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ABSTRACT
Nowadays, people usually depend on augmented reality (AR)
systems to obtain an augmented view in a real-world environ-
ment. With the help of advanced AR technology (e.g. object
recognition), users can effectively distinguish multiple objects
of different types. However, these techniques can only offer
limited degrees of distinctions among different objects and
cannot provide more inherent information about these objects.
In this paper, we leverage RFID technology to further label
different objects with RFID tags. We deploy additional RFID
antennas to the COTS depth camera and propose a continuous
scanning-based scheme to scan the objects, i.e., the system
continuously rotates and samples the depth of field and RF-
signals from these tagged objects. In this way, by pairing the
tags with the objects according to the correlations between
the depth of field and RF-signals, we can accurately identify
and distinguish multiple tagged objects to realize the vision
of “tell me what I see” from the augmented reality system.
For example, in front of multiple unknown people wearing
RFID tagged badges in public events, our system can iden-
tify these people and further show their inherent information
from the RFID tags, such as their names, jobs, titles, etc. We
have implemented a prototype system to evaluate the actual
performance. The experiment results show that our solution
achieves an average match ratio of 91% in distinguishing up
to dozens of tagged objects with a high deployment density.
ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous
Author Keywords
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INTRODUCTION
As the proliferation of augmented reality technology, people
nowadays start to leverage augmented reality (AR) systems
(e.g. Microsoft Kinect, Google Glass) to obtain an augmented
view in a real-world environment. For example, devices like
the Microsoft Kinect [13], i.e., a depth camera, can effectively
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Figure 1. Tell me what I see from the augmented reality system

conduct object recognition based on pattern recognition tech-
nology. Therefore, users can effectively distinguish multiple
objects of different categories, e.g., a specified object in the
camera can be recognized as a vase, a laptop, or a pillow
based on its natural features. However, these techniques can
only offer a limited degree of distinctions among different
objects, since multiple objects of the same type may have
very similar features, e.g., the system cannot effectively dis-
tinguish between two laptops of the same brand, even if they
are owned by different people. Moreover, they cannot provide
more inherent information about these objects, e.g., the spe-
cific configurations, the manufacturers, and production date
of the laptop. Therefore, it is rather difficult to provide these
functions by purely leveraging the AR technology.

Fortunately, the rise of RFID technology has brought new op-
portunities to meet the new demands [27, 31, 15]. The RFID
tags can be used to label different objects, and store inherent
information of these objects in their onboard memory. More-
over, in comparison to the optical markers such as QR code,
the COTS RFID tag has an onboard memory with up to 4K or
8K bytes, and it can be effectively identified even if it is hidden
in/under the object. This provides us with an opportunity to
effectively distinguish these objects, even if they belong to the
same brand and have the same features of appearance. Figure
1 shows a typical application scenario of the above vision. In
this scenario, multiple people are standing or sitting together
in the cafe, while they are wearing the RFID tagged badges.
From the camera’s view, the depth camera can recognize mul-
tiple objects, or rather human subjects, as well as the depth
from its embedded depth sensor, which is associated with the
distance to the camera. The RFID reader can identify multiple
tags within the scanning range, moreover, it is able to extract
the signal features like the received signal strength (RSSI)



and phase from the RFID tags. By effectively pairing these
information together, the system can realize the vision of “tell
me what I see from the augmented reality system”. For exam-
ple, as shown in Figure 1, the inherent information extracted
from the RFID tags, such as their names, jobs and titles can
be directly associated with the corresponding human subjects
in the camera’s view. This provides us more opportunities to
communicate with unknown people by leveraging this novel
RFID assisted augmented reality.

Although many schemes for RFID-based localization [32, 28,
34] have been proposed, they mainly focus on the absolute
object localization, and usually require anchor nodes like ref-
erence tags for accurate localization. They are not suitable
for distinguishing multiple tagged objects because of two rea-
sons. First, we only require to distinguish the relative location
instead of absolute location of multiple tagged objects, by pair-
ing the tags to the objects based on the correlation between
the depth of field and RF-signals. Second, the depth camera
cannot effectively use the anchor nodes, and it is impractical to
deploy multiple anchor nodes in conventional AR applications.

In this paper, we leverage the RFID technology [33, 16] to
further label different objects with RFID tags. We deploy addi-
tional RFID antennas to the COTS depth camera and propose
a continuous scanning-based scheme to scan the objects, i.e.,
the system continuously rotates and samples the depth of field
and RF-signals from these tagged objects. In this way, we can
accurately identify and distinguish multiple tagged objects, by
sufficiently exploring the inherent correlations between the
depth of field and the received RF-signal. Specifically, we
respectively extract the RSSI and phase value from RF-signal,
and pair the tags with the objects according to the correlation
between the depth value and RSSI/phase value.

However, there are several challenges in distinguishing mul-
tiple tagged objects in AR systems. The first challenge is to
conduct accurate paring between the objects and the tags. In
real applications, the tagged objects are usually placed in very
close proximity, and the number of objects is usually in the
order of dozens. In this situation, it is difficult to realize accu-
rate paring due to the large cardinality and mutual interference.
The second challenge is to mitigate the interference from the is-
sues like the multi-path effect and object occlusion in realistic
settings. These issues can lead to nonnegligible interference
to pair the tags with the objects, such as the missing tags or
objects which fail to be identified. The third challenge is in
devising an efficient solution without any additional assistance,
like the anchor nodes. It is impractical to intentionally deploy
anchor nodes in real applications due to intensive deployment
costs on manpower and time.

