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Abstract—Bitcoin builds upon an unstructured peer-to-peer
overlay network to disseminate transactions and blocks. Broad-
cast in such a network is slow and brings inconsistencies,
i.e., peers have different views of the system state. Due to
the delayed block propagation and the competition of mining,
forking, i.e., the blockchain temporarily diverges into two or more
branches, occurs frequently, which wastes computation power
and causes security issues. This paper proposes an autonomous
and distributed topology optimization mechanism to reduce block
propagation delay and hence reduce the occurrence of blockchain
forks. In the proposed mechanism, a node can autonomously
update his neighbor set using the information provided by his
current neighbors, since each neighbor will recommend a peer
from his own neighbor set, i.e., a neighbor’s neighbor, to this
node. Each recommendation is based on a peer’s propagation
ability, which is characterized as a criteria function obtained
through a combination of empirical analysis and machine learn-
ing. We further propose some metrics to evaluate a Bitcoin
network topology. Experiment results reflect the effectiveness
of the proposed mechanism and also indicate the correlation
between block propagation time and fork rate.

Index Terms—Blockchain, criteria function, fork, neighbor
selection, P2P overlay, propagation delay.

I. INTRODUCTION

The Bitcoin mining network is designed as a peer-to-peer

(P2P) overlay [1, 2], where nodes, named as miners, are

randomly connected. Blocks are transmitted over this network

using a multi-hop broadcast scheme. That is, a block creator

broadcasts his newly mined block to all of his neighbors first.

Peers receiving such a new (unseen) block will relay it in

the same manner until all nodes receive this block. Given

a topology in Fig. 1(a), Fig. 1(b) shows the process how

node a broadcasts his block (which is found at time 0) in the

network. Suppose that the transmission delay is one time step

for each node, then a’s block is known by all nodes at time

3. Obviously, this distributed model brings inconsistencies

to the Bitcoin system. Since each propagation hop induces

a delay, a block reaches different peers at different times.

Thus, peers may have different local views of the blockchain

during the block propagation process. As a result, some miners

are mining on top of the newest block while others are still

extending a stale blockchain. It is unfair since uninformed

miners may waste their mining power as well as electricity.

Beyond fairness, blockchain forking is another severe prob-

lem caused by the block propagation delay [3]. A fork occurs if

This research was supported in part by NSF grants CNS 1824440, CNS
1828363, CNS 1757533, CNS 1629746, CNS 1651947, and CNS 1564128.

f

g

b

d

c

a

c
b
a

e
d

f
g

Time

e

(a) Network topology.
(b) At time 0, miner a finds and 
broadcasts his block.

Fig. 1: Block propagation in the Bitcoin network.
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Fig. 2: A fork occurs at height h.

a miner’s block is still in propagation while another miner, who

hasn’t yet known this block, creates and starts to broadcast

his own block of the same height. Fig. 2(b) shows such an

example, where c’ block is propagated since time 1.5. As two

valid blocks are spreading in the network, each peer mines on

top of the one he receives earlier. As is shown in Fig. 2(a),

the blockchain consequently diverges into two branches, either

of which is extended by part of mining power. By design,

forks resolve as soon as one branch becomes longer, usually

the one extended by more mining power, at which point the

shorter branch is abandoned. In Fig. 2, a’s branch can be

accepted as part of the main chain if anothor miner, say e,
successfully extends a’s branch. A fork can sustain a long

time, if mining power distributed to the two branches are close

or equal. Forks lasting four blocks have been reported in the

Bitcoin blockchain [4].

Previous studies have shown that propagation performance

of a P2P overlay can be improved by optimizing its underlying

topology. We believe that the Bitcoin network can also take

advantage of this method to reduce its block propagation

delay as well as alleviate forking. Considering it from miner

a’s point of view, the network topology is optimized by the

removal of a-b link and the addition of a new connection

between a and c. Then, a’s block propagation time to the

entire network is shortened from 3 to 2. Meanwhile, it also
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avoids the occurrence of the previous blockchain forking. As

c has already known a’s block at time 1, he starts mining a

new block on top of a’s.

