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Abstract—Utility-based routing is a special routing approach,
which takes the reliability and transmission costs into account
at the same time. However, the existing utility-based routing
algorithms have not yet considered the delivery delay. Thus, they
cannot work well in duty-cycle wireless sensor networks (WSNs)
since delay is an important factor in such WSNs. In this paper, we
propose a novel utility model – time-sensitive utility model. Unlike
previous work, the utility of a message delivery in our model is
not only affected by the reliability and transmission costs but also
by the delivery delay. Under the time-sensitive utility model, we
derive an iterative formula to compute the time-varying utility
of each message delivery. Based on the formula, we propose an
optimal time-sensitive utility-based routing algorithm, which is
also extended to the case where retransmission is allowed. The
theoretical analysis and simulation results show that our proposed
algorithms can maximize the average utility of message deliveries,
which makes a good tradeoff among reliability, delay, and cost.

Index Terms—Distributed algorithms, duty-cycle wireless sen-
sor networks, reliability, routing, time-sensitive utility.

I. INTRODUCTION

Utility-based routing in wireless networks is a special
routing approach based on a composite utility metric [1],
[2]. The utility is in terms of the benefit (i.e., a reward for
the routing source delivering a message to the destination)
minus the expected cost incurred by message delivery. Unlike
wired connections, wireless connections are unreliable due to
interference and coverage issues. With utility-based routing,
the more valuable message will be delivered through a more
reliable route at the expense of a higher energy cost in
transmission [1], which remains a common phenomenon in
wireless communication. This phenomenon reflects a trade-
off between a highly reliable route (which is usually more
costly) and a less reliable route (which is usually less costly)
based on the value of the message. A simple analogy that
relates to utility-based routing is the postal service: a high-
value package (e.g., one that contains a passport for a visa
application) usually uses registered mail for reliability at a
higher premium cost. An ordinary package is usually mailed
through a regular service.

In this paper, we focus on utility-based routing in duty-cycle
wireless sensor networks (WSNs), in which sensors periodi-
cally schedule themselves to be active for work and then stay
dormant at other times to reduce the energy consumption [3]–
[7]. Compared with traditional WSNs, message delivery in
duty-cycle WSNs has a non-negligible delay since it has to
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Fig. 1. An example of time-sensitive utility-based routing on a weighted
graph. The edge weight of the graph is ⟨reliability, delay, cost⟩. There are
three messages with a linearly decreased benefit over time t. Utility-based
routing tries to achieve the maximum utility, i.e., benefit minus cost. As a
result, it would let the three messages be delivered along different paths.
Their utility values are calculated in Section III-A and are listed in Fig. 5.

wait for a certain amount of time until the message receiver
becomes active [6]. The delivery delay is thus an important
factor for the routing design. However, it has not been adopted
into the current utility-based routing metric.

In order to take the delivery delay into account, we introduce
time into the utility model and propose a Time-sensitive
Utility-based Routing (TUR) algorithm for duty-cycle WSNs.
The benefit of a message in this algorithm linearly decreases
with the delivery time. The utility is still defined as the benefit
minus the expected cost. Since the benefit is time-related, the
delivery delay is indirectly added into the utility model. As a
result, the TUR algorithm makes a trade-off among reliabil-
ity, delay, and cost. It allows reliability-concerned messages,
delay-concerned messages, and cost-concerned messages to be
delivered along different paths as shown in the example of
Fig. 1. More specifically, our major contributions include:

1) We extend the utility model into duty-cycle WSNs
and propose a time-sensitive utility model. Compared
with the existing utility model, the time-sensitive utility
simultaneously takes reliability, delay, and cost into
account. As a result, utility-based routing in this model
can make a trade-off among the three factors.

2) We propose an optimal time-sensitive utility-based rout-
ing algorithm — TUR. In this algorithm, we first present
a special iterative formula to compute the expected
utility of a given message delivery. From the iterative
formula, we design a backward derivation algorithm to
determine the optimal delivery path. The TUR algorithm
is a single-copy algorithm without retransmission at each
hop. To the best of our knowledge, it is the first utility-
based routing algorithm that considers the delivery delay.



3) We also extend the TUR algorithm to cover the cases
where retransmission is allowed. We consider two cases:
the retransmission occurs within the same duty-cycle or
at different duty-cycles. For both cases, we present the
optimal solutions.

4) We have conducted extensive simulations to evaluate the
TUR algorithm. The results prove that the TUR algorith-
m can achieve the better expected utility compared to
other algorithms. Meanwhile, the results also show that
the proposed scheme can make a good balance among
reliability, delay, and cost.

The remainder of the paper is organized as follows. We in-
troduce the duty-cycle WSN, the time-sensitive utility model,
and the problem of utility-based routing in Section II. The
TUR algorithm is proposed in Section III and is extended
in Section IV. In Section V, we evaluate the performance of
our algorithms through extensive simulations. After reviewing
related work in Section VI, we conclude the paper in Sec-
tion VII. All proofs are presented in the Appendix.