This paper represents the first study of using RFID technology
to precisely distinguish multiple objects in augmented reality
systems. Specifically, we make three key contributions in this
paper. 1) To the best of our knowledge, we are the first to con-
sider identifying and distinguishing multiple tagged objects
with RFID systems, it provides a key supporting technology
for the augmented reality systems to realize the vision “tell
me what I see from the AR system”. 2) We conduct an exten-
sive experimental study to explore the inherent correlations

between the depth of field and RF-signals from the tagged
objects. We thus propose continuous scanning-based solutions
and respectively leverage the RSSI and phase value from RF-
signals to accurately distinguish the multiple tagged objects.
3) We implemented a prototype system and evaluated the ac-
tual performance with case studies. Our solution achieves an
average match ratio of 91% in distinguishing up to dozens of
RFID tagged objects with a high deployment density.
RELATED WORK
Depth camera-based pattern recognition: Depth camera-
based pattern recognition aims at using the depth and RGB
captured from the camera to recognize objects in a more ac-
curate approach. Based on the depth processing [11, 18], a
number of technologies are proposed in object recognition [23]
and gesture recognition [5, 21, 8, 30, 22]. Nirjon et al. solve
the problem of localizing and tracking household objects us-
ing depth-camera sensors [20]. Kinect-based pose estimation
method [21] is proposed in the context of physical exercise,
examining the accuracy of joint localization and robustness of
pose estimation with respect to the orientation and occlusions.

RFID in Ubiquitous Applications: RFID has been investi-
gated in various ubiquitous applications, including indoor
localization [34, 24] , activity sensing [2], tabletop inter-
action[9], physical object search [19], etc. Prior work on
RFID-based localization primarily relied on Received Signal
Strength [34, 24] or Angle of Arrival [1] to acquire the abso-
lute location of an object. The state-of-the-art systems use the
phase value to estimate the absolute or relative location of an
object with higher accuracy [33, 27, 17, 25]. RF-IDraw uses a
2-dimensional array of RFID antennas to track the movement
trajectory of one finger attached with an RFID tag so that
it can reconstruct the trajectory shape of the specified finger
[29]. Tagoram exploits tag mobility to build a virtual antenna
array, and uses differential augmented hologram to facilitate
the instant tracking of a mobile RFID tag [32]. Find My Stuff
(FiMS) provides search support for physical objects inside
furniture, on room level, and in multiple locations [19].

Combined use in augmented reality environment: Recent
works further consider using both depth camera and RFID
for indoor localization and object recognition in augmented
reality environment [26, 14, 6, 3]. Wang et al. propose an
indoor real-time location system combined with active RFID
and Kinect by leveraging the positioning feature of identified
RFID and the object extraction ability of Kinect. Klompmaker
et al. use RFID and depth-sensing cameras to enable person-
alized authenticated tangible interactions on a tabletop [14].
Galatas et al. propose a multimodal context-aware localization
system, by using RFID and 3-D audio-visual information from
2 Kinect sensors deployed at various locations [6]. Cerrada
et al. present a method to improve the object recognition by
combining the vision-based techniques applied to the range-
sensor captured 3D data, and object identification obtained
from RFID tags [3].
SYSTEM OVERVIEW

Design Goals
We aim to implement a supporting technology for the AR
systems to realize the vision of “tell me what I see from the



augmented system”, by leveraging RFID tags to label differ-
ent objects. In order to achieve this goal, we need to collect
the responses from multiple tags and objects, and then pair
the RFID tags to the corresponding objects, according to the
correlations between the depth of field and RF-signals. There-
fore, we need to consider the following metrics in regard to
system performance: 1) Accuracy: Since the objects are usu-
ally placed in very close proximity, there is a high accuracy
requirement in distinguishing these objects, i.e., the average
match ratios should be greater than a certain value, e.g., 85%.
2) Time-efficiency: Since the AR applications are usually exe-
cuted in a real-time approach, it is essential to reduce the time
delay in identifying and distinguishing the multiple objects.
3) Robustness: The environmental factors, like the multi-path
effect and partial occlusion, may cause the responses from the
tagged objects to be missing or distorted. Besides, the tagged
objects could be partially hidden behind each other due to the
randomness in the deployment. The solution should be robust
to these noises and distractions.

System Framework
We design a prototype system as shown in Figure 2(a). We
deploy one or two additional RFID antennas to the COTS
depth camera. The RFID antenna(s) and the depth camera are
fixed to a rotating shaft so that they can rotate simultaneously.
For the RFID system, we use the COTS ImpinJ R420 reader
[10], one or two Laird S9028 antennas, and multiple Alien
9640 general purpose tags; for the depth camera, we use the
Microsoft Kinect for windows. They are both connected to
a laptop placed on the mobile robot. The mobile robot can
perform a 360 degree rotation along with the rotation axis. In
the following sections, without loss of generality, we evaluate
the performance using the above configurations. By attaching
the RFID tags to the specified objects, we propose a continuous
scanning-based scheme to scan the objects, i.e., the system
continuously rotates and samples the depth of field and RF-
signals from these tagged objects. In this way, we can obtain
the depth of specified objects from the depth sensor inside the
depth camera, we can also extract the signal features such as
the RSSI and phase values from the RF-signals of the RFID
tags. By accurately pairing these information, the tags and the
objects can be effectively bound together.

Figure 2(b) further shows the software framework. The system
is mainly composed of three layers: the sensor data collection
layer, the middleware layer, and the application layer. For the
sensor data collection layer, the depth camera recognizes mul-
tiple objects and collects the corresponding depth distribution,
while the RFID system collects multiple tag IDs and extracts
the corresponding RSSIs or phases from the RF-signals of
RFID tags. For the middleware layer, we aim to sample and
extract some features from the raw sensor data, and conduct an
accurate matching among the objects and RFID tags. For the
application layer, the AR applications can use the matching
results directly to realize various objectives.

FEATURE SAMPLING AND EXTRACTION
In this section, we investigate the feature sampling and extrac-
tion based on the observations from empirical studies. Without
loss of generality, in the following each experiment observa-
tion is summarized from the statistical properties of 100 re-
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Figure 2. System Framework

peatable experiments. We set a typical indoor environment,
i.e., a 10m⇥ 8m lobby, as the testing environment.