The previous example reflects the problems caused by block

propagation delays and also motivates us to speed up Bitcoin

block propagation by optimizing its underlying topology. To

keep the decentralization nature of the Bitcoin network, all

topology changes should happen in a completely autonomous

and distributed way. That is, each miner spontaneously recon-

figures the topology to reduce his block propagation delay by

using local information. Based on this objective, we propose

an autonomous topology optimization mechanism to speed up

Bitcoin block propagation. The core of this mechanism is a

distributed algorithm called Recommendation-based Neighbor

Selection (RNS), which allows a miner to update his neighbor

set in the following steps: each current neighbor will recom-

mend a peer from his own neighbor set, i.e., a neighbor’s

neighbor, to this miner, and then he himself selects neighbors

from both the current neighbor set and the recommended

peer set. Recommendations are made according to a peer’s

propagation ability (measured by a criteria function). Through

empirical analysis and machine learning, we propose a criteria

function only using a peer’s local features, e.g. a peer’s degree

and its local clustering coefficient.

Besides block broadcast time, we also propose some other

metrics to quantify performances of a Bitcoin/Bitcoin-like

network topology. Then, we compare the performance of RNS

optimized overlays with overlays obtained by other existing

algorithms, in terms of our proposed metrics. The evaluation

results not only demonstrate the effectiveness of our proposed

mechanism, but also reflect an interesting corelation between

block propagation time and fork rate. The major contributions

of this paper are as follows:

• Through empirical analysis and machine learning, we fit

a suitable criteria function to quickly quantify a node’s

propagation ability using its local information.

• Based on our criteria function, we propose a distributed

recommendation-based neighbor selection algorithm, aiming

to optimize the current Bitcoin network topology.

• We propose several metrics to effectively evaluate perfor-

mances of a Bitcoin/Bitcoin-like network topology.

• We compare the proposed mechanism with several existing

works by evaluating their corresponding topologies.

II. CURRENT MECHANISM AND MOTIVATION

1) Bitcoin Neighbor Selection Mechanism: Nodes in the

Bitcoin network are identified by their IP addresses. Each

node has a list of IP addresses of potential peers. The list is

bootstrapped through a DNS server, and additional addresses

are exchanged between peers. From his list, a node randomly

selects 8 reachable peers, with which it forms long-lived

outgoing connections. A node can be recognized as reachable

or non-reachable, depending on whether or not to accept

an incoming connection. Outgoing connections and incoming

connections are functionally-equal. The only difference is that,

a node’s outgoing connections are initiated by himself, while

his incoming connections are unsolicited. Reachable nodes can

additionally accept up to 117 unsolicited connections from

other nodes. This paper only considers a Bitcoin network

composed of all reachable nodes. Thus, the total number of

connections a node can have is 125 by default.

We now give a brief introduction on how a node decides his

8 outgoing neighbors. New outgoing connections are selected

if a node boosts or if an outgoing connection is dropped by the

network. A node with ω ∈ [0, 7] outgoing connections selects

the (ω+1)-th connection as follows: first, he decides whether

to select from a tried table (nodes that he has connected to

before) or a new table (nodes that are provided by the current

neighbors but never contacted). The default algorithm makes

tried addresses more likely to be selected when there are

few outgoing connections or the tried table is large. Second,

he selects a random address from the chosen table, with a

bias towards addresses with fresher timestamps. After that,

the node attempts to connect to the selected address. If the

connection fails, he will repeat the above two steps. As a node

also receives incoming connecting requests from other nodes,

he accepts all those unsolicited connections until reaching

the upper bound. A Bitcoin node never deliberately drops a

connection, except when a blacklisting condition is met.

In the Bitcoin network, each node always wants to receive

the newest block information in the system as soon as possible.

Meanwhile, if he becomes a block creator, he also wants that

his block could be broadcast immediately in order to avoid

blockchain forking or at least take advantages in a forking

competition. Block reception and dissemination heavily rely

on his neighbors, who, to some extent, determine the way he

communicates with the rest of the Bitcoin network. Existing

research [5] on unstructured P2P file systems has proven the

importance of a node’s neighbor set for query dissemination

and target data reception. It also has been observed in [6] that,

blocks first announced by some nodes propagate consistently

faster (or slower) than others. From an individual node’s point

of view, a good neighbor set can fasten the block propagation

speed as well as shorten the block receiving time.

