
Dynamic Searchable Symmetric Encryption with
Forward and Backward Privacy

Yu Peng†, Qin Liu†*, Yue Tian†, Jie Wu‡, Tian Wang§, Tao Peng††, and Guojun Wang††
†College of Computer Science and Electronic Engineering, Hunan University, P. R. China
‡Department of Computer and Information Sciences, Temple University, Philadelphia, USA

§Institute of Artificial Intelligence and Future Networks, Beijing Normal University & UIC, P. R. China
††School of Computer Science and Cyber Engineering, Guangzhou University, P. R. China

*Correspondence to: gracelq628@hnu.edu.cn

Abstract—Dynamic searchable symmetric encryption (DSSE)
that enables a client to perform searches and updates on
encrypted data has been intensively studied in cloud computing.
Recently, forward privacy and backward privacy has engaged
significant attention to protect DSSE from the leakage of updates.
However, the research in this field almost focused on keyword-
level updates. That is, the client needs to know the keywords
of the documents in advance. In this paper, we proposed a
document-level update scheme, DBP, which supports immediate
deletion while guaranteeing forward privacy and backward
privacy. Compared with existing forward and backward private
DSSE schemes, our DBP scheme has the following merits: 1)
Practicality. It achieves deletion based on document identifiers
rather than document/keyword pairs; 2) Efficiency. It utilizes
only lightweight primitives to realize backward privacy while
supporting immediate deletion. Experimental evaluation on two
real datasets demonstrates the practical efficiency of our scheme.

Index Terms—Cloud computing, dynamic searchable symmet-
ric encryption, forward privacy, backward privacy

I. INTRODUCTION

Cloud computing, as a successful paradigm of service-
oriented computing, centralizes a great deal of storage and
computation sources while enabling convenient and on-
demand network access [1], [2]. With the rapid development
of cloud computing, an increasing number of users prefer
outsourcing their data to the server. To protect the confiden-
tiality of outsourced data, the common solution is to encrypt
data using general symmetric encryption before outsourcing.
However, encryption destroys the natural structure of data and
makes keyword-based search services intractable. To solve this
dilemma, searchable symmetric encryption (SSE) [3], [4] has
been proposed to perform secure searches over encrypted data.
Early SSE schemes were designed for a static setting, which
restricts their application. To make the scheme more practical,
dynamic searchable symmetric encryption (DSSE) [5]–[8]
was proposed to guarantee the update of data.

With the trade of security and efficiency, most of the existing
DSSE schemes leak some information in data search and
update phases. These leakages, unfortunately, can be used
to compromise the privacy of search queries. Recently, the
file-injection attack proposed by Zhang et al. [9] shows that
user queries can be revealed by adding a small number of
carefully designed documents into a database. Consequently,

forward privacy (FP) [10]–[13] that prevents the linkability
from the newly added documents to previously search tokens
becomes a crucial property for DSSE schemes. In a similar
vein, backward privacy (BP) [14]–[19] has been concerned by
DSSE schemes, which implies that the deleted document is
inaccessible for the subsequent search queries.

Nevertheless, most existing forward and backward private
schemes focus on keyword-level updates. In other words, the
client needs to know all keywords contained in the document
to be updated in advance, which is unrealistic for the deletion
operation. The work [19] eliminates this assumption but the
storage cost at the client is liner with the number of documents.
In addition, many forward and backward private schemes
perform the deletion in the same way as the addition, which
increase both storage space and computational complexity. To
solve the above problems, in this paper, we aim to design a for-
ward and backward private scheme which supports document-
based immediate deletion. Specifically, we first construct a
basic scheme to support document-level update, which the
client requires only an identifier of the document in the
deletion operation. Then, we propose an advanced scheme to
resist external attackers. Our proposed DBP scheme has the
following merits: 1) Practicality. It eliminates the premise that
the client needs to know the keywords of the document to be
deleted in advance. 2) Efficiency. It utilizes only lightweight
cryptographic primitives to realize backward privacy while
supporting immediate deletion. Meanwhile, the storage cost
at client is liner with the number of keywords instead of
documents. The main contributions of this paper can be
summarized as follows:

• To the best of our knowledge, it is the first attempt to
devise an efficient forward and backward private scheme,
which supports document-based immediate deletion.

• Two constructions are provided to achieve enhanced
privacy in different adversary models.

• We evaluate our scheme on two real datasets. The results
demonstrate that our scheme is efficient.

The remaining sections of this paper are organized as
follows. We provide the preliminaries in Section II before
giving the definition and security of DSSE in Section III.
We present our DBP scheme in Section IV. The security and

experimental analyses are given in Section V and Section VI,
respectively. Finally, we introduce related work in Section VII,
before concluding this paper in Section Section VIII.

II. PRELIMINARY

A. The System and Adversary Model

System model consists of two entities, a client and a server.
The client can upload/update the encrypted documents along
with the encrypted indexes to the server. Besides, the client
can generate a search token for a particular keyword and sends
it to the server. On receiving the search request from the client,
the server evaluates the search token on the encrypted indexes
and returns the search results to the client.

