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Abstract—Having ubiquitous access to the Internet is becoming
a necessity of life. Furthermore, we are witnessing a rapid
increase in the amount of data requested by mobile users. Co-
operative Internet access is a promising approach for addressing
these demands, which gives the mobile devices the opportunity
to receive help from other mobile devices in order to access
the Internet. The helpers can download the data requested by
the other users, called clients, through their cellular connections.
Then, they transmit the downloaded data to the clients using
WiFi or Bluetooth connections. In this paper, we consider the
problem of how to share the resources of helpers among a set of
clients that request their assistance. Opportunistic scheduling is
an effective method that uses the dynamic channel conditions to
elevate the systems’ overall utilities. We propose an opportunistic
scheduling algorithm in order to efficiently use the helper nodes
and share them among the clients fairly. We propose a rate
control and scheduling method in the case of using only WiFi
connections. We also propose a solution for the case of using WiFi
and Bluetooth at the same time. Through simulation results, we
show the effectiveness of our cooperative downloading methods.

Index Terms—Cooperative download, opportunistic schedul-
ing, device-to-device communication, cellular network.

I. INTRODUCTION

With the rapid development in the hardware technology
of mobile devices, such as smartphones and tablets, these
devices can provide their users with a convenient way to
access the Internet. The use of smartphones and tablets is
increasing rapidly and ubiquitous Internet access is becoming
a necessity. Through cellular connections, the users can browse
the Internet, download data, or stream videos from anywhere.

We see a rapid growth in the cellular data traffic, and the
download rate offered by the cellular networks might not be
sufficient for users. Moreover, the user’s cellular channel qual-
ity might not be sufficient enough to meet the user’s demand,
and the data rate of the cellular network can dramatically
change over time. Consequently, the users might not get the
quality of service that they expect [2]. This low data rate can
have a critical effect on applications like video conferencing
and video streaming.

An effective approach for addressing the increasing traf-
fic demand of the mobile devices is cooperative download,
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Fig. 1. (a) The system architecture. (b) Motivation example.

which can provide ubiquitous Internet access [3]–[5]. Using
cooperation among the users, we can use the idle resources
of the users to provide Internet access to other users or
improve their data rate. As shown in Figure 1(a), the helpers
use their cellular connections, e.g. 4G/LTE, to download the
request of the clients and transmit the downloaded data to
the clients using WiFi/Bluetooth connections. It is typical
for smartphones to have WiFi and Bluetooth technology.
Additionally, the smartphones, such as the Samsung Galaxy
s5, use 4G and WiFi connections simultaneously to increase
the download rate.

Consider the example in Figure 1(b). The base station,
helpers, and clients are shown as B, H , and C, respectively.
The helpers and the clients are connected to base station B1

and B2, respectively. This is similar to subscribing to different
cellular carriers, such as ATT and Verizon. The delivery rate
of the links are shown beside the links. We assume that base
station B1 has a better coverage in the area, and the links
between B1 and the helpers are reliable. The bandwidth of the
cellular links and the WiFi links equal 10Mb/s and 15Mb/s,
respectively. Also, we define the utility as the total download
rate of the clients.

In the case of not using the helpers, the download rate of
each client and the total utility will be 10 × 0.7 = 7 and 14,
respectively. Now consider the case of using the helpers and
assume that we assign helpers 1 and 2 to clients 1 and 2,
respectively. The receiving rate of client 1 from helper 1 can
be up to 15× 0.8 = 12. However, the receiving rate of helper
1 from B1 is 10. As a result, the receiving rate of client 1
from helper 1 will be limited to 10. Also, the receiving rate
of client 2 from helper 2 will be 15 × 0.4 = 6. In this case,
the total utility of clients 1 and 2 will be 7 + 10 = 17 and
7 + 6 = 13, respectively. As a result, the total utility will be
30.

Now assume that we assign helpers 1 and 2 to clients 2 and



1, respectively. The receiving rate of each client from its helper
will be 15× 0.5 = 7.5. In this case, the utility of clients and
the total utility will be 14.5 and 29. Consequently, assigning
helpers 1 and 2 to clients 1 and 2, respectively, maximizes the
total utility. However, it is clear that this is not a fair resource
sharing, since client 2 receives less data than client 1. In a
fair solution, the helper nodes that serve the clients should be
changed depending on the cumulative downloading rate of the
clients in the previous time slots.