2) Motivation: As a typical P2P cryptocurrency network,

the main purpose of Bitcoin network is to propagate infor-

mation as fast as possible, which is similar to the purpose

of a P2P content delivery network, and achieve consensus on

a publicly shared ledger, which is unique to cryptocurrency

network itself. Usually, information delivery in a content

delivery network is within a small part of the network which

may be traceable [7] while in the Bitcoin network, blocks

are required to be propagated among all nodes. These two

big differences make traditional P2P network optimization

methods not applicable in optimizing Bitcoin topology, and

also motivate us to focus on Bitcoin topology optimization.

III. RECOMMENDATION-BASED NEIGHBOR SELECTION

Previous studies on P2P network optimization prove that

using the proximity neighbor selection technique can improve

the propagation performance in P2P networks. The existing

research also shows that, some influential nodes with strong
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TABLE I: Summary of Notations.

Symbol Description
i nodes in the blockchain network

Ni node i’s outgoing neighbor set

|Ni| number of node i’s outgoing neighbors

ω index used to distinguish outgoing neighbors, ω ∈ [0, 7]
n number of nearby outgoing neighbors

Di number of all node i’s neighbors

Ci node i’s local clustering coefficient

mi node i’s mining power

Si node i’s propagation ability,

propagation ability can accelerate information propagation in

large-scale complex networks. Thus in the Bitcoin network,

when selecting his neighbors, a node should take two factors

into consideration. One is a peer’s proximity and the other is a

peer’s propagation ability. It is non-trivial to measure these two

factors due to the specificity of the Bitcoin network. A node

can determine each known peer’s suitability to be a neighbor

if applying some suitable measurements. Traditionally, the

proximity of two nodes in networks is captured by their

geographical distance. In this paper, we apply the round-trip-

time, which can be easily obtained through a ping message, to

describe the proximity between two nodes. Lots of methods

also have been proposed to rank a node’s propagation ability,

such as betweenness centrality, eigenvalue centrality, or k-

shell. Most of them require a global view of the network

topology, which is unrealistic for the Bitcoin network. In this

paper, we formulate a criteria function to quantify a peer’s

propagation ability using local features.

Currently, a node obtains network information from DNS

servers and his connected neighbors. Those information is

provided in the form of a long list of potential peers’ IP

addresses. This large-volume but not informative list is useless

for a node to efficiently select suitable neighbors. If a node

gets more useful information from his neighbors, he definitely

can connect to nearby peers of better propagation abilities. As

each node could improve his block propagation and receiving

time, we believe it definitely leads to a better global topology

for the Bitcoin network. Putting all considerations mentioned

above together, we propose a recommendation-based neighbor

selection mechanism. Our proposed algorithm is a combination

of recommendations from the existing neighbors and self-

measurement with local information. The key insight of our

research is that an efficient neighbor selection maps to the

feature selection and the criteria function fitting in the field of

machine learning. The following part of this section focuses

on describing how a node propose performs neighbor selection

using the proposed algorithm. And details on how to measure

a peer’s propagation ability are explained in section IV.

Corresponding notations are shown in Table I.

Proposed Neighbor Selection Algorithm: We want to form a

network where nodes are connected in a more efficient way for

block propagation, while the network is still relatively random

to prevent centralization. Thus, in our mechanism, a node

only uses the proposed algorithm to determines his outgoing

Algorithm 1 Outgoing Neighbor Set Filling

Input: node i’s current neighbor set Ni, where |Ni| < 8
Output: an updated neighbor set Ni, where |Ni| = 8

1: if i’s possible neighbor list is empty then
2: Initiate a potential neighbor list from DNS servers

3: while i has ω ∈ [0, n− 1] nearby neighbors do
4: Pick j of highest Sj from nearby-neighbor list

5: if i successfully connects to j then
6: Add j to Ni

7: ω = ω + 1

8: while i has ω ∈ [0, 7− n] middle neighbors do
9: Pick j of highest Sj from middle-neighbor list

10: if i successfully connects to j then
11: Add j to Ni

12: ω = ω + 1

13: Return Ni

Algorithm 2 Outgoing Neighbor Set Update

Input: node i’s current neighbor set Ni, where |Ni| = 8
Output: an updated neighbor set Ni, where |Ni| = 8

