR), and routing using global fault in-
formation (OPT).

We randomly generate faulty nodes, faulty links, source
and destination. Any Fr (r =2, 3, and 4) has up to 22�r�1

faulty components. Figure 10 shows the performance of
routing in an F2 for different cases of faulty components:
(1) all faulty nodes, (2) half faulty nodes and half faulty
links, and (3) all faulty links. Figure 12 and Figure 14 show
those in F3 and F4. Figures 11, 13, and 15 show the cost
of information collection for different routings (LEVEL,
VECTOR, and OPT) in F2, F3, and F4.

We make the following observations from the compari-
son of these figures.

� The LEVEL routing and VECTOR routing can ensure
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Figure 13. Comparison of information collec-
tion for different routings in an F3.

a minimal routing path in each cluster when they enter
that cluster. Thus, they do not need backtracking.

� If there is no minimal path in one cluster, the OPT rout-
ing will try the shortest path which may have a few
extra steps. The DSBR routing needs more detours to
find a way to the destination and has more extra steps.
In such a case, the LEVEL routing and the VECTOR
routing which use our limited global fault information
will realize that the current network configuration is
not good for data transmission in which we emphasize
high quality and performance. To get a shorter path,
they will retry after the faults are recovered. Therefore,
the LEVEL routing and the VECTOR routing will only
try those cases with minimal paths in OPT routing and
leave a shorter path for data transmission.

� In some cases, the VECTOR routing can find a rout-
ing path but the LEVEL routing cannot (see in Fig-
ure 9). This is due to the fact that the limited-safety-
vector information used in the VECTOR routing is
more precise than the limited-safety-level information
used in the LEVEL routing. However, the collec-
tion of limited-safety-vector information needs more
rounds (�2 in F4) of neighbor information exchanges
and more information update times (�100 in F4) than
those in the collection of limited-safety-level informa-
tion. The experimental results of the average routing
path in the VECTOR routing and those in the LEVEL
routing are close.

� The OPT routing needs global information broadcast-
ing. Unlike the global information model, our infor-
mation model is more cost effective. The information
update times in our information propagation can be re-
duced to 1

200 of that in global information broadcast-
ing in F4. Also, our information model needs only few
rounds of neighbor information exchanges ( 15 of that
in global information broadcasting in F4).
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Figure 14. F4 routings.
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Figure 15. Comparison of information collec-
tion for different routings in an F4.

5 Conclusions

In summary, we provided a fault-tolerant routing with its
extensions based on our limited global information in the
dual-cube networks. They can handle more than r faulty
nodes (up to 22�r�1 in an Fr). Also, faulty links are con-
sidered here. Here, we use limited-safety-level and limited-
safety-vector to represent our limited global information in
dual-cubes. The experimental results show the performance
of these routing algorithms and the effectiveness of our lim-
ited global information. Unlike the routing in [1], we do
not need to collect global fault information whose broad-
casting propagation will incur traffic congestion and even
new component failure in the networks. The information
collection for our routings needs few rounds of information
exchanges among neighbors. This increases the self-healing
ability of such a network. Next, we will extend our results
to dynamic dual-cubes in which all the faulty components
can occur during the routing process. Also, our results will
be extended to other cluster networks.
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