Extract the Depth of Field from Depth-Camera
Depth cameras, such as the Microsoft Kinect, are a kind of
range camera, which produces a 2D image showing the dis-
tance to points in a scene from a specific point, normally
associated with a depth sensor. Therefore, the depth camera
can effectively estimate the distance to a specified object ac-
cording to the depth, because the depth is linearly increasing
with the distance. If multiple objects are placed in different
positions in the scene, they are usually at different distances
away from the depth camera. Therefore, it is possible to dis-
tinguish among different objects according to the depth values
from the depth camera.

Experiment Observations
We first conduct experiment to evaluate the characteristics
of the depth. We arbitrarily place three objects A, B, and C
in front of the depth camera, i.e., Microsoft Kinect, object
A is a box at distance 68cm, object B is a can at distance
95cm and object C is a tripod at distance 150cm. We then
collect the depth histogram from the depth sensor. As shown in
Figure 3(a), the X-axis denotes the depth value, and the Y -axis
denotes the number of pixels at the specified depth. We find
that, as A and B are regular-shaped objects, there are respective
peaks in the depth histogram for object A and B, meaning that
many pixels are detected from this distance. Therefore, A
and B can be easily distinguished according to the distance.
However, there exist two peaks in the corresponding distance
of object C, because object C is an irregularly-shaped object
(the concave shape of the tripod), there might be a number of
pixels at different distances. Moreover, we can also find some
background noises past the distance of 175 cm, which can be
produced by background objects, such as the wall and floor.
This implies that, for the object with a continuous surface,
the depth sensor usually detects a peak in the vicinity of its
distance, for an irregularly-shaped object, the depth sensor
detects multiple peaks with intermittent depths. Nevertheless,
we find that these peaks are usually very close in distance.

In order to further validate the relationship between the depth
and distance, we set multiple horizontal lines with different
distances to the Kinect (from 500 mm to 2500 mm). For each
horizontal line, we then move a certain object along the line
and respectively obtain the depth value from the Kinect. We
show the experiment results in Figure 3(b). Here we find
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Figure 3. Experiment results of depth value

that, for each horizontal line, the depth values of the object
keep nearly constant, with rather small deviation; for different
horizontal lines, these depth values have obvious variations.
Due to the limitation of the Kinect’s view, the Kinect has
smaller view angle in closer distance. This observation implies
that, the depth value collected from the depth cameras depicts
the vertical distance rather than the absolute distance between
the objects and the depth camera.

Depth Feature Extraction
To extract the depth of specified objects from the depth his-
togram of multiple objects, we set a threshold t to detect the
peaks in regard to the number of pixels. We thus iterate from
the minimum depth to the maximum depth in the histogram,
if the number of pixels for a certain depth is larger than t, we
identify it as a peak p(di,ni) with the depth di and the number
of pixels ni. In order to address the multiple-peaks problem
of irregularly-shaped objects, we set another threshold Dd. If
the differences of these peaks’ depth values are smaller than
Dd, we then combine them as one peak. Both the value of
t and Dd are selected based on the empirical value from a
number of experimental studies (t=200 and Dd=10cm in our
implementation). Then, each peak actually represents a speci-
fied object. For each peak, we respectively find the leftmost
depth dl and the rightmost depth dr with the number of pixels
nr > 0. We then compute the average depth for the specified
object as follows: d = Âr

i=l (di ⇥ ni
Âr

i=l ni
). The average depth

is calculated in a weighted average approach according to the
number of pixels for each depth around the peak.

Extract the Received Signal Strength from RF-signals
The received signal strength (RSSI) measures the power of
received radio signal, which is inversely proportional to the
distance between the tag and the reader. However, according to
the previous study [34], the RSSI is impacted by various issues
like multi-path effect, and path loss, etc. This indicates that
the RSSI does not always have a monotonic relationship with
the distance. Therefore, with the RSSI from a specified tag,
the RFID system can roughly estimate the distance between
the reader and the tag.

Experiment Observations
It is found that, inside the RFID antenna’s effective scanning
range, the RSSI from the tag is also impacted by its position
offset from the center of the antenna beam. In order to validate
the above judgment, we separate the RFID reader and the tag
with a distance d, and then we evaluate the average RSSI value
by gradually rotating the antenna from an offset degree of
�40� to +40�. Figure 4 shows the experiment results. We find

that, as the distance between the tag and the reader increases
from 50 cm to 150 cm, the RSSI decreases rapidly; when
the distance further increases, the RSSI then decreases slowly.
Moreover, in regard to a certain distance, the RSSI from the
tag always reaches the maximum value when the antenna is
directly facing towards the tag. As we further increase the
offset degree in rotation, the RSSI gradually decreases. This is
because the antenna outputs the maximum transmitting power
in the central area of the beam, and thus the RSSI of the
backscattered RF-signals reaches the maximum value when
the tag is in the center. As the tag’s position is deviated from
the center of the antenna beam, the RSSI of the backscattered
RF-signals thus decreases. We call the position of achieving
the peak value in RSSI the perpendicular point, since the
perpendicular bisector of the RFID antenna crosses this point.
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Figure 4. The variation of RSSI via rotating the RFID antenna

Although the RSSI can only be used to measure the vertical
distance between the tag and the antenna in a coarse granu-
larity, nevertheless, with different offset degrees from the tag
to the center of antenna beam, the RSSI changes in a convex
curve with the peak value at the perpendicular point. We can
further leverage this property to differentiate the positions of
various objects in the horizontal aspect.
Extract the Phase Value from RF-Signals
Background
Phase is a basic attribute of a signal along with amplitude
and frequency. The phase value of an RF signal describes the
degree that the received signal offsets from the sent signal,
ranging from 0 to 360 degrees. Let d be the distance between
the RFID antenna and the tag, the signal traverses a round-
trip with a distance of 2d in each backscatter communication.
Therefore, the phase value q output by the RFID reader can
be expressed as [25, 4]:

q = (
2p
l

⇥2d +µ) mod 2p, (1)

where l is the wave length. Besides the RF phase rotation
over distance, the reader’s transmitter, the tag’s reflection char-
acteristic, and the reader’s receiver will also introduce some
additional phase rotation, denoted as qT , qR and qTAG respec-
tively. We use µ = qT + qR + qTAG to denote this diversity
term in Eq. (1). Since µ is rather stable according to the previ-
ous results [32], and it is only related to the physical properties
of the specified tag-antenna pair, we can record µ for different
tags in advance. Then, according to each tag’s response, we
can calibrate the phase value by offsetting the diversity term.
Thus, the phase value can be used as an accurate and stable
metric to measure distance.