II. NETWORK MODEL & PROBLEM

A. Network Model

We focus on the static duty-cycle WSN. Each sensor only
has two possible working states: the active state, in which
the sensor can perform all the functions of sensing, listening,
transmitting, and receiving; and the dormant state, in which
the sensor turns off all the functional modules except for a
wake-up timer. Specifically, when a dormant sensor wakes up,
it either switches to the active state, or transmits packets and
then switches back to the dormant state. In other words, a
sensor can transmit a packet at any time but can receive a
packet only when it is active. Before the concrete network
model, we first present several basic assumptions:

1) Time is divided into equal-length time slots, and the
whole network is loosely synchronized. The synchronization
can be achieved through existing approaches, e.g., FTSP [8].
In general, the time synchronization error can be ignored
compared with a time slot [6].

2) Each sensor schedules its working states cyclically. For
simplicity, we assume that all sensors share a common duty-
cycle and each sensor stays active at only one fixed time slot
during each duty-cycle, which is named by the active time
slot of the sensor. This assumption is reasonable. If sensors
have different duty-cycles, the common duty-cycle can be set
as their least common multiple. If a sensor has multiple active
time slots within a duty-cycle, we can replace this node by
several virtual nodes, each of which only has one active time
slot in a duty-cycle.

3) The wireless communication links are unreliable, and the
CSMA/CA mechanism is adopted to cope with the existence of
collision. Previous research shows that the link quality changes
very slowly over time [9]. Therefore, the average successful
transmission probability derived from history records is adopt-
ed to evaluate the link reliability.

Based on the above assumptions, we consider a duty-cycle
WSN that is composed of a set of sensor nodes, denoted by
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Fig. 2. Example: duty-cycle WSN modeling.

V . The common duty-cycle is T . For each pair of neighboring
sensors, i and j (i, j ∈V ), there is a successful transmission
probability pi,j . Their active time slots are ai and aj (ai, aj ∈
[1, T ]), respectively. Note that node i gets a message only at
the time slot ai. If it wants to send the message to node j, it
must sleep until node j becomes active at the time slot aj . The
transmission delay can be ignored since it is much less than the
delay incurred by the sleep. Thus, the message delivery delay
from node i to node j is ti,j=(aj−ai) modT . Besides, the
transmission cost from node i to node j is denoted by ci,j .
Then, we can model the duty-cycle WSN as a direct weighted
graph G=⟨V,W ⟩, where W ={⟨pi,j , ti,j , ci,j⟩|i, j∈V }.

Fig. 2 shows an example of duty-cycle WSN modeling.
Fig. 2(a) is an initial duty-cycle WSN composed of two sensors
i and j, whose duty-cycles are 3 and 6 time slots, and whose
active time slots are 1 and 5, respectively. In Fig. 2(b), we
utilize two virtual sensors, i1 and i2, to replace sensor i. Then,
the initial network is simplified to be a duty-cycle network, in
which there is only one common duty-cycle, and each node
only has one active time slot. After computing the delivery
delays of neighboring nodes according to their active time
slots, we construct the corresponding direct weighted graph, as
shown Fig. 2(c). In fact, any duty-cycle WSN can be converted
to a direct weighted graph in this way.

B. Problem

In this paper, we only study single-copy non-ACK routing
and propose a time-sensitive utility model. Unlike the previous
utility model, the time-sensitive utility model assigns a time-
sensitive benefit and a utility to a message delivery from
an arbitrary source to a destination. This utility metric takes
delivery delay, delivery cost, and reliability into account. Con-
sidering a message delivery from a source s to a destination d,
we present the basic concepts of benefit and utility as follows.

Definition 1: The benefit of a message, denoted as b(t),
refers to a linearly decreasing reward over time t if it is
successfully delivered to its destination; otherwise, zero reward
is returned. Let the initial benefit be β, and let the decreased
benefit in each time slot be named by benefit decay coefficient
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Fig. 3. An example of time-sensitive utility model.

and denoted by δ, then the benefit satisfies:

b(t)=

{
β−t · δ, successful delivery;
0 , failed delivery. (1)

Here, time t is the living time of the message. A new
generated message (t = 0) has its maximum benefit value.
Along with the message delivery, the benefit would linearly
decrease due to the elapsed time. If the message delivery fails,
the benefit would become zero. Thus, the concept of benefit
takes into account both the delivery delay and the successful
delivery probability.

Definition 2: The utility of a message delivery, denoted
by u, is the benefit minus the total transmission cost of
the message delivery, which means the gain of the message
delivery. Let the total transmission cost be c, then the utility
satisfies:

u=b(t)−c. (2)

If the message is successfully delivered to the destination
with the delay ts,d, the utility would be b(ts,d)−c; otherwise if
it fails, the utility would be 0−c. The utility value is affected
by the delivery delay, the path reliability, and the transmission
cost. For example, for the delivery from s to 1 of the first
message in Fig. 1, the benefit is 50−ts,1=45 and the utility
is 45−10 for the successful delivery. The benefit is 0 and the
utility is 0−10 for the failed delivery. The expected value of
utilities for the two delivery cases is 0.8(45−10)+0.2(0−10)=
26.