In our threat model, the server is considered to be honest-
but-curious (HBC) [20]. That is, the server will correctly
perform the predefined protocols, but it may try to learn
additional information from the encrypted documents and from
each protocol. Besides, the server may be attacked by the
external attackers, who can obtain control over the server. In
this condition, the attacker can initiate snapshot attack, which
see the encrypted database and the leakages in protocols at
one (or more) instant [14].

B. Notations and Cryptographic Preliminaries

Let λ ∈ N denote a security parameter, negl(λ) denote
a negligible function in λ, and 0 be a string of 0s with
length λ. For η ∈ N, notation [η] is used to denote the set
of integers {1, . . . , η}. We denote the set of all binary strings
of length η by {0, 1}η and the set of finite binary strings by
{0, 1}∗. The concatenation of η strings s1, . . . , sη is denoted
by ⟨s1, . . . , sη⟩. For a finite set X , notation |X| denotes its
cardinality, and (x1, . . . , xη)

$← X means that xi, i ∈ [η],
is sampled uniformly from X . For quick reference, the most
relevant notations used in this work are shown in Table I.

Pseudo-Random Function (PRF). PRF, a fundamental
primitive for emulating perfect randomness via keyed func-
tions, is a polynomial-time computable two-input function
and is indistinguishable from a true random function by any
probabilistic polynomial-time (PPT) adversary when the key
is kept secret. For a formal definition see [21].

III. DSSE DEFINITION AND SECURITY MODEL

A. DSSE Definition

A DSSE scheme consists of four polynomial-time protocols
between a client and a server, they are described as follows:

Setup(λ;⊥) → (σ; EDB): It takes a security parameter λ
as input, and outputs a state σ for the client and an encrypted
database EDB for the server, respectively.

Addition(σ, f ; EDB) → (σ′; EDB′): The client takes the
state σ and a document f as input, and the server takes the
encrypted database EDB as input. At the end of this protocol,
the client outputs an updated state σ′, and the server outputs
an updated encrypted database EDB′ including the identifier
of document f .

Deletion(σ, ind; EDB)→ (⊥; EDB′): The client takes the
state σ and a document identifier ind as input, and the server

TABLE I
SUMMARY OF NOTATIONS

Notations Descriptions

ind The identifier of the document
DB A database that includes n documents {ind1, . . . , indn}
EDB An encrypted document database
DB(indi) A set of keywords in document indi
DB(w) A set of documents containing the keyword w

f A document, f = (ind,DB(ind))

W The set of all keywords in DB, W = ∪n
i=1DB(indi)

m The total number of keywords in W

N The total number of document/keyword pairs

takes the encrypted database EDB as input. At the end of
this protocol, the server outputs an updated database EDB′,
excluding the identifier ind.

Search(σ,w; EDB) → (σ′,DB(w); EDB′): The client
takes the state σ and a keyword w as input, and the server takes
the encrypted database EDB as input. When the protocol ends,
the client outputs an updated state σ′ and the search result
DB(w). The server outputs an updated encrypted database
EDB′.

B. Security Model

DSSE security is captured by utilizing a real-world versus
an ideal-world formalization named Real and Ideal, respec-
tively. The behavior of Real is exactly the same as the original
DSSE, and Ideal reflects a behavior of a simulator S , which
takes the leakage of the original DSSE as input. The leakage
is defined by a function L = (Lset,Ladd,Ldel,Lsrh), which
details what information the adversary A can know during
the execution of Setup, Addition, Deletion, and Search
protocols, respectively. We consider the following probabilistic
experiments.
•RealA(λ): Given EDB output by Setup, the adversary A

makes a polynomial number of adaptive queries, and for each
query, it receives a search token τs by running Search, or an
addition token τa by running Addition, or a deletion token τd
by running Deletion. Eventually, A outputs a bit b ∈ {0, 1}.
• IdealA,S(λ): Given the leakage Lset, the simulator S

generates an encrypted database EDB to the adversary A.
A makes a polynomial number of adaptive queries. Given
leakages Ladd, Ldel, and Lsrh, S returns an appropriate token.
Eventually, A outputs a bit b ∈ {0, 1}.

Informally, if the adversaryA can distinguish between Real
and Ideal with only a negligible advantage, the information
leakage is limited to L only. We say that the DSSE scheme
achieves adaptive security. Formally, we provide the following
definition:

Definition 1 (Adaptive security of DSSE). A DSSE scheme
is L-adaptive-secure if for PPT adversaries A, there exists a
PPT simulator S s.t. |Pr[RealA(λ) = 1]−Pr[IdealA,S(λ) =
1]| ≤ negl(λ).

Leakage Function. The leakage functions L keep a list Q
of all queries issued so far as a state. Each entry of Q is in
the form of (v, w) for a search query, or (v,op, in) for an
op update with input in, where w is a queried keyword, the
integer v is a timestamp that is initialized to 0 and incremented
by 1 at each query, and op ∈ {add,del} denoting the addition
and deletion operations. For a list Q, we define a search pattern
SP(w) = {v|(v, w) ∈ Q}, which leaks the repetition of search
tokens on w issued so far. In addition, we also use notations
TimeDB(w) to capture the leakages in backward private DSSE
schemes. TimeDB(w) = {(v, ind) : (v, add, (ind, w)) ∈ Q ∧
∀v′, (v′,del, (w, ind)) /∈ Q} is a list of non-deleted documents
matching w along with the timestamps of inserting them into
the database.