Estimate the Vertical Distance from Phase Value
According to the definition in Eq. (1), the phase value is a
periodical function of the distance. Hence, given a specified



phase value from the RF-signal, there can be multiple solu-
tions for estimating the distance between the tag and antenna.
Therefore, we can deploy an RFID antenna array to scan the
tags from slightly different positions, so as to figure out the
unique solution of the distance. Without loss of generality, in
this paper, we separate two RFID antennas with a distance of
d, and use them to scan the RFID tags and respectively obtain
their phase values from the RF-signals, as shown in Figure 5.

Since the depth value from the depth cameras like Kinect
measures the vertical distance, instead of the absolute distance
between the objects and the depth camera, in order to achieve a
perfect match between the collected RF-signals and the depth
of field, it is essential to measure the vertical distance between
the tags and RFID antennas. However, it is rather difficult
to directly measure the vertical distance via the phase value.
Figure 5 shows the relationship between the vertical distance
and the absolute distance. In regard to a specified RFID tag,
suppose its absolute distances to Antenna 1 and Antenna 2
are respectively d1 and d2, then we need to derive its vertical
distance h to the antenna pairs.

Antenna 1 Antenna 2
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m
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X-axis
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Figure 5. Compute the (x,y) coordinate of the tag

If we respectively use A1 and A2 to denote the midpoint of
Antenna 1 and Antenna 2, and use T to denote the position
of the tag, as a matter of fact, the three sides of hT,A1i,
hT,A2i, and hA1,A2i form a triangle. Since Antenna A1
and Antenna A2 are separated with a fixed distance d, ac-
cording to Heron’s formula [12], the area of this triangle is
A =

p
s(s�d1)(s�d2)(s�d), where s is the semiperimeter

of the triangle, i.e., s = (d1+d2+d)
2 . Moreover, since the area of

this triangle can also be computed as A = 1
2 h⇥d, we can thus

compute the vertical distance h =
2
p

s(s�d1)(s�d2)(s�d)
d . Then,

according to the Apollonius’ theorem [7], for a triangle com-
posed of point A1,A2 and T , the length of median TO bisecting
the side A1A2 is equal to m = 1

2

q
2d2

1 +2d2
2 �d2. Hence, the

horizontal distance between the tag and the midpoint of the
two antennas, i.e., T 0O, should be

p
m2 �h2. Therefore, if

we build a local coordinate system with the origin set to the
the midpoint of the two antennas, the coordinate (x0,y0) is
computed as follows:

x0 =

8
<

:

q
1
2 d2

1 +
1
2 d2

2 �
1
4 d2 �h2 d1 � d2

�(
q

1
2 d2

1 +
1
2 d2

2 �
1
4 d2 �h2) d1 < d2

(2)

y0 = h. (3)

Therefore, the next problem we need to address is to estimate
the absolute distance between the tag and antenna according to

the extracted phase value from RF-signals. Suppose the RFID
system respectively obtains two phase values q1 and q2 from
two separated RFID antennas, then, according to the definition
in Eq. (1), the possible distances from the tag to the two
antennas are: d1 =

1
2 · (

q1
2p + k1) ·l , and d2 =

1
2 · (

q2
2p + k2) ·l .

Here, k1 and k2 are integers ranging from 0 to +•. Due to
the multiple solutions of k1 and k2, there could be multiple
candidate positions for the tag. However, since the difference
of the lengths of two sides is smaller than the length of the
third side in a triangle, i.e., |d1 �d2|< d, we can leverage this
constraint to effectively eliminate many infeasible solutions
of k1 and k2. Besides, due to the limited scanning range of
the RFID system (the maximum scanning range l is usually
smaller than 10 m), the value of k1 and k2 should be upper
bounded by a certain threshold, i.e., 2l

l .

Figure 6 shows an example of feasible positions of the target
tag according to the obtained phase values q1 and q2. The fea-
sible solutions include multiple positions like A ⇠ D, which
respectively belong to two hyperbolas H1 and H2. Due to
the existence of multiple solutions, we can use these hyper-
bolas to denotes a superset of these feasible positions in a
straightforward approach.
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Target
A

B
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Figure 6. Estimate the distance from phase value of RF signals

MATCHING ALGORITHM VIA CONTINUOUS SCANNING

Motivation
To identify and distinguish the multiple tagged objects, a
straightforward solution is to scan the tags in a static approach,
where both the depth camera and RFID antenna(s) are de-
ployed in a fixed position without moving. The system scans
the objects and tags simultaneously and respectively collect
the depth value and RF-signals from these tagged objects. We
can further pair the tags with the objects accordingly. However,
when multiple tagged objects are placed at close vertical dis-
tance to the system, this solution cannot effectively distinguish
multiple tagged objects in different horizontal distances.

To address this problem, we propose a continuous scanning-
based solution as follows: we continuously rotate the scanning
system (including the depth camera and RFID antennas), and
simultaneously sample the depth of field and RF-signals from
multiple tagged objects. Hence, we are able to collect a con-
tinuous series of features like depth, RSSI and phase values
during continuous scanning. While the scanning system is ro-
tating, the vertical distances between multiple objects and the
scanning system are continuously changing, from which we
can further derive the differences of multiple tagged objects
in different horizontal distances. In this way, we are able to
further distinguish multiple tagged objects with close vertical
distance but in different positions.
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Figure 7. The experiment results of continuous scanning

Extract Depth via Continuous Scanning
In this section, we present our approach to extract the depth
series via continuous scanning, so as to derive both the vertical
distance and the horizontal distance of the tagged objects.