1: Get 8 peers recommended by current neighbors

2: Classify 16 peers as nearby or middle peers

3: for all nearby peers do
4: Rank peers based on Sj

5: Pick top n connectable peers and update Ni

6: Record the remaining peers in the nearby-neighbor list

7: for all middle peers do
8: Rank peers based on Sj

9: Pick top (8− n) connectable peers and update Ni

10: Record the remaining peers in the middle-neighbor list

11: Return Ni

neighbor set, and always accepts all incoming requests within

the limitation of 117 connections. Besides, we want our

algorithm not only to be applicable for Bitcoin but also suitable

for a new Bitcoin-like network’s construction as well as for

any existing Bitcoin-like network’s reorganization. Thus, our

neighbor selection algorithm consists of two parts: one is a

Neighbor Finding algorithm, as is shown in Algorithm 1,

designed for any node of which the outgoing neighbors are

fewer than 8 to fill/refill his neighbor set, and the other is a

Neighbor Update algorithm, as is shown in Algorithm 2, used

by a node with 8 outgoing neighbors to periodically refine his

neighbor set.

Generally, a node i determines whether a peer j is suitable

as a neighbor based on two factors: (1) j’s propagation ability,

calculated with the criteria function, i.e., Sj , (details on the

criteria function will be shown in the next section) and (2) the

proximity between i and j, measured by the round-trip-time,

denoted by tij . The proximity plays two conflicting roles here.

The suitability of j can be shaded by its long distance from i,
even if j is a propagation-well node. The link latency makes

the direct connection between i and j replaceable by several
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Fig. 3: A mining network of 16 nodes, each node expect d, e, i, l occupying
5% of the total mining power.

intermediate relays starting from one of i’s current neighbors.

However, a small tij is not always a preferred choice since it

implies i and j may be located in the same ’social hub’, and

therefore, connecting to j helps little if i wants his block to

go beyond this hub and spread the whole network effectively.

Based on the analysis above and also inspired by the

prior work indicating that networks with small-world topology

can spread information faster than lattice networks [8], we

design our algorithm in a proximity-aware method. Node i
will classify a peer j’s proximity as near, middle, or far. It

will choose n (a predefined parameter) nearby and (8 − n)
in the middle region based on peer’s propagation ability. A

far j will not be attempted even if its Sj is big. Node i
thereby balances the propagation ability and the proximity

when selecting a neighbor. As we find the peer-proximity

classification standards and the value of n are influenced by

the geographical distribution of all nodes in the network, we

determine them appropriately in our experiment.

IV. FEATURE SELECTION AND FUNCTION FITTING

We are aiming to select a small set of features which are

easy to calculate for a node using local information while

still accurately reflect a peer’s propagation ability. All those

features contribute to a criteria function, which helps a node

determine the suitability of another node if selected as his

neighbor. The propagation ability should be measured in two

perspectives: (1) how well a neighbor can spread the node’s

block to the rest of the network, and (2) how fast a neighbor

can notify the node of the newest blocks from the rest of

the network. We propose several candidate features and apply

empirical analysis to study their impacts. To illustrate, we use

two simple topologies of a mining network with 16 nodes, one

is shown in Fig. 3 and the other is a completely-connected

graph where each node has 15 edges. We control network

parameters, e.g. upload/download bandwidth, link latency, in

different experiments for comparison. In the simulation, we

treat the process of block generation and propagation for 100
rounds as a set and we repeat 10 sets in each experiment. Cor-

responding results and analysis are detailed in the following.

1) Impact of a Neighbor’s Degree: We first analyze the

impact of degree on the block propagation time and receiving

time. To rule out the impact caused by nodes’ different

network environments, we make every connection between

any two nodes with the same upload/download bandwidth and

link latency in this experiment. The first comparison node

pair is (j,m) and their corresponding neighbor pair is (i, l).
Fig. 4(a) reflects two facts: (1) a higher-degree node itself
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Fig. 4: Degree impact on a miner and its neighbor(s).

tends to have a shorter block propagation time (by comparing

node l of Dl = 4 and node i of Di = 3), and (2) a higher-

degree node can shorten its neighbor’s block propagation time

by comparing node m of Dm = 2 and node j of Dj = 2.
Similar results can be obtained from Fig. 4(b) by choosing

comparison node pair (f, g) and their corresponding neighbor

pair (e, p). Thus, we conclude, a higher-degree neighbor has

a better block propagation ability.

2) Impact of a Neighbor’s Local Clustering Coefficient:
Local clustering coefficient, denoted as Ci and expressed in

Eq. 1, measures how well a node’s neighbors are connected

to each other, namely how close they are to being a clique.