In order to have a fair resource sharing, we should use a
fair matching algorithm to assign the helpers to the clients
at each time slot. Moreover, it is typical to have a utility
function that is not a linear function of the receiving data
rate. The reason is that as the receiving data rate of a client
increases, the increasing rate of its satisfaction decreases. As a
result, we need an optimization algorithm to find the optimal
transmission rate of the helpers. Another challenge is the time-
varying channel conditions due to fading, shadowing, and
interference among the links. Opportunistic scheduling [6]
is an effective approach used to deal with the dynamics of
channel conditions and achieve a higher network performance.
The idea behind opportunistic scheduling is to consider the
current channel condition of the users in the scheduling.
At each time slot, opportunistic scheduling transmits to the
user that maximizes the system performance. However, the
constraint in selecting the user is that this schedule should not
violate the fairness constraints.

In this work, we study the problem of providing cooperative
Internet access to a set of client users through a group of
helpers. We consider the unreliability of the links and time-
varying channel condition of the links in our model. In order
to motivate the helpers to assist the clients, we use a credit-
based incentive method. The credits that the clients need to
pay the helpers depend on the effort of the helpers. In other
words, instead of using the amount of data received by the
clients, we consider the number of transmissions performed
by the helpers to calculate the credits that they should receive.
In order to use the wireless resources more efficiently, we
extend opportunistic scheduling to the case of multiple relays
(helpers), and use it in our cooperative Internet access. We
formulate the problem as an optimization problem and solve
it in a distributed way.

The main contributions of our work are listed as follows:

• We extend opportunistic scheduling to the case of multi-
ple relays and use it in our proposed method.

• We propose a distributed algorithm to jointly solve the
scheduling and rate optimization problem.

• Through empirical study, we show the effectiveness of
our joint scheduling and rate optimization method.

The remainder of the paper is organized as follows. Related
work is presented in Section II. Section III introduces the
setting and problem statement. In Section IV, we propose our
methods in the case of using only WiFi channels and in the
case of using WiFi and Bluetooth simultaneously. We present
our simulation results in Section V. Section VI concludes the
paper.

II. RELATED WORK

The authors in [7], [8] introduce a system for sharing the
on-demand and live video streaming among a set of users in
the same vicinity. It is assumed that the users are friends and
they agree to share their content with each other, which might
not be practical in the cases that the users are not friends.
The helper nodes might not agree to help the client nodes
without receiving a payment. There are many previous works
on cooperative downloading that are proposed to share the
same content to the users [9], [10]. However, in our work, the
requested data by the users can be different, and there is no
restriction on the type of applications.

The authors in [2] propose a system for cooperative down-
loading. In their system, a client sends requests to its neighbors
to form a network. The users that agree to help the client send
a confirmation message to them. After forming the network,
the download process is started and each helper receives a
payment depending on the amount of help provided to the
client. The authors propose an energy efficient method for
scanning the neighbors. In contrast with [2], we consider
several client nodes that are interested in using the assistance
of a set of helper nodes and focus on optimizing the total
utility of the client nodes subject to fair resource sharing.

A framework for cooperative downloading is introduced
in [3], in which three roles are defined for the users: client,
helper, and gateway. The duty of the users can be a combina-
tion of these roles. The authors propose an incentive method
in order to motivate the users to participate in the cooperation,
and find the optimal payments and the transmission rates of
the users using a distributed optimization. In [3], there is no
limitation on the number of users that can transmit data to
a common user at the same time. Also, the unreliability of
the links is not considered. In contrast with [3], we limit the
number of connections for each user, and use opportunistic
scheduling to increase the utility of the system.

III. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model
We consider a set of mobile helpers H = {1, ..,m}, e.g.