C. Forward and Backward Privacy

Forward privacy ensures that update queries leak no infor-
mation about which keywords are involved in the newly added
documents. We follow the formal definition in [13].

Definition 2 (Forward privacy of DSSE). An L-adaptive-
secure DSSE scheme achieves forward privacy if there exists
a stateless leakage function L s.t Ladd can be written as
Ladd(ind,DB(ind)) = L(ind, |DB(ind)|).

Backward privacy ensures that search queries do not reveal
matched documents after they have been deleted. With the
leakage functions described above, we provide the following
formal definition:

Definition 3 (Backward privacy of DSSE). An L-adaptive-
secure DSSE scheme achieves backward privacy if there exist
stateless leakage functions L, L′

and L̃ s.t the update and
search leakages can be written as Ladd(ind) = L(|DB(ind)|),
Ldel(ind) = L

′
(ind) and Lsrh(w) = L̃(SP(w),TimeDB(w)).

IV. DBP: DOCUMENT-BASED BACKWARD PRIVATE DSSE

In this section, we first proposed our basic DBP scheme,
DBP-B, which efficiently achieves forward and backward
privacy while supporting document-based immediate deletion.
On this basis, we proposed an advanced DBP scheme DBP-E
which can resist the external attackers.

A. Overview

To efficiently update documents, we adopt a map Te to
store the (key, value) pair for each document, where key is
related to a document identifier and value is related to the set
of keywords contained in this document. Unlike most previous
BP schemes that require the client to know the keywords of
a document to be deleted in advance, our DBP scheme just
needs the client to send a key to the server, which will directly
remove the corresponding entry of Te while releasing related
storage space.

However, forward indexes degrade search efficiency. When
the keyword searched for the first time, the search complexity
is linear with the number of document/keyword pairs in the
database. Inspired by the work in [14], [15], we amortize this

cost over multiple searches by letting the server cache the
results after each search. Specifically, we also keep a map
Tp to store the last search results for each keyword. When
searching a keyword, the client will issue two search tokens to
evaluate Te and Tp, respectively. When the search phase ends,
the search results will be moved from Te to Tp. Note that this
will not cause security degradation in DBP since the server
has already learnt search results in previous search queries
according to access pattern [4].

To guarantee forward privacy, DBP adopts a fresh secret
key, which is unrelated to previous search tokens, to encrypt
each newly inserted data. In terms of backward privacy,
DBP-B is implied by immediate document-based deletion.
More precisely, the HBC server will honestly execute the
deletion protocol and release the related storage spaces once
a document is deleted from the system while leaking only
the identifier of the deleted document. Once the spaces are
freed, the server cannot know which keywords contained in
this document in subsequent search queries. Consider the
external attackers, who might control the server to initiate
snapshot attacks thereby compromising backward privacy.
DBP-E resists the attacks at the expense of two roundtrips
in the search phase.

B. Construction of DBP-B

Let F : {0, 1}λ × {0, 1}∗ → {0, 1}λ be a PRF, and let
H1 : {0, 1}∗ × {0, 1}∗ → {0, 1}2λ be a keyed hash function.
The details of DBP-B are shown in Protocol 1 except the
pseudocode in boxes.

DBP-B.Setup. The client locally maintains a state σ =
(k1,Tc), where k1 is the secret key of PRF F and Tc is a
local map that stores the secret key key(w) for each keyword
w. The client also generates two maps, Tp is used to store
the results of the last search query, and Te is to store the
encrypted indexes. The encrypted database EDB = (Tp,Te)
will be sent to the server.

DBP-B.Addition. To add a document f = (ind,DB(ind))
into the database, the client sends an addition token τa =
(Fk1

(ind),AddSet) to the server, which updates map Te

by storing all elements in AddSet as the value under key
Fk1

(ind). Specifically, the set AddSet is constructed as fol-
lows: For every keyword w ∈ DB(ind), the client retrieves
the secret key key(w) corresponding to w from Tc. Then,
it encrypts ⟨ind,0⟩ with H1(Fk1

(ind), key(w)) and puts the
ciphertext e into AddSet.

DBP-B.Search. To find all documents matching keyword
w, the client retrieves the current secret key key(w) from
Tc, and then updates Tc[w] with a string sampled randomly
from {0, 1}λ. Next, the client generates the search token
τs = (Fk1

(w), key(w)), and sends it to the server. Note that
a new secret key is used to encrypt documents containing
keyword w added later once a search query on w is performed.
Therefore, previous search tokens cannot be used to evaluate
the newly added documents, and DBP-B satisfies forward
privacy. As for the server, it parses τs as (α, key(w)) where α
is used to search the map Tp and key(w) is used to search the

Protocol 1 DBP

Setup(λ;⊥)→ (σ; EDB)
Client(λ)→ (σ,EDB)

1: k1, k2
$← {0, 1}λ

2: (Tc,Te,Tp)← empty map
3: σ ← (k1, k2 ,Tc); EDB← (Te,Tp)
4: Send EDB to Server

Addition(σ, f ; EDB)→ (σ′; EDB′)
Client(σ, ind,DB(ind))→ (σ′, τa)