Ci =
| {ej,k|∀j, k ∈ Ni} |

1
2Di(Di − 1)

, (1)

where 1
2Di(Di−1) represents the maximum possible number

of edges among all node i’s neighbors and {ej,k|∀j, k ∈ Ni}
is the set of edges connecting two of i’s neighbors. The local

clustering has remarkable impacts on network structure and

functionality. Some literature showed that the clustering has

negative correlation with degree in undirected networks and

our experiments reach the same conclusion. As is shown in

Fig. 5(a), node d has a higher local clustering coefficient

compared with node e and its own block propagation time

is longer than that of node e. Meanwhile, node d’s neighbor,

node i, also has a longer block propagation time compared

to node e’s neighbor, node l. Besides, by comparing node d
of Dd = 5 and node e of De = 4, we can also be guided

that, local clustering coefficient seems of more significance

than degree. Fig. 5(b) also provides an intuitive sense that

local clustering coefficient is negatively related to a node’s

propagation ability. Thus, we consider that a neighbor with a

lower local clustering coefficient should be more suitable.

3) Impact of a Neighbor’s Mining Power: In [9], the

authors hold the view that there exists a small set influential

nodes that skew broadcast fairness. According to their analysis,

nodes with more mining power receive a block more efficiently

than others. Inspired by their results, we also consider that

a peer’s mining power may also be a feature to reflect his

propagation ability. We pick nodes f and g for comparison.

According to the network topology, f and g are directly

connected and have the identical mining power. However, f ’s

neighbor e has a higher mining power than that of g’s neighbor

p. Fig. 6 presents a comparison of the propagation time for

nodes f and g. Obviously, f ’s block generally propagates

faster than g’s. This means a neighbor’s propagation ability

has a positive correlation with its mining power. In particular,
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Fig. 5: Local clustering coefficient impact on a miner and its neighbor(s).

once a block is relayed by a node, it means a portion of mining

power supports this block. The more mining power extends on

this block, the higher possibility this block has to be accepted

by the network, if there exist competing blocks. Note that, [10]

provide methods to estimate and measure the mining power

of individual miners.

4) Criteria Function Fitting: Based on the empirical ob-

servation, we want to figure out a criteria function, taking as

input a node’s feature set value and generating as output a

score to reflect this node’s propagation ability. Such a criteria

function allows a node to determine a peer’s suitability of

being a neighbor. Mathematically, a node’s propagation ability,

denoted by Si, is scored by the criteria function defined as:

Si = g(Ci)
∑

j∈Ni

(Dj + 1) +mi. (2)

Obviously, g(Ci) accounts for the effect of i’s local clustering

and plays a negative role in propagation. Inspired by the result

from [11], we make two attempts here by adopting g(Ci) as

either an exponential function, i.e., g(Ci) = k · α−Ci , or a

power function, i.e., g(Ci) = k ·Cα
i . To find a best fitting, we

use machine learning to figure out the value of k and α for both

attempts. Our result shows that a simple exponential function

g(Ci) = 10
−Ci is enough for Si since complicate functions or

parameter values add little meaning to score nodes but make

the analysis more complicated. Indeed, the perspective and

results of this paper are not limited by a very specific g(Ci),
as long as it is a decreasing function.

V. METRICS FOR BITCOIN-LIKE NETWORK TOPOLOGY

In the following, we detail novel metrics by which a

Bitcoin/Bitcoin-like topology can be evaluated as different

algorithms definitely generate different topologies. Hopefully,

these metrics can give a comprehensive and objective evalua-

tion of a topology instantiation.

1) Block Propagation Time in the Bitcoin Network: We take

as an important metric the time required to deliver a block

from an originator to X percentage of nodes in the network,

which is evaluated by most Bitcoin-like networks.

2) Consensus Delay: Since the network layer is to serve the

consensus layer, we utilize consensus delay, proposed in [12],

as another metric to quantify a Bitcoin network topology. As

is defined in its original paper, consensus delay is that, for a

specific execution and time, how long nodes have to look to

find a point where they agree on the state.

3) Blockchain Fork Rate: The blockchain fork rate is

another important metric, which is defined as the ratio of the
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Fig. 6: Neighbors’ mining powers impact a node’s block propagation time.

number of blocks that are not included in the longest chain

against the chain length. This metric indicates the effectively-

utilized mining power in the current network and also indicates

how much electricity waste of useless mining.