smartphones and tablets, that are willing to cooperate in pro-
viding internet access to a set of mobile clients I = {1, .., n}.
The helpers and clients can communicate with each other by
forming a mesh network G = (H ∪ I, E), where E represents
the set of links connecting them through WiFi or Bluetooth.
The helper nodes get access to the Internet through a base
station, e.g 4G/LTE connection, and provide the clients with
the Internet using WiFi or Bluetooth connections. We consider
a time-slotted system, and during each time slot the channel
conditions are fixed. We assume that the total number of WiFi
channels are equal to m, i.e. each helper works on a different
channel. Therefore, each helper node can serve only one client
at a time. Moreover, each client node cannot receive help
from more than one helper at each time slot. However, the
helpers can receive data from cellular connection and forward
it to the client nodes simultaneously. Additionally, the clients
can concurrently receive data using their cellular and WiFi
connections.
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The clients and helpers consume energy while downloading
or relaying data. The energy consumption of client i to receive
one byte through cellular and WiFi connections are represented
as eci and ewi . Typically, the energy consumption of cellular
connections is more than that of the WiFi connections. We
represent the bandwidth of the link between helper j and
client i at time t as btji. Also, bti and btj denote the bandwidth
of the link from the base station to client i and helper j,
respectively. Similar to any wireless links, the links in our
model are unreliable. The delivery rate of the links change over
time, which reflects the unreliability of the links. Delivery rate
means the probability that a transmitted packet will be received
by its destination. We denote the delivery rate of the link ϵji
at time t as ptji. Also, the delivery rate of the link from the
base station to client i is represented as pti. We represent the
transmission rate from the base station to the client i at time
t as xt

i. Moreover, xt
ji is defined as the transmission rate of

helper j to client i at time slot t.
In our model, the links are not reliable. Therefore, some

of the packets might be lost and need to be retransmitted. In
order to eliminate the need for feedback messages, we use
Random linear network coding (RLNC) [11], [12]. In RLNC,
a coded packet is a linear combination of the packets. In order
to code the packets, the coefficients of the linear combinations
are selected randomly, and the coded packets have a form of∑k

i=1 ai × Pi. Here, the symbols a and P are the random
coefficients and the packets. If we use RLNC to code k native
packets together, there is a large probability that any k coded
packets are sufficient enough to decode the coded packets and
retrive the original packets. In other words, with a probability
close to one, any k random linear coded packets are linearly
independent. In order to decode the coded packets, Gaussian
elimination can be used to solve a system of linear equations.

The packets that should be transmitted to each client are
partitioned into segments of equal sizes, and RLNC is per-
formed among the packets of the same segment. The helper
nodes receive coded packets from the base station, then recode
the packets before transmitting them. The clients are able to
decode the coded packets once they receive a sufficient number
of coded packets, i.e. k linearly independent coded packets.
The use of RLNC enables a flow-based model of the content,
which simplifies our proposed schemes. Without RLNC, we
need to decide which packets should be transmitted by the
base station and which of them by the helper nodes. However,
with RLNC, we just need to find the rates at which the coded
packets should be transmitted. It should be noted that other
types of coding schemes, such as fountain codes [13], [14],
can also be applied on top of our solutions. However, for ease
of description, we use RLNC in our proposed methods.

B. Problem Statement

In order to motivate the helpers to participate in the co-
operation, we need to have an incentive mechanism. For this
purpose, the clients pay the helpers based on the data rate that
the helper nodes transfer to the clients. It should be noted that
the rates at which the clients receive data might be less than
the transfer rates of the helpers, which is due to the unreliable

TABLE I
THE SET OF SYMBOLS USED IN THIS PAPER.

Notation Definition
xt
ji Transmission rate from helper j to user i at time t
xt
i Transmission rate from base station to user i at time t

yti Total download rate of user i at time t
ptji Delivery rate of the link from helper j to client i at time t
pti /ptj Delivery rate from base station to client i/helper j at time t
z Credit payment to a helper for transmitting one byte
btji Bandwidth of link between helper j and client i at time t
bti Bandwidth of the link from base station to client i at time t
btj Bandwidth of the link from base station to helper j at time t

ewi /eci
Energy consumption of user i for receiving one byte from the
helpers/base station

links. On the other hand, the clients consume energy to receive
data from the base station and the helpers. Therefore, we define
the utility of each client as a function of the data rate that it
receives minus its energy consumption and the credits that the
client needs to pay the helpers.