1: AddSet← ∅
2: for each w ∈ DB(ind) do
3: if Tc[w] = ⊥ then
4: key(w) $← {0, 1}λ; Tc[w]← key(w)

5: else
6: key(w) ← Tc[w]
7: e← H1(Fk1(ind), key

(w))⊕ ⟨ind,0⟩
8: e← H1(Fk1

(ind), key(w))⊕ ⟨Enc(k2, ind),0⟩
9: AddSet← AddSet ∪ e

10: τa ← (Fk1(ind),AddSet)
11: Send τa to Server

Server(EDB, τa)→ (EDB′)
12: parse τa as (τ1,AddSet)
13: Te[τ1]← AddSet

Search(σ,w; EDB)→ (σ′, IND;EDB′)
Client(σ,w)→ (σ′, τs)

1: if Tc[w] = ⊥ then
2: return ∅
3: key(w) ← Tc[w]; Tc[w]

$← {0, 1}λ
4: τs ← (Fk1(w), key

(w))

5: Send τs to Server

Server(EDB, τs)→ (EDB′,Res)

6: parse τs as (α, key(w))
7: Res← ∅
8: for each non-empty (key, value) pair in Te do
9: τ1 ← key; ValueSet← value

10: mask ← H1(τ1, key
(w))

11: for each element e ∈ ValueSet do
12: ⟨x, y⟩ ← e⊕mask
13: if y = 0 then
14: Res← Res ∪ {x}; ValueSet← ValueSet− e
15: Te[τ1]← ValueSet; break;
16: Res← Res ∪ Tp[α]; Tp[α]← Res
17: Send Res to Client

Client(Res)→ (DB(w))
18: DB(w)← ∅
19: DB(w)← Res

20:
for each element r ∈ Res do

ind← Dec(k2, r); DB(w) ∪ {ind}

Deletion(σ, ind; EDB)→ (⊥; EDB)
Client(σ, ind)→ (τd)

1: τd ← (Fk1
(ind), ind)

2: τd ← (Fk1
(ind), Enc(k2, ind))

3: Send τd to Server

Server(EDB, τd)→ (EDB′)
4: parse τd as(τ1, p)
5: Te[τ1]← ⊥
6: Delete all p in Tp

map Te. When querying Te, for every non-empty (key, value)
pair, the server performs as follows: It first generates mask
by computing H1(key, key

(w)); Then, for each element e in
the set ValueSet, it recovers the plaintext ⟨x, y⟩ with mask,
and checks whether y equals 0. If so, x is the identifier of a
matched document. Thus the server puts x into Res, deletes
e from ValueSet, and starts to check the next non-empty
(key, value) pair in Te. Otherwise, it goes on checking the
next element in ValueSet. When querying Tp, it simply adds
the previous search results stored at Tp[α] into Res, which will
be returned to the client. Meanwhile, it updates Tp by setting
Tp[α] with the latest results. Note that, for each matched
document, its identifier will be added into Tp after the search
phase, and corresponding element can be removed from Te to
avoid unnecessary testing in the subsequent search queries.

DBP-B.Deletion. To delete a document with identifier ind,
the client sends Fk1

(ind) and ind as the deletion token τd to
the server, which deletes related contents in the map Te and
map Tp, respectively. For updating Te, the server can directly
remove the entry whose key is Fk1

(ind). For updating Tp,
the simplest approach is traversing each entry in Tp so as

to search and delete ind accordingly. This approach suffers
from computational inefficiency for a large database. As a
trade-off, the server can amortize the traversal overhead over
multiple searches by tracking all deleted document identifiers,
and deleting them from Tp in the search phase.

C. Construction of DBP-E

DBP-E not only continues to use the notations and functions
of DBP-B, but also introduces other notations. Let (Enc,Dec)
be the encryption algorithm and decryption algorithm of some
symmetric key encryption (SKE) scheme, respectively. The
construction of DBP-E is similar to that of DBP-B except
some subtle changes. Therefore, the details of DBP-E are
also shown in Protocol 1 and the differences from DBP-B
are marked as the boxed pseudocodes.

DBP-E.Setup. This algorithm is almost the same as DBP-
B.Setup except that the client will generate two keys (k1, k2),
where k1 is the secret key of PRF F and k2 is the secret key
of SKE scheme.

DBP-E.Addition. To add document f = (ind,DB(ind))
into the database, the client acts just like in DBP-B.Addition

except encrypting the identifier of the document. Specifically,
the client first encrypts ind with the Enc algorithm of SKE
scheme and then employs hash function H1 to encrypt the
encrypted document identifier.

DBP-E.Search. The difference between this protocol and
the search protocol in DBP-B is that the server in this protocol
only obtains encrypted identifiers from Te and Tp. Therefore,
the server sends all encrypted entries to the client, which will
decrypt every encrypted entry with secret key k2 and download
the specific documents from the server.