4) Fairness: As we claimed previously, it is unfair that

some miners are still mining on the stale block while

some have already started a new mining round, as it is an

information-asymmetric situation. In this paper, we want to

quantify fairness. We calculate the average block receiving

time for each miner and the fairness is obtained using the

maximal average block receiving time difference in the net-

work. Optimally, the fairness is 0, i.e., in the long run, any

miner should wait for an identical time to receive a block if

he is not the block creator.

VI. EVALUATION

In this section, we evaluate the performance of various

Bitcoin topology instantiations by leveraging our metrics and

a blockchain simulator [13]. We set the value n to be 2 since

it is the best configuration after extensive experiments. We

consider a peer as nearby if the RTT is no larger than 100 ms,

and consider a peer as middle if the RTT is between 100 ms

and 450 ms, otherwise, he is a far peer. Besides, we distinguish

between two node types, i.e., relay nodes and miners, by at-

tributing a particular non-zero mining power to each miner. For

comparison purposes, we implement our proposed algorithm

and another 4 algorithms, which are described as followings:

• Default: Randomly pick nodes from the known peer list to

satisfy the 8-neighbor requirement.

• RTT based scoring (RTTS): This algorithm [14] allows each

node to score a peer based on the round-trip-time between

them and then decide its outgoing connection priority.

• Geographical distance based scoring (GDS): This algo-

rithm [15] allows each node to score a peer based on the

physical distance between them and then decide its outgoing

connection priority.

• Time difference based scoring (TDS): This algorithm [16]

allows each node to score a peer based on the time difference

between block generation and receipt of this peer’s INV

message and then decide its outgoing connection priority.

A. Static Environments

We first study the effectiveness of all algorithms in a static

P2P environment, where nodes do not join and leave.

1) Performance of New Network Constructions: Given a

network from scratch, different algorithms can produce dif-

ferent topologies. In this part, we first define the number
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Fig. 10: Topology reorganization.

for each node type, and their geographical locations will

be determined by the blockchain simulator. After that, we

use each algorithm to construct a topology and evaluate the

algorithm’s effectiveness through the topology performance. In

this experiment, we set the number of miners and the number

of relay nodes to be 16 and 256, respectively.

Fig. 7 shows block propagation time used to reach a cer-

tain percentage of nodes under different network topologies.

Obviously, the topology generated by our proposed algorithm

performs best on this metric. In Table II, we show the results of

other metrics and we can see our proposed algorithm performs

well except fairness, which means a relatively big difference

between the worst receiving time and the best receiving time.

The reason behind this big gap may come from the reason

that some node with a bad propagation ability is ignored by

the entire network. Next, we equally distribute mining power

among all miners, which was envisioned in the Bitcoin original

whitepaper. According to Fig. 8, this slight change causes

the propagation delay increases no matter what algorithm is

applied to generate the network topology. This result further

confirms the correctness that we consider a node’s mining

power as a feature of his propagation ability. We keep the relay

node number unchanged while increasing the miner number.

Obviously, the propagation delay becomes longer since the

total number of nodes increases. However, Fig. 9 shows the

delay increase is non-linear with the miner number increase,

which indicates the network is still under-saturation.

2) Performance of Existing Network Reorganizations: As

we stressed before, our neighbor selection algorithm is back-

ward compatible, i.e., it also improves an existing network

topology after all joined nodes adopt our algorithm. To see

how effective our algorithm is in improving an existing net-

work, we first use the default algorithm to build the original

topology and then optimize it with the proposed algorithm.

As only TDS can update the network in a static environment,

we show the propagation time of the original topology as

well as the topologies generated by TDS and our proposed

algorithm in Fig. 10. As mentioned in Table II, the original

topology leads to a fork rate of 1.61%. After reorganization,

TDS and our proposed algorithm can lower the fork rate

to 1.54% and 1.18%, respectively. However, reorganization

Algorithm Median Broadcast Consensus Fork rate Fairness

Default 13.04 19.93 755 1.61% 3.94

RTT 10.33 17.35 670 1.52% 3.82

GDS 8.79 14.19 607 1.12% 3.12

TDS 6.40 1.00 579 1.02% 3.24

Proposed 4.67 7.8 511 0.78% 3.14

TABLE II: Averaged median delay, broadcast delay, consensus delay, and
worst-best receiving time among all 16 miners, and fork rate in the bitcoin
network using various algorithms.