The above concepts b, u, and c are related to the message
delivery from s to d. In addition, for simplicity of description,
we also define two notions for each node: the remaining benefit
of a node and the expected utility of a node. Consider an
arbitrary node i in the delivery path from s to d, the remaining
benefit and expected utility of node i are defined as follows.

Definition 3: The remaining benefit of node i, denoted by
bi, refers to the remaining benefit value when the message
arrives at node i. That is:

bi=β−δ ·ts,i. (3)

Definition 4: The expected utility of node i, denoted by
ui(b), is the expected utility for a message delivery from node
i to the destination, in which the remaining benefit of the
message is b when it arrives at (or is generated by) node i.

Note that bi and ui(b) are the values from the point of
view of node i, i.e., the case when node i is the current
message forwarder. Moreover, ui(b) is an expected value.
This is because the message delivery from node i to the

destination is uncertain. It might succeed or fail at different
hops. There are multiple possible results. For each result, there
is a probability and a final utility value. ui(b) is the expected
value of these final utility values. Note that ui(b) is a function
of b. This means that ui(b) can be derived only when b is
given in advance. Fig. 3 shows an example for the concepts,
in which the benefit linearly decreases along time or becomes
zero due to a failed delivery. bi is the remaining benefit of
node i. c is the transmission cost. There is a utility u for each
message delivery no matter if it succeeds or fails. The expected
utility of source node us(β) is the expected value of u.

With the basic definitions of benefit and utility, we can
present our problem of utility-based routing as follows: given a
duty-cycle network G=⟨V,W ⟩, as described in Section II-A,
a source node s, a destination node d, an initial benefit β, and
a benefit decay coefficient δ, then our objective is to maximize
the expected value of utility u for the message delivery from s
to d. Since this expected value is exactly equal to the expected
utility us(β), our objective becomes to maximize us(β).

III. SOLUTION: THE TUR ALGORITHM

In this section, we consider the utility-based routing problem
for a non-retransmission message delivery from an arbitrary
source node s to a destination node d with an initial benefit
β and a benefit decay coefficient δ. We propose an optimal
Time-sensitive Utility-based Routing (TUR) algorithm, where
the maximum expected utility us(β) can be achieved. The key
part of the TUR algorithm is to find an optimal delivery path
in the initial phase. We first present an iterative formula, by
which each node can compute its own optimal expected utility
value when it knows the optimal expected utility values of the
neighboring nodes. Then, we design a backward derivation
algorithm to calculate the optimal expected utility value of
each node. Accordingly, the optimal delivery path is also
determined. The routing phase of the TUR algorithm just let
messages be delivered along their optimal paths. Since the
routing phase is straightforward, we only focus on the process
of computing the expected utility values of nodes and finding
the optimal delivery path in the following parts.
A. The Basic Formula

We first consider an arbitrary delivery path from node s to
node d and derive a formula to compute the expected utility
value. Without the loss of generality, we let the path be “s=
0→1→· · ·→n−1→d=n”. Then, the expected utility of the
message delivery from s to d is us(β)=u0(β). Assume that all
edge weights in the path, including the successful transmission
probability, the delivery delay, and the transmission cost, are
known. By computing the probability and utility values for
each possible delivery case, we can the get the formula. More
specifically, we have the following theorem.

Theorem 1: The expected utility value for the message
delivery with an initial benefit β and a benefit decay coefficient
δ along a given path “s=0→1→· · ·→n−1→d=n” satisfies:

us(β)=

n−1∏
i=0

pi,i+1

(
β−δ

n−1∑
i=0

ti,i+1

)
−

n−1∑
i=0

ci,i+1

i−1∏
j=0

pj,j+1. (4)
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Fig. 4. An example of the expected utility computation. The edge weight
of the graph is ⟨reliability, delay, cost⟩. The direct computation and the
iterative computation achieve the same result.

Now we derive an iterative formula which can be used
to locally compute the expected utility value. Consider two
arbitrary adjacent nodes i and j = i+1 (0 ≤ i ≤ n−1) in
the delivery path “s = 0 → 1 → · · · → n− 1 → d = n”.
Note that their expected utilities ui(b) and uj(b) actually are
two functions about the remaining benefit b. For most of the
function values, e.g., ui(β) and uj(β), there is not a local
iterative relationship between them. Even if the value of uj(β)
and the link information between i and j are known, there is no
formula that we can use to derive the value ui(β). Fortunately,
we find that for a pairwise special remaining benefits bi and
bj , there is a local relationship between ui(bi) and uj(bi), as
shown in the following theorem.

Theorem 2: The expected utilities of two neighboring nodes
i and j satisfy:

ui(bi)=pi,juj(bj)−ci,j . (5)

Eq. 5 is an iterative formula, by which each node i can
derive its own expected utility from the expected utility value
of its next-hop neighbor node. Thus, once we know the value
of ud(bd), we can use Eq. 5 to iteratively derive the value
of us(β) = us(bs), which would achieve the same result as
the direct computation according to Eq. 4. Fig. 4 shows a
simple example to compute the expected utility of the delivery
path “s → 1 → d” in Fig. 1 through the two methods.
These results demonstrate that the direct computation and
the iterative computation achieve the same result. We also
compute the expected utility values of all delivery paths in
Fig. 1 and list them in Fig. 5. These results prove that the
messages with various benefits would have different optimal
delivery paths.