DBP-E.Deletion. To resist external attackers, the previous
search results are stored in Tp as the encrypted forms. There-
fore, the main difference is deleting the entries in Tp. To delete
a document with identifier ind, the client sends Enc(k2, ind)
instead of ind to the server in addition to Fk1(ind). Upon
receiving the deletion token, the server performs like in DBP-
B.Deletion.

D. Improvement of Search Speed

The main deficiency of DBP is that its search time increases
linearly with the number of document/keyword pairs in the
map Te. To improve the scalability of DBP, we adopt a
dual-key map structure that uses two keys to identify the
elements of Te. Let si...j denote a substring of s start-
ing at the i-th bit and ending at the j-th bit. In the im-
proved Addition algorithm, upon receiving the addition token
τa = (Fk1

(ind),AddSet), the server updates Te as follows:
For each element e ∈ AddSet, the server stores a dual-
key/value pair in the form of (⟨key1, key2⟩, value) where
key1 = Fk1(ind), key2 = eλ+1...2λ, and value = e1...λ.
That is, the concatenation of key1 and key2 is used as the
key of Te. In the improved Search algorithm, on receiving
the search token τs = (Fk1

(w), key(w)), the server first
calculates mask ← H1(Fk1(ind), key

(w)) for each docu-
ment identifier ind. Then, the server calculates a dual key
⟨Fk1

(ind),maskλ+1...2λ⟩, and tests whether a corresponding
value exists in Te or not. If so, the server recovers document
identifier by calculating ind← mask1...λ ⊕ value. Therefore,
the search complexity can be reduced from O(Ne) to O(ne),
where Ne (resp. ne) denotes the number of document/keyword
pairs (resp. the number of documents) in Te.

V. SECURITY ANALYSIS

In this section, we give the security analyses of our DBP
scheme.

A. The Security Analysis of DBP-B

We provide the theorem regarding the adaptive security of
DBP-B as follows:

Theorem 1. If F is a secure PRF, then DBP-B is L-
adaptively-secure in the random oracle model, where the
leakage functions L are defined as follows:

• Lset(λ) = ∅,
• Ladd(ind,DB(ind)) = |DB(ind)|,
• Ldel(ind) = ind,
• Lsrh(w) = (SP(w),TimeDB(w)).

Proof. Given the leakage function collection
L = (Lset,Ladd,Ldel,Lsrh) defined in Theorem 1, we
can build a simulator S as shown in Simulation 2.
• Random oracles. The hash functions H1 behaves like

a random oracle. Simulator S maintains a hash table H1 that
stores input/output pairs (in,out) ∈ {0, 1}∗ × {0, 1}2λ.
• Setup. Simulation of Setup is identical to DBP-B.Setup

except that it does not generate secret keys k1 for PRF F , but
initializes a counter v to 0.
• Addition token. Given leakage Ladd(ind,DB(ind)) =
|DB(ind)|, an addition token τa is simulated as follows: The
simulator S maintains a map FK to store (ind, key

(ind)
1) pairs.

If an entry of FK is accessed for the first time, S sets it to
random values. S also maintains a map Mask, where all values
are selected randomly. Note that S chooses random strings
instead of calling the PRF F to generate key

(ind)
1 . It is trivial

to see that the real and simulated values are indistinguishable;
otherwise, there exists an adversary B who can distinguish a
PRF from a real random function. Therefore, the probability
to distinguish key

(ind)
1 from the outputs of PRFs is bounded

by AdvprfB (λ).
• Deletion token. Given leakage Ldel(ind) = ind, the

deletion token τd is simulated by querying map FK.
• Search token. Given the leakage Lsrh(w) =

(SP(w),TimeDB(w)), a search token τs is simulated as
follows. Let w = min(SP(w)) denote a keyword, and let
w = max(SP(w)) denote the last timestamp when keyword
w has been searched.

The local map Tc is only updated in the search phase.
If Tc[w] = ∅, it means that keyword w is searched for
the first time, and Tc[w] is initialized with a random string.
Let TimeDBt(w) denote the partial update history after the
t-th query. The random oracle H1 is programmed s.t. that
H1[key

(w), key
(ind)
1]← Mask[vi].

However, H1 cannot be updated immediately during the
simulation of the addition token. Therefore, there is certain
probability for the adversary A to observe inconsistency
while querying the random oracle. Let poly(λ) denote the
polynomial function in λ. Note that, the probability for A to
guess (key(w), key

(ind)
1]) is 2−λ since they are random strings.

A PPT adversary can make at most poly(λ) guesses, and the
probability that such an event occurs is poly(λ)/2λ.
• Conclusion. By combing all simulation results, we

can say that, for any PPT adversary A, there exists a PRF-
adversary B such that

|Pr[RealA(λ) = 1]− Pr[IdealS,A(λ) = 1]|
≤ AdvprfB (λ) + poly(λ)

2λ

We thus conclude the resulting probability is negl(λ) by
assuming that the PRF is secure. Note that DBP provides back-
ward and forward security because Ladd leaks only |DB(ind)|
and Lsrh leaks only (SP(w),TimeDB(w)), thus L′

and L̃ can
be defined as Ldel and Lsrh, respectively.