During the continuous scanning, we continuously rotate the
depth camera from the angle of �q to +q and use it to scan
the multiple tagged objects. During this process, as the vertical
distance between the specified objects and the depth camera is
continuously changing, the depth values collected from these
objects are also continuously changing. We conduct exper-
iments to validate this judgment. As shown in Figure 7(a),
we arbitrarily deploy multiple tagged objects within the ef-
fective scanning range, the coordinates of these objects are
also labeled. We continuously rotate the depth camera from
the angle of �40� to +40� and collect the depth values from
multiple tagged objects for every 5⇠6 degrees. Figure 7(b)
shows the experiment results. We use the method of quadratic
curve fitting to connect the depth values as a curve for a certain
object. We find that the series of depth values for each object
actually form a convex curve with a peak value. This peak
value denotes the snapshot when the vertical distance reaches
the maximum value. It appears only when the perpendicular
bisector of the depth camera crosses the specified object, since
the vertical distance reaches the value of the absolute distance
between the object and the depth camera, which is the theo-
retical upper bound it can achieve. In other words, the peak
value appears when the depth camera is right facing towards
the object, we call this perpendicular point.

In this way, according to the peak value of depth, we are able
to further distinguish multiple objects with the same vertical
distance but different positions. The solution is as follows:
After the system finishes continuous scanning, it extracts the
peak value from the curve of each object’s depth value. Then,
we label each object with the coordinate of its peak value, i.e.,
hq ,di, where q represents the rotation angle and d represents
the depth value. Therefore, as the depth d denotes the verti-
cal distance of objects, we can use the depth to distinguish
the objects in the vertical dimension; as the rotation angle q
denotes the angle for the camera to meet the perpendicular
point, we can use the angle to distinguish the objects in the
horizontal dimension. They can be easily distinguished from
the horizontal dimension.

Pair the Tags with Objects according to Depth and RSSI
It is known that the RSSI is not a very reliable metric to accu-
rately measure the distance between the tags and the antennas,
as it is easy to be impacted by the environmental factors like

multi-path fading and path loss. However, since most mid-and
low-end COTS RFID systems can only extract the RSSI from
RF-signals, we need to figure out a solution based on RSSI.
In this section, we present our approach to pair the tags with
objects according to the correlations between the depth and
RSSI in continuous scanning.

According to the observations from Figure 4, with different
offset degrees from the tag to the center of antenna beam, the
RSSI changes with a fixed variation pattern. This implies that,
if we conduct the continuous scanning to the tagged objects,
the RSSI from the tag always reaches the maximum value
when the antenna is right facing towards the tag. This varia-
tion pattern of RSSI is quite similar to the depth value, since
they both reach the peak value when the tagged object is at
the perpendicular point of depth camera/RFID antenna. We
further conduct experiments to validate the above judgment.
Using the delpoyment in Figure 7(a), we continuously rotate
the RFID antenna from the angle of �40� to +40� and collect
the RSSI from multiple tags. As shown in Figure 7(c), the vari-
ation of RSSI for each tag has very similar features as depth:
during the continuous scanning, the RSSI first increases to a
maximum value, and then further decreases to a certain value.
The only difference is that the RSSI is inversely corresponding
with the depth value for any specified object, i.e., the larger the
RSSI, the smaller the depth. Therefore, we can also label each
tag with the coordinate of its peak value, i.e., hq ,ri, where q
represents the rotation angle and r represents the RSSI. We
can respectively use the RSSI r and the rotation angle q to
distinguish the tags in vertical and horizontal dimensions.

Therefore, in order to pair multiple tags with multiple objects,
we propose a matching solution in Algorithm 1. Our goal is to
find a matching between two disjoint sets O and T according
to the correlation of their measurements. After we extract
the vector from the measured data, for any object Oi with
vector hqi,dii, we first select the candidate tags for pairing
according to the angle qi. We set all tags as pairing candidates
with their angles in the range [qi � d ,qi + d ] (d = 5� in our
implementation). Then we further compare their values in
RSSI and depth. As the RSSI and the depth are measured in
different dimensions, e.g., the depth value is linearly correlated
to the distance, while the RSSI is nonlinearly correlated to
the distance, it is not reasonable to compare them directly.
We thus match each object to a candidate tag based on their
relative rank in RSSI and depth. After that, since multiple
objects may be matched to one tag, we make the tag select the
object with the closest rank as the final pair. This process then
iterates until all the objects and tags are paired.



Algorithm 1 Match multiple objects to multiple tags
1: Extract the vector: After continuous scanning, we respectively identify

the peak value from the quadratic fitting curve of depth and RSSI. For
each object Oi, we label it with a vector hqi,dii, and add the vector to
a set O; for each tag Tj , we label it with a vector hq j,r ji, and add the
vector to a set T .

2: while O , ? and T , ? do

3: Match the objects and tags: For each object Oi 2 O with vector
hqi,dii, respectively add those objects O j 2 O and those tags Tj 2 T
with q j 2 [qi �d ,qi +d ] into the set Oc and Tc. In regard to the depth
value di, compute the rank of Oi in the set Oc as k. Select the tag
T ⇤

j 2 Tc with the rank of k in regard to the RSSI r j , and pair the object
O j with the tag T ⇤

j .
4: Calibrate the matching results: For any tag Tj 2 T paired with mul-

tiple objects, select the object Oi from these objects with the closest
rank similarly, and pair the object Oi with the tag Tj⇤. Respectively
remove the object Oi and the tag Tj from set O and T .