Moreover, we have ui(bi)<uj(bj) according to Eq. 5. This
means that the expected utility values of nodes would increase
along with a message delivery path. The destination node has
the maximum expected utility value in the delivery path.

B. The Basic Idea

Once we have the iterative formula about the expected
utility, we can derive the expected utility value of node s
by applying a backward derivation algorithm. The expected
utility of the destination node is first calculated. This expected
utility is used as a “seed” to iteratively compute the expected
utility value of its neighbor through Eq. 5. Then, the expected
utility of next node is calculated in the same way, and so on,
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Fig. 5. The expected utility values of each delivery path in Fig. 1.

until the expected utility values of all nodes are determined.
Accordingly, the related optimal delivery path would be found
during this iterative computation process.

However, there is a problem with this method. That is, the
seed of the iterative computation process, i.e., the expected
utility of destination ud(bd), cannot be directly determined.
According to our definition, the expected utility ud(bd) is not
a simple value but a function of the remaining benefit bd. It can
be calculated only when bd is known. The remaining benefit bd
can be computed only when the delivery delay is determined.
However, the delivery delay cannot be calculated since we do
not know the message delivery path. A similar problem also
exists in the middle of the computation process. For example,
when we want to compute an expected utility ui(bi) through
Eq. 5, we need to know the remaining benefits bi. However, bi
can be determined only when the optimal delivery path from
source to node i is known.

To overcome the above problem, we extend the iterative
computation of a single-point expected utility to the computa-
tion of the whole expected utility function for each node. This
is feasible because the expected utility function is discrete and
the range of the function parameter (i.e., the possible values
of the remaining benefit) is limited. Note that the maximum
remaining benefit value in the whole network is the initial
benefit β. The minimum and the maximum delivery delays
between pairwise neighboring nodes are one time slot and T−1
time slots, respectively. The difference of remaining benefit
values of pairwise neighboring nodes thus only might be
{δ, 2δ, · · ·, (T−1)δ}. Moreover, each message delivery path has
at most (|V |−1) hops. Therefore, the remaining benefit values
of each node only might be {β−(|V |−1)(T−1)δ, · · · , β−δ, β},
denoted by Φ. Here we point out that the size of the remaining
benefit set Φ is not a large value since the duty-cycle T in a
duty-cycle WSN is generally much less than the number of
nodes |V | in order to provide a valid service. Based on this
idea, our solution is presented as follows.

At the beginning, the destination node calculates the ex-
pected utility value ud(b) for each possible remaining benefit
b ∈ Φ. Then, it starts the Φ paralleled backward derivation
computation processes by taking these expected utility values
as the seeds. Each node uses Eq. 5 to determine its maximum
expected utility values and pushes the backward computation
process until the source node gets the expected utility values.
Accordingly, the optimal delivery path also would be recorded.
Note that the Φ paralleled backward derivation computation
processes are not independent of each other. The backward
derivation computation with a large-b seed will require the
computation results with a low-b seed.



Algorithm 1 The Centralized TUR Algorithm
Require: G=⟨V,W={⟨pi,j , ti,j , ci,j⟩|i, j∈V }⟩, d (∈V ), Φ, δ.
Ensure: ui(b), pathi(b) (i∈V, b∈Φ).

1: for each b∈Φ (in the ascending order) do
2: ud(b)=b, ui(̸=d)(b)=0, Q=∅;
3: while V−Q ̸=∅ do
4: Find the node i with the largest ui(b) from V−Q;
5: if ui(b)=0 then
6: Break;
7: Q=Q ∪ {i};
8: for each neighbor j of node i do
9: Compute the new utility u′

j(b) using Eq. 5;
10: if uj(b) < u′

j(b) then
11: uj(b)=u′

j(b), pathj(b)= i ;

C. The Detailed Algorithms

With regard to our solution, we first present a centralized
algorithm (Algorithm 1), and then we also give a distributed
version of this algorithm (Algorithm 2).

The centralized algorithm (Algorithm 1) assumes that the
source node has collected the reliability, delivery delay, and
transmission cost of the whole network and has constructed a
weighted directed graph. Based on this graph, the centralized
algorithm first computes the expected utility values of all
the nodes for the minimum remaining benefit in Φ. Then, it
increases the remaining benefit and computes the expected
utility values for the new remaining benefits in Φ step-by-
step, as shown in Step 1. For each remaining benefit b, the
corresponding expected utility values can be calculated since
they only depend on the expected utility values which have
been computed before. Steps 2-11 give the basic process
of the backward derivation computation. Step 2 makes an
initialization. Steps 4-7 extend the set of nodes whose optimal
expected utility values have been determined. Steps 9-11
determine the optimal expected utility value. In Step 5, if
ui(b)=0, we stop the current computation since the message
delivery cannot achieve a positive utility. Besides, each node
i records its optimal next hop in pathi(b) for each remaining
benefit b.