Simulation 2 Simulator S
Programming the random oracles(in)

1: if ∃(hi,1, hi,2) ∈ Hi such that hi,1 = in then
2: return hi,2

3: else
4: out

$← {0, 1}λ; Hi[in]← out
5: return out

Simulation of Setup
1: (Tc,Te)← empty map;
2: EDB← (Te); v ← 0
3: return (EDB,Tc)

Simulation of the addition token
1: if FK[ind] = ⊥ then
2: key

(ind)
1

$← {0, 1}λ; FK[ind]← key
(ind)
1

3: key
(ind)
1 ← FK[ind]

4: AddSet← ∅
5: for i ∈ |DB(ind)| do
6: mi

$← {0, 1}2λ; Mask[v]← mi

7: e← mi ⊕ ⟨ind,0⟩
8: AddSet← AddSet ∪ e; v ← v + 1
9: return τa = (key

(ind)
1 ,AddSet)

Simulation of the deletion token
1: key

(ind)
1 ← FK[ind]; τd ← (key

(ind)
1 , ind)

Simulation of the search token
1: w ← min(SP(w)); w ← max(SP(w))
2: if Tc[w] = ∅ then
3: key(w) ← {0, 1}λ; Tc[w]← key(w)

4: c← |TimeDB>w(w)|
5: Parse TimeDB>w(w) as (v1, ind1), . . . , (vc, indc)
6: if c = 0 then
7: return ∅
8: for i ∈ [c] do
9: key

(ind)
1 ← FK[indi]; H1[key

(w), key
(ind)
1]← Mask[vi]

10: nkey(w) ← {0, 1}λ; Tc[w]← nkey(w)

11: return τs = key(w)

B. The Security Analysis of DBP-E

Theorem 2. If F is a secure PRF and SKE is secure, then
DBP-E is L-adaptively-secure in the random oracle model.

The security analysis is similar to the one in Section V-A.
The only difference between two schemes is that the server can
directly obtain ind when it receives the search token in DBP-
B, while in DBP-E the server can only obtain the encrypted
form of ind. Every time we add a document into database, the
entries that the attacker observes are indistinguishable from
random due to the random oracle and the pseudorandomness
of F . Precisely speaking, the only thing that the protocol
leaks in the addition phase is the number of keywords in
a document. Similarly to the addition phase, the attacker
observes during the deletion phase are indistinguishable from
random. Besides, the attacker can learn the information that
the keywords belong to one document. However, the identifier
is the encrypted form. That is, the attacker cannot know any
useful information between keywords and documents. In terms
of backward privacy, the attacker has the knowledge of the
number of entries related to the keyword w in the search phase,
and the time every addition/deletion operation for keyword w
took place. Beyond this, nothing else is revealed to the server.

VI. EVALUATION

In this section, we will report on the performance of our
DBP scheme, and the version with improved search speed is
denoted by DBP*.

A. Performance Analysis

We theoretically analyze the performance of our scheme
in terms of data size and communication/computational com-
plexities. Let k = |DB(ind)| be the number of keywords in

TABLE II
DESCRIPTIONS OF DATASETS

Dataset Data
size(GB)

Documents
number

Keywords
number

Pairs
number

Enron1 1.56 577,744 54,021 2,888,720
Wikipedia2 10.6 3,506,761 957,920 17,533,805

document ind, let aw be the number of added documents
containing keyword w, and let dw be the number of deleted
documents including keyword w. On the client side, the
computational complexity for search and deletion is O(1), and
for addition is O(k). As for storage costs, the client locally
maintains the secret key and a map Tc. Therefore, the space
complexity at the client side is O(m). On the server side, the
computational complexity for update is O(k). As for searching
a keyword, the complexity of DBP (resp. DBP*) is linear with
the number of document/keyword pairs (resp. the number of
documents) in the map Te. As for storage costs, the server
keeps EDB that consists of a map Te and Tp. During the
search phase, the identifier of matched document will be added
into Tp after the search process, and corresponding element
can be removed from Te. Therefore, the size of EDB is
O(N). In addition, the addition token is of size O(k), both
the deletion token and the search token are of size O(1), and
the search results are of size O(aw − dw).

B. Experiment Environment and Dataset

We evaluate the performance of our scheme in a server with
an Intel(R) Xeon(R) Gold 5218 CPU of 2.3GHz and 128GB

1https://www.cs.cmu.edu/∼./enron/
2https://dumps.wikimedia.org/

TABLE III
PERFORMANCE OF DBP SCHEME IN SETUP AND UPDATE.

DBP-B DBP-E

Dataset Setup Addition Deletion Setup Addition Deletion

Time(ms) Size1(MB) Size2(MB) Time(µs) Time(µs) Time(ms) Size1(MB) Size2(MB) Time(µs) Time(µs)

Enron 8727 2.78 274 15.11 2.25 11471 2.78 274 19.85 8.57
Wikipedia 60073 50.07 1662 18.18 2.30 75955 50.07 1662 21.66 9.16

Size1: the storage cost (σ) at the client side, Size2: the storage cost (EDB) at the server side.