Topology 25% 50% 75% 85% 100% fork rate

1 19.87 31.33 31.63 32.93 34.34 1.52%

2 19.81 30.71 31.27 33.38 35.77 1.82%

3 17.70 30.48 31.33 35.51 37.07 2%

4 17.06 29.99 32.10 36.44 38.50 2.22%

5 19.33 29.63 30.60 37.75 39.09 2.38%

6 18.35 27.66 34.04 38.46 39.98 2.56%

TABLE III: All-miner networks optimized by our proposed algorithm.
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Fig. 11: Environment with churns.
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Fig. 12: Churns and link failures.

cannot reach the performance achieved by new-construction,

which indicates the importance of designing a good topology

formation mechanism for a Bitcoin/Bitcoin-like network.

We further consider an extreme cases, where all nodes are

miners. We set the node number, i.e., the miner number, as

48, and apply the default algorithm to generate 6 different

random topologies. For each random topology, we run our

proposed algorithm to optimize it. When we measure those

optimized topologies, we obtain an interesting observation.

Our previous experiment results confirm that the block broad-

cast is positively-correlated to the fork rate. However, it seems

that, the positive correlation already happens at a certain point

where even if not all miners are informed. According to

Table III, we find if a topology’s average block propagation

time to 85% miners is shorter, then its fork rate is also lower,

compared with a topology with a longer average 85% block

propagation time. This observation triggers our interest in

finding the relation between the block propagation time and

the blockchain fork rate, which can be our future work.

B. Dynamic Environments

We further evaluate the network performance in a dynamic

environment, where nodes and connections are changing. In

the first setting, we add the joining and leaving of nodes,

where the churn rate is modeled according to the distribution

in [17]. In fact, the first three algorithms take effect only

when the number of nodes changes. In the second setting, we

simulate the connection failure between nodes to fully capture

network dynamics and make our evaluation more sound. We

plot the cumulative distribution function for each network

topology and the corresponding results are shown in Fig. 11
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and Fig. 12. It is clear that our proposed algorithm achieves

high effectiveness compared with others.

VII. RELATED WORK

Bitcoin network aims on information propagation while

suffering from a significant delay. As Bitcoin contains two dis-

tinct types of information, i.e., transactions and blocks, some

works [18] focus on accelerating transaction propagation,

while we are mainly concerned with block propagation. There

are also many works in development to speed up block prop-

agation. The resulting solutions can be roughly divided into

three categories: (1) block compression to limit the amount of

data that needs to be propagated [19–21] , (2) third-party relay

networks for fast inter-miner communication [22, 23], and (3)

network protocol design for topology optimization. There are

a few works designing different network protocols for Bitcoin

nodes [24]. [25] proposes a tree-based topology where a node

should join to a tree as a leaf while ensuring the tree is as

balanced as possible. [15] suggests a cluster-based topology

and then their proposed algorithm requires a node chooses

its closest neighbors according to their physical distances.

However, these works are more applicable for constructing

a new Bitcoin-like topology as they are designed for a node

to choose suitable neighbors when it first enters this network

or for constructing a topology from the scratch. instead of

optimizing the existing Bitcoin network.

Our proposed mechanism can be used for a new Bitcoin-

like network construction as well as an existing Bitcoin-like

reorganization. [16] also proposes a topology reorganization

algorithm, which allows a node to periodically update its

outbound neighbor set and each neighbor is ranked by the

difference between a block generation time and the receipt

time of the block sent by this neighbor. Our algorithm also

allows a node to update suitable neighbors based on scores.

However, the measurement we use to rank a candidate neigh-

bor is different from that in [16]. Meanwhile, we also introduce

recommendation from current neighbors, providing a node

with a better view of the global topology.

VIII. CONCLUSION

In this paper, we propose an autonomous topology opti-

mization mechanism for the Bitcoin network. The main part of

the mechanism is a recommendation-based neighbor selection

algorithm, which allows miners to update their neighbor sets

in a distributed fashion using information provided by the

current neighbors. A criteria function is designed for miners

to make recommendation and selection. Two metrics, i.e.,

block propagation delay and blockchain fork rate, are used

to quantify the performance of a Bitcoin network topology.

Simulations show a good rate of decrease in block propagation

delays (both average and maximum) and fork rates, compared

to classic algorithms, and also prove the validation of our

proposed propagation model.
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