The correctness of this algorithm is straightforward. The
backward iterative computation scheme and Eq. 5 can ensure
the optimality of our algorithm. Moreover, the computational
overhead is only O(|Φ||V |2)=O(T |V |3).

Algorithm 2 is a distributed solution. Each node in this
algorithm initializes in Step 1, and then continuously updates
its expected utility values when it becomes active (Steps 4-9)
until the algorithm converges. More specifically, the node first
receives the new expected utility values from its neighboring
nodes in Step 5. Then, it computes its own new expected
utility values according to Eq. 5 in Steps 6-9, and it meanwhile
determines the optimal delivery paths. When its neighboring
nodes become active, it also would notify them of its new
optimal expected utility values (Steps 10-11).

Compared to the centralized algorithm, the distributed algo-

Algorithm 2 The Distributed TUR Algorithm
Require: G=⟨V,W={⟨pi,j , ti,j , ci,j⟩|i, j∈V }⟩, d (∈V ), Φ, δ.
Ensure: ui(b), pathi(b) (i∈V, b∈Φ).

1: for each node i do
2: Initialize: ui(=d)(b) = b, ui(̸=d)(b) = 0 (∀b∈Φ);
3: for each time slot in T do
4: if node i is active then
5: Receive new expected utilities from neighbors;
6: Compute new u′

i(b) (∀b∈Φ) using Eq. 5;
7: if ui(b) < u′

i(b) (∀b∈Φ) then
8: ui(b)=u′

i(b);
9: Determine pathi(b) according to u′

i(b);
10: if neighbor j is active then
11: Send new expected utility to node j;

rithm adopts a similar process to compute the expected utility
values of each node, but removes the scheduling order of
these expected utility values being calculated. Note that the
expected utility values of nodes would strictly increase along
with a message delivery path. Moreover, each expected utility
can be computed only when the expected utility related to a
smaller remaining benefit is computed before. These would
ensure that the whole computation would not lead to a loop.
All of the expected utility values would be automatically
calculated in sequence due to their dependent relationships.
This ensures the correctness and convergence of the algorithm.
Moreover, in each round of computation, i.e., a duty-cycle T ,
at least one optimal expected utility value can be determined.
For each remaining benefit b, the maximum expected utility
value is first determined. Then, the second maximum expected
utility value is determined in the next round of computation,
and so on. The whole algorithm will converge by at most
O(|Φ||V |)=O(T |V |2) rounds of computation. In each round
of computation, each node would receive at most Φ(|V |−1)
expected utility values from its neighboring nodes. Thus, the
computational overhead is O(|Φ||V |)=O(T |V |2).

In both algorithms, we have actually calculated all possible
expected utility values. In fact, many of them are useless.
Thus, we can remove these useless computations to reduce
the overhead. This can be realized by a flooding operation.
When the source node s publishes an initial benefit value β to
the network, each node i derives and records its remaining
benefit bi that might be used. After this process, we only
need to compute the expected utility related to these recorded
remaining benefit values when we use the TUR algorithm.
As a result, many useless expected utility values would not
be calculated. Fig. 6 shows the process of computing the
expected utility of nodes in Fig. 1 through Algorithm 1. In
Fig. 6(a), the source publishes the initial benefit value β, and
each node records the remaining benefits that might be used
in the following steps. In Figs. 6(b)-6(f), we compute the
expected utility values of all nodes by increasing the remaining
benefits step-by-step. The expected utility for the remaining
benefit b=30 is first calculated, which is used to compute the
expected utility for b=35. If there are multiple expected utility
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u (45)=162

u (30)=30d

u (40)=40d
u (50)=7.6s

u (50)=s u (45)1
p
1,s -c 1,s

>
u (50)=s u (45)2

p
2,s -c ,s 2

(f) compute u(b=50)

Fig. 6. Example: computing the expected utility of nodes in Fig. 1 for the message delivery with benefit 50−t.

values incurred by multiple paths, the largest one is selected,
as shown in Figs. 6(e) and 6(f). The example, which only
contains five rounds of computation, shows that our algorithm
is efficient.

IV. EXTENSIONS

In this section, we extend the TUR algorithm from the
case of non-retransmission to the case with retransmission. We
consider two retransmission cases. One involves the retrans-
mission occurring within the same active time slot when a time
slot is set to be large enough. Another is that the retransmission
occurs at different duty-cycles when a time slot is set to be
a small time interval. For both cases, we present the optimal
solutions.

If the retransmission occurs within the same active time
slot, it would improve the successful delivery probability
and also increase the transmission cost, but it would not
result in an increased delivery delay. Consider an arbitrary
node i and its next-hop node j. After k-time retransmissions,
the corresponding successful delivery probability becomes
1−(1−pi,j)

k, and the transmission cost becomes kci,j . Thus,
the iterative formula about the expected utility for the k-time
retransmissions satisfies:

ui(bi)|k=[1−(1−pi,j)
k]uj(bj)−kci,j . (6)

According to Eq. 6, we can find an optimal retransmission
times k̂ to maximize the expected utility value ui(bi). More
specifically, we have the following theorem.