2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

(a) t = 1 (Enron)

2000 4000 6000 8000 10000
0

2

4

6

(b) t = 1 (Wikipedia)

2 4 6 8 10
0

200

400

600

800

1000

(c) DB(w) = 10000 (Enron)

2 4 6 8 10
1000

2000

3000

4000

5000

6000

(d) DB(w) = 10000 (Wikipedia)
Fig. 1. Comparison of search performance at the server side. (a) The time for finding out per documents matching keyword w. (b) The time for finding out
per documents matching keyword w. (c) The time for finding out all documents matching keyword w. (d) The time for finding out all documents matching
keyword w.

memory, running Microsoft Windows Server 2016 Standard
operating system. The code is written in Java and compiled
using IntelliJ IDEA 11.0.8. During the evaluation, the security
parameter λ is set to 256, HMAC is used for PRF F , SHA-
512 is used for the keyed hash function H1 and AES-256 is
employed for SKE.

We conduct experiments on two real datasets, Enron Email
and Wikipedia Dumps. Before experiments, two datasets are
preprocessed by extracting 5 keywords from each document
with the TextRank algorithm and TF-IDF model. The statistic
properties of the pretreated datasets are shown in Table II.

C. Experiment Results

We provide the experiment results for the data size and
execution time. The whole EDB is loaded into the memory
before measuring the execution time, thereby I/O time is
excluded from our experiments.

Setup. The data size and the client-side execution time for
constructing two datasets are shown in Table III. For the same
dataset, the data size of both schemes is the same. In terms
of execution time on the client side, DBP-E requires utilizing
SKE to encrypt the identifier of document, resulting in more
execution time than DBP-B. In addition, the data size and the
client-side execution time of both schemes increase with the
increase of the dataset’s size.
Update. Table III also describes the execution time for

updating each document at the client side. The results of
adding single document are consistent with those in setup
phase. As for deleting one document, DBP-E takes more
time than DBP-B. The reason is DBP-E needs to encrypt
the identifier of the document to be deleted according to SKE
scheme.

Search. The main difference of DBP-B and DBP-E is
that the latter needs to recover the plaintext identifier at the
client side. As for the search phase at the server side, both
schemes have the same time overhead. Therefore, we use DBP
and DBP* to represent the two schemes and the improved
version of two schemes, respectively. As for the time to find
all matched documents, DBP (resp. DBP*) asks the server
to examine all the document/keyword pairs (resp. all the
documents) in the map Te. Therefore, the execution time in
DBP and DBP* depends on the number of document/keyword
pairs, Ne, and the number of documents, ne, respectively.

Fig. 1-(a) shows the impact of |DB(w)| on the execution
time while searching one document from the Enron Email
dataset. From this figure, we know that the search time in
both DBP and DBP* decreases as |DB(w)| grows. Further-
more, it is obvious that DBP* improves the performance
of DBP. For example, given a keyword contained by 2000
documents, the execution time of DBP and DBP* is about
0.77ms/document and 0.68ms/document, respectively. From
Fig. 1-(b), we know that the search time for one document
increases compared with Enron Email. For example, given a
keyword contained by 2000 documents, the execution time of
DBP is about 0.77ms/document and 5.23ms/document in En-
ron Email dataset and Wikipedia Dumps dataset, respectively.
That is caused by the increased data size of Wikipedia Dumps.

To make our scheme more practical, we extend DBP and
DBP* into multiple threads setting and the results are shown
in Fig. 1-(c) and (d). From these figures, we know that the
complexity of both DBP and DBP* is negatively impacted
by the number of threads t. For example, given a keyword
contained by 10, 000 documents in Wikipedia Dumps dataset,
the search time of DBP decreases from 5483ms to 1814ms as
t increases from 2 to 10 in Fig. 1-(d).

VII. RELATED WORK

The first SSE scheme was proposed by Song et al. [3],
but no rigorous security definition of SSE presented before
the work of Curtmola et al. [4]. However, SSE schemes do
not allow updating the encrypted database once it has been
outsourced. To solve this problem, Kamara et al. [5] proposed
the first DSSE scheme with support for sublinear search
time. Follow-up work is committed to enriching various func-
tionalities, such as expressive queries [6], rank searches [7]
and verifiability [8]. In 2016, file-injection attack proposed
by Zhang et al. [9] highlighted the importance of forward
privacy in the designing of DSSE schemes. Chang et al. [10]
proposed the first FP scheme according to changing search
token after each update. The main drawback of their scheme
is that the query size is liner with the number of updates on
keyword. Stefanov et al. [11] proposed an FP construction
based on hierarchical oblivious RAM, which will incur high
communication cost. To reduce communication complexity,
Bost [12] proposed an FP scheme Sophos based on one-
way trapdoor permutation, but fell short of support for actual
deletion until the work [13].