5: end while

6: Output the matched pairs of objects and tags.

Pair the Tags with Objects according to Depth and Phase
Since a new brand of COTS RFID systems, like the ImpinJ,
are able to extract the phase value from the RF-signals of tags,
it provides us a new opportunity to differentiate the positions
of the tagged objects with a more accurate approach. In this
section, we present our approach to pair the tags with objects
according to the correlations between the depth and phase in
continuous scanning.

According to the analysis shown in Figure 6, given the two
phase values of RF-signals extracted from two antennas sep-
arated with a distance d (d=25cm in our implementation),
there could be multiple solutions for the tag’s position, which
could be represented with multiple hyperbolas in the two-
dimensional space. In fact, we can leverage continuous scan-
ning to figure out a unique solution by filtering out those un-
qualified solutions. The idea is as follows: for each snapshot
ti(i = 1 ⇠ m) of the continuous scanning, for a specified tag
T , we can respectively extract the phase values (q1,q2) from
the two antennas, then compute the feasible distances (d1,d2)
between the tag and two antennas. We further compute the
set of feasible positions in a global coordinate system as Si.
Then, by computing the intersection of different sets Si for all
snapshots, we are able to figure out a unique solution for the
tag’s position as follows: S = \m

i=1Si.

As a matter of fact, as long as two pairs of phase values are
obtained, we are able to further derive the unique solution of
the tag’s position by computing the intersection of multiple
feasible solutions. Figure 8 shows an example of deriving the
unique solution. Suppose a target tag is deployed at the coordi-
nate (�60,180). We first obtain the phase values (2.58,5.81)
from the two antennas when they are respectively at the posi-
tion of A1 and A2. After the antenna pairs are rotated with a de-
gree of 40�, we then obtain the phase values (5.56,2.49) from
the two antennas when they are respectively at the position
of A0

1 and A0
2. In this way, we can obtain three pairs of phase

values (2.58,5.81), (2.58,5.56) and (5.81,2.49), which are
respectively collected from antenna pairs hA1,A2i, hA1,A0

1i,
and hA2,A0

2i. We can respectively use them to compute the
feasible solutions in a unified coordinate system. As shown
in Figure 8, we use different colors to label the hyperbolas

of multiple feasible solutions according to different pairs of
phase values. It is found that the multiple hyperbolas of differ-
ent feasible solutions all intersect at a small area which is very
close to the target tag’s real position. We thus set the central
point of the intersection region as the estimate value of the
tag’s position.
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After deriving the target tag’s position, we can further derive
the angle when the tag is at the perpendicular point of the
RFID antennas, that is the moment when the perpendicular
bisector of the midpoint of the antenna pairs crosses the tag.
We use the pair hq ,d i to denote this situation, here q denotes
the offset angle of the antenna, and d denotes the vertical dis-
tance. The pair hq ,d i is computed as follows: q = arctan | x

y |,
and d =

p
x2 + y2. Therefore, we can further leverage an

algorithm like Algorithm 1 to match multiple tags to multiple
objects. The only difference is that we can directly pair the
objects Oi 2 O with the tags Tj 2 T according to the distance
between the vector hqi,dii and the vector hq j,d ji, since they
can accurately estimate the positions of the objects/tags.
Discussion
Robustness
Due to the environmental issues like the multi-path fading and
object occlusion, the system may fail to identify some of the
objects and the tags. Moreover, in some situations, it is essen-
tial to isolate the recognizable object with non-recognizable
ones. Hence, it is possible that the cardinality of objects identi-
fied by the depth camera is not equal to the cardinality of tags
identified by the RFID antenna. This leads to imperfect match-
ing between the objects and tags. Our solution is able to tackle
this problem by using the two-dimensional matching method
with regression analysis. By means of continuous scanning via
rotation, in regard to the tags and objects, we can derive their
vertical distances in the horizontal dimension and horizontal
distances in the horizontal dimension, respectively from the
depth camera and the RFID antenna. Then we perform the
regression analysis on the vertical distances and horizontal
distances between the tags and objects, and filter out those
outliers according to the regression model. After that, we
pair the tags with objects according to their two dimensional
positions. This approach effectively mitigates the interference
from those tags and objects which fail to be identified and
isolates the recognizable object with non-recognizable ones.

Scalability
Our technical solution is primarily based on the distinction
of depth (vertical distance) from the tagged objects. How-
ever, even if multiple objects are of the same depth, our so-
lution is still able to distinguish these objects via continuous



scanning. By leveraging continuous scanning, our solution
is able to effectively distinguish the tagged objects in terms
of both vertical distance and horizontal distance. Moreover,
in real applications, since the tagged objects are deployed in
3-dimensional space, two tagged objects can be at the same
coordinate (x,y) but at different heights in z. Our solution can
effectively scale to this situation by conducting continuous
scanning in a 2-dimensional space, i.e., continuously scan the
tagged objects by rotating up and down, and from left to right.
In this way, the system is able to distinguish multiple objects
of different positions in 3-dimensional space.