Theorem 3: The optimal retransmission times k̂ for the
message delivery from node i and its next-hop node j satisfies:

k̂=⌊ ln ci,j−ln pi,juj(bj)

ln(1−pi,j)
⌋ or ⌈ ln ci,j−ln pi,juj(bj)

ln(1−pi,j)
⌉. (7)

If the retransmission occurs at different duty-cycles, it
would not only increase the successful delivery probability
and the transmission cost, but also would result in an increased

delivery delay. An h-time retransmission would lead to a de-
livery delay hT . Accordingly, the remaining benefit of node j
would be decreased by δhT . Thus, the iterative formula about
the expected utility for the h-time retransmission becomes:

ui(bi)|h=[1−(1−pi,j)
h]uj(bj−δhT )−hci,j . (8)

Obviously, the optimal retransmission number ĥ for this case
must be less than k̂ due to uj(bj − δhT ) < uj(bj). Thus,
we have ĥ ∈ [1, k̂]. Then, testing all possible h ∈ [1, k̂] to
maximize ui(bi)|h by using Eq. 8, we can obtain the optimal
retransmission number ĥ.

Note that under any circumstance, the optimal number of
retransmissions can be determined locally once the expected
utility value of the next hop node is given. Therefore, it can
be directly embedded into TUR including both centralized and
distributed algorithms. As a result, the optimal numbers of
retransmission of all nodes can be determined.

V. PERFORMANCE EVALUATION

In this section, we conduct extensive simulations to evaluate
the performances of our proposed algorithms, including TUR
and its extended version with the concern of retransmission,
which is denoted by TUR-R. Besides TUR and TUR-R, we
also implement three other algorithms to compare with. The
compared algorithms, the evaluation methods, settings, and
results are presented as follows.

A. Algorithms in Comparison

Since our proposed algorithms are the first utility-based
routing algorithms designed for duty-cycle WSNs, to the best
of our knowledge, there are no existing algorithms that we
can compare with. Thus, according to the metrics what we
are concerned with, we carefully design and implement three
other algorithms: MinDelay, MaxRatio, and MinCost.

MinDelay is a shortest-path-based algorithm, in which each
node exploits the Dijkstra algorithm to determine the shortest
path w.r.t. delay, and then it lets messages be delivered along
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Fig. 7. Performance comparisons of utility vs. initial benefit.

0.04 0.08 0.12 0.16 0.20

0

20

40

60

80

A
v
e
ra

g
e
 U

ti
lit

y

Benefit Decay Coefficient

 TUR-R

 TUR

 MinDelay

 MaxRatio

 MinCost

(a) Number of nodes: |V | = 200

0.04 0.08 0.12 0.16 0.20

0

20

40

60

A
v
e
ra

g
e
 U

ti
lit

y

Benefit Decay Coefficient

 TUR-R

 TUR

 MinDelay

 MaxRatio

 MinCost

(b) Number of nodes: |V | = 400

0.04 0.08 0.12 0.16 0.20

0

20

40

A
v
e
ra

g
e
 U

ti
lit

y

Benefit Decay Coefficient

 TUR-R

 TUR

 MinDelay

 MaxRatio

 MinCost

(c) Number of nodes: |V | = 600

Fig. 8. Performance comparisons of utility vs. benefit decay coefficient.
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Fig. 9. The relationship of utility vs. initial benefit and benefit decay coefficient.

TABLE I
EVALUATION SETTINGS.

Parameter name Default value Range
Deployment area S 100m×100m -

Number of nodes |V | - 200-600
Transmission radius 2.5

√
S/|V |m -

Transmission probability - 0.3-0.9
Transmission cost - 1-10
Scheduling cycle 20 -

Initial benefit 100 10-100
Benefit decay coefficient 0.02 0.02-0.2

Number of messages 10,000 -

their shortest paths. MaxRatio lets messages be delivered
along the paths which have the largest successful delivery
probabilities. MinCost delivers messages along the paths with
the smallest expected delivery cost. Both the paths with the
largest delivery ratios and the paths with the minimum delivery
costs are also determined by the Dijkstra algorithm.

B. Simulation Settings and Metrics

In the simulations, we deploy |V | sensor nodes in a
100m×100m square area. More specifically, we divide the
whole square area into |V | equivalent small square lattices,
and then let each node be deployed at a random position
in a lattice. The transmission model of sensor nodes is the
traditional disk model. That is, each pair of sensor nodes

can communicate with each other only when their distance
is less than a given transmission radius. We let all sensor
nodes share a common transmission radius and set the radius
to be 2.5 (>

√
12+22) times of the side length of the small

square lattice. As a result, the sensor nodes in the neighboring
lattices must be within the transmission radius and thus can
communicate with each other. In this way, the |V | sensor nodes
are randomly and uniformly deployed in the whole square area
while ensuring that the whole network is fully connected.