Another important security property of DSSE schemes is
backward privacy, which was first formally described in [14].
In this work, the authors defined backward privacy at three
levels (Type-I to Type-III, ordered from the most to the
least secure) and gave some backward private constructions
with different security/efficiency trade-offs. Their first scheme
Moneta achieves Type-I BP by utilizing obvious RAM, and
second scheme Fides realizes Type-II BP on the basis of
Sophos [12]. Dianadel and Janus provide better performance
at the cost of security (both are Type-III BP). In [15], Sun et
al. proposed a Type-III BP scheme Janus++, which is more
efficient than Janus because it is based on symmetric punc-
turable encryption. In [16], Chamani et al. utilized obvious
RAM to achieve a Type-I BP scheme Orion and a Type-
III BP scheme Horus, respectively. Besides, they proposed a
Type-II BP scheme Mitra, which had better performance than
Fides [14] due to symmetric cryptographic primitive. He et
al. [17] designed a forward and backward private scheme while
reducing client storage according to fish-bone index. Zuo et
al. [18] employed symmetric encryption with homomorphic
additions to achieve backward privacy. However, the above
BP schems [14]–[18] assume that the client needs to know all
keyword contained in the document to be deleted in advance.
Li et al. [19] proposed a BP scheme which eliminated this
assumption but the storage cost at client is liner with the
number of documents in dataset.

VIII. CONCLUSION

In this paper, we proposed a DBP scheme to achieve
secure and effective search services in cloud computing. The
proposed scheme supports document-based deletion while
ensuring forward and backward privacy. Experiment results
demonstrate that our scheme is efficient and practical. How-
ever, our scheme only supports single keyword queries. As

part of our future work, we will make our scheme support
rich semantics.

ACKNOWLEDGMENTS

This work was supported in part by NSFC grants 61632009,
61872133, 61872130, and 61572181; NSF grants CNS
1824440, CNS 1828363, CNS 1757533, CNS 1629746, CNS
1651947, and CNS 1564128; the CERNET Innovation Project
(NGII20190409); the Guangdong Provincial Natural Science
Foundation (No. 2017A030308006), and the Hunan Provincial
Natural Science Foundation of China (Grant No. 2020JJ3015).

REFERENCES

[1] X. Liu, Q. Liu, T. Peng, and J. Wu, “Dynamic access policy in cloud-
based personal health record (PHR) systems,” Information Sciences,
2017.

[2] L. Du, K. Li, Q. Liu, Z. Wu, and S. Zhang, “Dynamic multi-client
searchable symmetric encryption with support for boolean queries,”
Information Sciences, 2019.

[3] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Proc. of S&P, 2000.

[4] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient constructions,”
in Proc. of CCS, 2006.

[5] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in Proc. of CCS, 2012.

[6] Q. Liu, Y. Peng, J. Wu, T. Wang, and G. Wang, “Secure multi-keyword
fuzzy searches with enhanced service quality in cloud computing,” IEEE
Transactions on Network and Service Management, 2020.

[7] Z. Xia, X. Wang, X. Sun, and Q. Wang, “A secure and dynamic
multi-keyword ranked search scheme over encrypted cloud data,” IEEE
Transactions on Parallel and Distributed Systems, 2016.

[8] Q. Liu, Y. Tian, J. Wu, T. Peng, and G. Wang, “Enabling verifiable
and dynamic ranked search over outsourced data,” IEEE Transactions
on Services Computing, 2019.

[9] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are belong
to us: the power of file-injection attacks on searchable encryption,” in
Proc. of USENIX Security, 2016.

[10] Y.-C. Chang, and M. Mitzenmacher, “Privacy preserving keyword
searches on remote encrypted data,” in Proc. of ACNS, 2005.

[11] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic searchable
encryption with small leakage,” in Proc. of NDSS, 2014.

[12] R. Bost, “Σoφoς: Forward secure searchable encryption,” in Proc. of
CCS, 2016.

[13] K. S. Kim, M. Kim, D. Lee, J. H. Park, and W.-H. Kim, “Forward
secure dynamic searchable symmetric encryption with efficient updates,”
in Proc. of CCS, 2017.

[14] R. Bost, B. Minaud, and O. Ohrimenko, “Forward and backward private
searchable encryption from constrained cryptographic primitives,” in
Proc. of CCS, 2017.

[15] S. Sun, X. Yuan, J. K. Liu, R. Steinfeld, A. Sakzad, V. Vo, and S. Nepal,
“Practical backward-secure searchable encryption from symmetric punc-
turable encryption,” in Proc. of CCS, 2018.

[16] J. G. Chamani, D. Papadopoulos, C. Papamanthou, and R. Jalili, “New
constructions for forward and backward private symmetric searchable
encryption,” in Proc. of CCS, 2018.

[17] K. He, J. Chen, Q. Zhou, R. Du, and Y. Xiang, “Secure dynamic
searchable symmetric encryption with constant client storage cost,” IEEE
Transactions on Information Forensics and Security, 2021.

[18] C. Zuo, S. Sun, J. Liu, J. Shao, J. Pieprzyk, “Dynamic searchable
symmetric encryption with forward and stronger backward privacy,” in
Proc. of ESORICS, 2019.

[19] J. Li, Y. Huang, Y. Wei and S. Lv, Z. Liu, C. Dong, and W. Lou,
“Searchable symmetric encryption with forward search privacy,” IEEE
Transactions on Dependable and Secure Computing, 2021.

[20] Q. Liu, Y. Peng, S. Pei, J. Wu, T. Peng and G. Wang, “Prime inner
product encoding for effective wildcard-based multi-keyword fuzzy
search,” IEEE Transactions on Services Computing, 2020.

[21] J. Katz and Y. Lindell, “Introduction to modern cryptography,” CRC
press, 2014.