Time Delay
Since the number of tagged objects cannot be too large in real
applications, the computation complexity of our algorithm is
fairly low, hence the time delay of our solution mainly lies in
the process of continuous scanning. Therefore, we can reduce
the time delay via the following two approaches: 1) Increase
the rotation speed of the continuous scanning system, such
that the time delay in rotation is reduced. 2) Appropriately
decrease the number of samples during the continuous scan-
ning, without too much loss in the accuracy of distinguishing
multiple tagged objects, such that the time delay in sampling
is reduced. In fact, our depth-phase-based pairing approach
only requires to sample twice during the continuous scanning,
which greatly reduces the time-delay in scanning.
PERFORMANCE EVALUATION
Experiment Settings
We evaluated our system using one Microsoft Kinect for win-
dows, one ImpinJ R420 reader, two Laird S9028 RFID an-
tennas, and multiple ImpinJ E41-B general purpose tags. We
deploy multiple objects in an area of about 3m⇥ 3m, and
attach each tag to an object. We use the Kinect as the depth-
camera and use the RFID reader to scan the tags. The average
distance between the tagged objects and the system is 2 m. We
implement four schemes for performance comparison:
1) Static Scanning via Depth-RSSI Pairing (SS-RSSI): The
system scans the tagged objects once at a fixed position, and
pairs the tags with the objects according to their partial orders
respectively in collected depth and RSSI.
2) Hybrid Scanning via Depth-Phase Pairing (HS-Phase): The
depth camera continuously rotates and scans the tagged ob-
jects, while the RFID antennas scan the tagged objects once at
a fixed position, and pairs the tags with the objects according
to the extracted depth and phase.
3) Continuous Scanning via Depth-RSSI Pairing (CS-RSSI):
The system continuously scans the tagged objects while it is
rotating, and pairs the tags with the objects according to the
extracted series of depth and RSSI.
4) Continuous Scanning via Depth-Phase Pairing (CS-Phase):
The system continuously scans the tagged objects while it
is rotating, and pairs the tags with objects according to the
extracted series of depth and phase.

Evaluate the Accuracy in Pairing the Tags with Objects
We run experiments to evaluate the accuracy in pairing the
tags with the objects. Without loss of generality, by default
we deploy 10 tagged objects in the scanning area. We vary
the settings of the average horizontal/vertical distance, and the
cardinality of tagged objects. For each setting, we randomly

generate 10 types of deployments for the tagged objects, and
evaluate the average match ratio for successful pairing in the
above four schemes.

Accuracy for different cardinalities of tagged objects
Our solution achieves good performance in accuracy when
the cardinalities of tagged objects are varied from 3 to 15. We
first deploy 10 tagged objects in the scanning area, and set
the average horizontal/vertical distance among the objects to
30 cm, thus the average density is 11 objects/m2, which is a
fairly large density for conventional applications. As shown in
Figure 9(a), we find that both CS-RSSI and CS-Phase achieve
much better performance than SS-RSSI and HS-Phase, e.g.,
the match ratios of CS-RSSI and CS-Phase are respectively
75% and 91%, while the match ratios of SS-RSSI and HS-
Phase are only 25% and 40%. We further evaluate the match
ratio for pairing different cardinalities of tagged objects, by
varying the cardinality of tagged objects from 3 to 15. As
shown in Figure 9(b), as the cardinality increases from 3 to
15, the match ratios of SS-RSSI and HS-Phase decrease in a
rapid approach, whereas the match ratios of CS-RSSI and CS-
Phase decrease slowly. Nevertheless, CS-RSSI and CS-Phase
respectively achieve a match ratio of 60% and 77% when the
cardinality of tagged objects is 15.

Accuracy for different vertical/horizontal distances
Our solution achieves good performance in accuracy when
the vertical/horizontal distances are varied from 10 cm to 50
cm. We respectively vary the average vertical distances and
horizontal distances among the tagged objects, thus to further
evaluate the performance in accuracy. We fix the average hori-
zontal (vertical) distance among the objects to 30 cm, and vary
the average vertical (horizontal) distance from 10 cm to 50
cm. Figure 9(c) and Figure 9(d) show the match ratios with
different vertical distances and horizontal distances, respec-
tively. We find that as the average vertical/horizontal distance
decreases, the match ratios of all schemes gradually decrease.
Besides, for the same vertical distance and horizontal distance,
the match ratio of the former situation is apparently less than
the latter situation, since the vertical distance is more difficult
to estimate than the horizontal distance. Nevertheless, CS-
Phase respectively achieves a match ratio of 68% and 72%
when the average vertical/horizontal distance is 10cm, which
is corresponding to a rather high density for the tagged objects,
i.e., 33 objects/m2.
Evaluate the Robustness in Pairing the Tags with Objects
Robustness to missing tags/objects
Our solution achieves good performance in robustness with
different ratios of missing objects/tags ranging from 10% to
50%. We run experiments to evaluate the robustness to missing
tags/objects, when there exist several objects or tags which
fail to be identified. Here we measure the match ratio for the
remaining objects or tags. Figure 9(e) and Figure 9(f) show
the experiment results for different ratios of missing objects
and tags, respectively. As the ratio of missing objects/tags
increases from 10% to 50%, the match ratios for all schemes
decrease in most cases, except that in some cases, the match
ratio of SS-RSSI and HS-Phases slightly increase, since the
number of objects/tags for pairing is reduced. Nevertheless,
CS-RSSI and CS-Phase respectively achieve a match ratio of
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Figure 9. The experiment results

near 60% and 72% when the ratio of missing objects/tags is
even 50%.

Robustness to different numbers of samplings
Our solution achieves good performance in robustness with
different numbers of samplings ranging from 3 to 15 during
continuous scanning. Figure 9(g) shows the experiment re-
sults. As the number of samplings increases from 1 to 15, we
find that the match ratio of CS-RSSI rapidly increases from
30% to 75%, while the match ratio of CS-Phase first rapidly
increases to 91% when the number of samplings is 3, then
slowly increases to 96% when the number of samplings is 15.
This implies that CS-Phase is more robust to the low sampling
situation than CS-RSSI, since CS-Phase requires only a few
phase-pair samples to figure out the position according to the
intersections of multiple hyperbolas.

Evaluate the Time Efficiency
The time efficiency mainly depends on the number of sam-
plings and the rotation speed in continuous scanning. Since
the rotation speed is device-dependent, we thus evaluate the
time-efficiency via the number of samplings. As shown in
Figure 9(h), SS-RSSI achieves the least time delay, as it only
requires to scan once, whereas CS-RSSI achieves the most
time delay, as it requires to scan multiple times to find the
peak point via continuous scanning, HS-Phase and CS-Phase
achieve the medium time delay, as basically 3⇠4 samplings is
enough for them to estimate the position of tagged objects.