Next, we let all of the sensor nodes share a common duty-
cycle and set the cycle to be 20 time slots. Each node becomes
active only at one time slot in each cycle. The active time
slot is randomly selected while ensuring that it is different
from the neighboring nodes’. Each pair of neighboring nodes
has associated with a successful transmission probability and
cost, which are randomly selected from [0.3, 0.9] and [1, 10],
respectively. In addition, the initial benefits and the benefit
decay coefficients are selected from [10, 100] and [0.02, 0.2],
respectively. All of the evaluation variables are shown in
Table I.

The major metric in our simulations is the average utility,
which is the average value of utilities of all message deliveries.
In order to demonstrate that our utility-based algorithms make
a good tradeoff among reliability, delay, and cost, we also
compare the average delivery delay, delivery ratio, and aver-
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Fig. 10. Performance comparisons of delivery delay vs. initial benefit.
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Fig. 11. Performance comparisons of delivery delay vs. benefit decay coefficient.
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Fig. 12. Performance comparisons of delivery ratio vs. initial benefit.
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Fig. 13. Performance comparisons of delivery ratio vs. benefit decay coefficient.

age delivery cost of the five algorithms besides of the average
utility. The average delivery delay and average delivery cost
are the average value of delivery delay and the cost of all
message deliveries. The delivery ratio is the ratio of successful
deliveries and all message deliveries.

C. Evaluation Results

We conduct nine groups of simulations in total. In each sim-
ulation, we produce 10, 000 messages by randomly selecting
the sources and destinations. For each message delivery, we
record its utility, total transmission cost, and the delivery delay
if the message delivery succeeds. The concrete simulations and
results are presented as follows.

We first evaluate the performance on utility through three
groups of simulations. The numbers of nodes are set to be

|V |= 200, 400, 600. In the first group of simulations, we fix
the benefit decay coefficient δ = 0.02 and change the initial
benefit value from 10 to 100, i.e., β = 10, 20, · · · , 100, to
compare the average utility of the five algorithms. The results
are shown in Fig. 7. Compared with MinDelay, MaxRatio,
and MinCost, TUR increases the utility by 1459.6%, 464.3%,
and 637.3% on average, respectively. Compared with TUR, the
TUR-R algorithm increases the utility by up to 104.3% (47.9%
on average). In the second group of simulations, we fix the
initial benefit β=100 and change the benefit decay coefficient
from 0.02 to 0.2. The comparison results on the average utility
are shown in Fig. 8. Compared with MinDelay, MaxRatio,
and MinCost, TUR increases the utility by 2305.2%, 923.9%,
and 1149.9% on average, respectively. Compared with TUR,
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Fig. 14. Performance comparisons of delivery cost vs. initial benefit.
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Fig. 15. Performance comparisons of delivery cost vs. benefit decay coefficient.

the TUR-R algorithm increases the utility by up to 104.3%
(87.3% on average). In the third group of simulations, we
change both the initial benefit and the benefit decay coefficient
at the same time to record the change of average utility
of the TUR algorithm, as shown in Fig. 9. These results
demonstrate the optimal utility performance of our proposed
algorithms. Moreover, the larger the initial benefit and the
smaller the benefit decay coefficient are, the larger the average
utility would be. The results also show that retransmission can
achieve an significant increase in performance.

Next, we evaluate the performances on the delivery ratio, de-
lay, and cost through six groups of simulations. We first set the
numbers of nodes to be |V |=200, 400, 600, and then change
the initial benefit and the benefit decay coefficient to record the
average delivery delay, delivery ratio, and average delivery cost
of the five algorithms, respectively. Since the delivery ratios of
the five algorithms are different, it is unfair to only compare
the average delivery delay and average delivery cost of the
successful deliveries. In order to make the comparison fair,
we also record the failed delivery with the maximum delay
and cost. The results are shown in Figs. 10-15. Compared
with MinDelay, MaxRatio, and MinCost, TUR decreases the
delivery delay by 47.0%, 46.2%, and 46.2% on average,
increases the delivery ratio by 3096.4%, 1144.1%, 1184.7%
on average, and reduces the delivery cost by 59.1%, 58.4%,
and 58.4% on average, respectively. Here TUR even has a
much better performance with delay and cost than MinDelay
and MinCost due to its good delivery ratio. The results show
that the TUR algorithm has achieved good performances with
reliability, delay, and cost at the same time. It makes a good
tradeoff among the three factors.

VI. RELATED WORK

The routing problem in WSNs has been studied for many
years, and a lot of algorithms have been proposed for tradi-
tional non-duty-cycle WSNs [10]. Compared to the traditional

WSNs, the delivery delay is an important factor in duty-cycle
WSNs routing design. Without a concern for delay, these
algorithms cannot work well in duty-cycle WSNs. Thus, some
delay-concerned routing algorithms, including a unicast algo-
rithm DSF [3], [7] and two flooding-based algorithms [4], [6],
were proposed recently. However, compared with our utility-
based algorithms, none of them, no matter the traditional
algorithm or the delay-concerned routing algorithms, adopt
the utility metric which takes reliability, delay, and cost into
account at the same time.