CASE STUDY: RECOGNIZE MULTIPLE TAGGED HUMAN
SUBJECTS IN THE CAFE
In order to further evaluate the real performance of our system
by considering more practical issues (e.g. indoor multi-path
and energy absorption), we do more thorough experiments in
a more realistic setting.

User Interface: In this case study, a major task of our system
is to recognize multiple tagged human subjects in the cafe and
further show their inherent information in the camera’s view,

as shown in Figure 10. Thus, we have implemented an appli-
cation which were executed on a SAMSUNG PC equipped
with an Intel(R) Core(TM) I5 1.4GHz CPU and 4G RAM. The
PC is remotely connected to the system via WiFi. Figure 11
shows an example user interface of our application. The left
window shows the camera’s view from the Kinect, while the
right window shows the detailed description of the specified
object. Once the button “Scan” is pressed, the system runs
our continuous scanning-based algorithm to match the objects
with the tags, and then draws multiple bounding boxes on the
camera’s view based on the scanning results. Each bounding
box (in blue color) is actually a rectangle which distinguishes
the object from the background based on the color/depth gra-
dient between the object and background. When the specified
bounding box is further clicked, the detailed information such
as the ID photo, name, age, job and interests are displayed in
the right window.

Figure 10. Example deployment of multiple human subjects wearing

RFID badges in the cafe
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Name: Liang
Job: Engineer
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Football, Music

Figure 11. Example application interface



Experiment Settings: As shown in Figure 10, we let multiple
human subjects (4⇠8 people) stand or sit freely in the cafe,
while wearing the RFID tagged badges. These “tagged” hu-
man subjects are thus different in terms of heights, horizontal
distance and vertical distance. Besides, they can be slightly
moving or turning with a limited speed or angle. It raises
more challenges than the free-space testing, since the human
body may lead to many interferences like multi-path effect
and energy absorption. We conducted experiments to evaluate
the performance of match ratios, by varying the factors like
the number of human subjects, the spacing between human
subjects, and the moving state. We deploy our system in front
of the human subjects with a distance of 1.5⇠3m. The default
number of human subjects and the default average spacing is
respectively 6 and 60 cm.

Performance Evaluation: Our solution can achieve fairly
good matching accuracy to recognize multiple tagged human
subjects of different factors like the height, spacing, moving
state, etc. Figure 12(a)-(d) respectively shows the match ra-
tios with different configurations. Without loss of generality,
we show the matching results of 5 randomly generated de-
ployments with different spacing and heights of the human
subjects. In the first experiment, we let the human subjects
remain stationary, i.e., standing or sitting still, and evaluate the
match ratios. As shown in Figure 12(a), our solution achieves
a match ratio of 50% and 80% respectively with CS-RSSI and
CS-Phase. In the second experiment, we let the human sub-
jects keep in slightly moving state, i.e., they may be moving
or turning with a limited speed (<40cm/s) or angle (<30�/s).
As shown in Figure 12(b), our solution achieves a match ratio
of 60% and 74% respectively with CS-RSSI and CS-Phase.
In the third experiment, we vary the average spacing between
the human subjects from 60cm to 90cm. As shown in Figure
12(c), our solution achieves an average match ratio of over
50% and 75% respectively with CS-RSSI and CS-Phase. In
the fourth experiment, we vary the number of human subjects
from 4 to 8. As shown in Figure 12(d), our solution achieves
an average match ratio of over 45% and 70% respectively
with CS-RSSI and CS-Phase. The performance reduction of
CS-RSSI in the above experiments is mainly due to the energy
absorption of human bodies, which distracts the conventional
distribution of RSSI in RF-signals. Nevertheless, CS-Phase
always achieves fairly good performance since the phase in
RF-signals is irrelevant to the energy absorption problems.

User Experience Evaluation: We invite a total of 44 people
(28 males and 16 females with different technical backgrounds,
their ages range from 20 to 58) to use our system in the aug-
mented reality applications, and evaluate their user experience
via the questionnaire surveys, including 1) application mean-
ing, 2) technical complexity, 3) accuracy and 4) friendliness
of user interface. Figure 13 shows the evaluation results. For
the application meaning, most of the people have positive/very
positive evaluation, they believe it is a promising approach
for future augmented reality application. For the technical
complexity, several people have some negative evaluation,
this is mainly because the current prototype system is fairly
huge in size, and the RSSI/phase-based continuous scanning
method may not be so intuitive for users with various technical
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Figure 12. Evaluate the match ratios

backgrounds. For the accuracy, most of the people have posi-
tive/very positive evaluation, since in most cases our solution
can achieve very good performance in accuracy. For the friend-
liness of user interface, most of the people have positive/very
positive evaluation, due to the interesting yet simple design.

1 2 3 4
N

u
m

b
e

r 
o

f 
u

se
rs

0

10

20

30

40
Negative
Neutral
Positive
Very Positive

Figure 13. Evaluation of the user experience: 1) application meaning, 2)

technical complexity, 3) accuracy, 4) friendliness of user interface.

CONCLUSION AND FUTURE WORK
In this paper, we design an RFID-based system to identify and
distinguish multiple RFID tagged objects in an augmented
reality system. We deploy additional RFID antennas to the
COTS depth camera, and propose a continuous scanning-based
scheme to distinguish multiple tagged objects. The current
implementation is a proof-of concept prototype for the “tell
me what I see” vision. The size of the system is huge for wear-
able usages, and the battery usage is high for conventional
applications. In the future design, we consider to miniatur-
ize the technical solution and integrate it into the wearable
devices. For example, we can miniaturize the RFID antennas
and the 3D camera, and integrate them into the wearable hel-
mets/glasses for augmented reality applications. In this way,
in order to perform the continuous scanning, the user only
need to continuously turn her head from one side to the other
side with a certain angle. All the inherent information of the
detected objects can be shown on the screen of glasses.
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