The concept of utility-based routing was first proposed by
M. Lu and J. Wu to balance the reliability and transmission
cost of the message delivery in ad hoc networks [11]. Then,
the utility-based routing algorithm is extended into the oppor-
tunistic transmission model in [1], [2]. The benefit in these
utility models is unchanged during the message delivery. The
utility models do not take the delivery delay into account.
Without considering the delivery delay, they cannot work well
in duty-cycle WSNs.

Unlike metrics used in these earlier papers, the time-
sensitive utility is a composite metric which takes the delivery
ratio, delay, and cost into account at the same time. To the
best of our knowledge, the time-sensitive utility model and
our proposed algorithms are the first utility model and utility-
based routing algorithms designed for duty-cycle WSNs.

VII. CONCLUSION

In this paper, we propose a time-sensitive utility model for
duty-cycle WSNs. Unlike the previous utility model, the time-
sensitive utility model takes the delivery delay into account,
which is an important metric in duty-cycle WSNs. Under this
model, we present an iterative formula to compute the utility
value of each message delivery. Based on the iterative formula,
we design an optimal time-sensitive utility-based algorithm to
deliver messages, and we extend the algorithm to the case
where retransmission is allowed. Both of the algorithms can



maximize the average utility values of the message deliveries,
which can achieve a good tradeoff among reliability, delay,
and cost. Simulations also prove the significant performance
of our proposed algorithms.
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Appendix
A. Proof of Theorem 1

We can derive Eq. 4 by computing and summing the utility
values of all possible delivery cases.

If the message delivery succeeds, denoted by s ⇒ d, it
means that each-hop message transmission in the path is
successful. Then, the delivery delay is the sum of each-hop
delay, i.e.,

∑n−1
i=0 ti,i+1. Moreover, the successful delivery

probability P |s⇒d, benefit b|s⇒d, and total transmission cost
c|s⇒d satisfy:

P |s⇒d=
n−1∏
i=0

pi,i+1; b|s⇒d=β−δ
n−1∑
i=0

ti,i+1; c|s⇒d=
n−1∑
i=0

ci,i+1. (9)

If the message delivery fails at the link “k→k+1” (0≤k≤
n−1), denoted by k ; k+1, the corresponding benefit would
become zero, and the total cost only contains the transmission
costs for the delivery from s to h. That is:

P |k;k+1=(1−pk,k+1)
k−1∏
i=0

pi,i+1; b|k;k+1=0; c|k;k+1=
k−1∑
i=0

ci,i+1. (10)

The expected utility us is the expected value of the utilities
for the successful delivery and all possible failed deliveries.
Thus, we have:

us(β)=P |s⇒d(b|s⇒d−c|s⇒d)+
n−1∑
k=0

P |k;k+1(b|k;k+1−c|k;k+1). (11)

Further, after replacing the right side of Eq. 11 by Eqs. 9-10
and by combining the related items, we can get Eq. 4.

B. Proof of Theorem 2
We derive the iterative formula about the expected utility

values of two neighboring nodes i and j as follows. According
to Eq. 4, we get the formulas for ui(bi) and uj(bj):

ui(bi)=
n−1∏
h=i

ph,h+1

(
bi−δ

n−1∑
h=i

th,h+1

)
−
n−1∑
h=i

ch,h+1

h−1∏
g=0

pg,g+1; (12)

uj(bj)=
n−1∏
h=j

ph,h+1

(
bj−δ

n−1∑
h=j

th,h+1

)
−
n−1∑
h=j

ch,h+1

h−1∏
g=0

pg,g+1. (13)

Comparing ui(bi) and uj(bj), we have:

ui(bi)=pi,juj(bj)−
n−1∏
h=i

ph,h+1

(
bi−bj−δ ·ti,j

)
−ci,j . (14)

Since nodes i and j are adjacent in the delivery path, then
according to Eq. 3, the remaining benefits of nodes i and j
satisfy:

bi=bj+δ ·ti,j . (15)

Therefore, by substituting Eq. 15 into Eq. 14, we can get:

ui(bi)=pi,juj(bj)−ci,j .

C. Proof of Theorem 3
Based on Eq. 6, we compute the expected utility values

ui(bi) for the k-time retransmission and the (k + 1)-time
retransmission:

ui(bi)|k+1= [1−(1−pi,j)
k+1]uj(bj)−(k+1)ci,j ; (16)

ui(bi)|k = [1−(1−pi,j)
k]uj(bj)−kci,j . (17)

With Eq. 16 and Eq. 17, we have:

ui(bi)|k+1−ui(bi)|k=(1−pi,j)
kpi,juj(bj)−ci,j . (18)

Let k∗ satisfy (1−pi,j)
k∗
pi,juj(bj)−ci,j=0, then we can get:

k∗=
ln ci,j−ln pi,juj(bj)

ln(1−pi,j)
. (19)

According to Eq. 18, we have that ui(bi)|k<ui(bi)|k+1 if and
only if k < k∗. That is, when the number of retransmissions
k increases, the expected utility value ui(bi) decreases after
increasing. Moreover, the maximum expected utility value
ui(bi) can be achieved only when k=k∗. Since k is an integer,
the optimal number of the retransmissions satisfies:

k̂=⌊k∗⌋ or k̂=⌈k∗⌉.