The utility of client i at time t is defined as U(i, t) =
θ1f(xt

jip
t
ji+xt

ip
t
i)−θ2e(i, t)−θ3xt

jiz. Here, θ are the normal-
izing parameters. For simplicity, we assume that θ parameters
equal 1, and we do not show θ parameters in the rest of the
paper. We represent the credits that client i needs to pay a
helper in order to transmit one byte as z. The transmission
rate of helper j to client i is equal to xt

ji, and the data rate
that is delivered to client i is equal to xt

jip
t
ji. Moreover, the

rate of the data that is delivered to client i from the cellular
network equals xt

ip
t
i. We represent the energy consumption

of i as e(i, t), which equals xt
jip

t
jie

w
i + xt

ip
t
ie

c
i . Function

f(.) is a strict concave, non-decreasing, and continuously
differentiable function of the receiving data rate. The reason
for the concavity assumption relies on the fact that as the
receiving data rate of a client increases, the increasing rate
of its satisfaction decreases. In economics, this fact is known
as the “law of diminishing returns” [15]. Since the energy
consumption and the credit that needs to be paid to the helper
nodes increases as the receiving data rate increases, U(i, t)
might reduce. Assuming that the energy consumption and
credit payments are linear functions of the transition rate,
U(i, t) becomes a strictly concave function. Therefore, it has
a unique maximum.

Our objective is to maximize the aggregated utility of the
client nodes. However, this maximization problem might result
in an unfair resource sharing among the users. The client
nodes with bad channel conditions might not be able to use
the help of the helper nodes in the case that the number of
helpers is less than that of the client nodes. As a result, in our
optimization problem, we try to provide fair resource sharing,
which is discussed in the next section.

IV. COOPERATION SCHEMES

We first solve the optimization problem without considering
the energy consumptions and the credits that need to be paid
by the clients. As a result, the utility of the clients is a function
of their received data rate, and the objective is to maximize
the aggregated utility of the clients subject to the fairness
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Fig. 2. Opportunistic scheduling; (a) Topology; (b) Time varying channel
conditions.

constraints. We then extend our solution when considering the
energy consumptions and the credit payments.

A. Transmission with WiFi

Fairness is a main part of scheduling problems in wireless
networks. Assume that our utility function is the total amount
of received data by the users. If we do not consider fairness,
we can trivially optimize the system performance by finding a
bipartite matching of the helpers to the clients so that the total
utilities are maximized. However, this scheduling might not
be fair because the clients with good channel conditions might
keep the channels forever. Thus, the clients with poor channel
conditions might not be able to use the assistance offered by
the helpers. It should be noted that if the utility function
is U(i, t) = log(yti), then maximizing the system utility
is correspondent to providing proportional fairness among
clients.

To give an idea of opportunistic scheduling, consider the
example in Figure 2. The channel condition of user nodes B
and C are shown in Figure 2(b). The channel condition of node
B is always better than that of node C. As a result, if we want
to maximize the amount of data that the nodes receive, node
A should only transfer data to node B. Clearly, this is not a
fair scheduling. Now assume that we assign half of each time
slot to user B. Node B experiences 3 slots with bandwidth 8
and 3 slots with bandwidth 6; thus, its amount of received data
will be (8/2 + 6/2)·3 = 21. Furthermore, the total received
data of node C will be (4/2 + 2/2)·3 = 9. However, if A
assigns time slots 1, 3, and 5 to node B, and slots 2, 4, and 6
to node C, the total received data of B and C will be 24 and
10, respectively. In this case, not only the total received data
of the system increases, but the total received data by each
user is also enhanced.

In order to provide fairness, we can extend the idea in [6]
to the case of multiple helpers. The idea is that instead of
maximizing the total utility, we maximize

∑n
i=1 α

t
iU(i, t).

Here, U(i, t) is the utility of client i at time t, and αt
i are

parameters that control the fairness. Similar to [6], the idea
behind parameter α is to give a chance to the client whose
received utility in the previous time slots is low to use the
assistance of the helpers. The α variable for the clients with
large received utilities is lower than the other nodes. Thus,
for each time slot, the relatively best clients are selected
and assigned to the helpers. The clients with large α are
the unfortunate nodes with worse channel conditions than the
other clients. The calculation of α will be discussed later.

Algorithm 1 Scheduling Algorithm
1: α1

i = 1, ∀i ∈ I .
2: At each time slot t perform the following steps:
3: for each client i do
4: for each helper j do
5: G(i, j, t) = f(min(btjip

t
ji, b

t
jp

t
j) + btip

t
i)− f(btip

t
i)

6: if
∑t−1

t′=1 G(i, t′) ̸= 0 then
7: αt

i = 1/
∑t−1

t′=1 G(i, t′), ∀i ∈ I
8: else
9: αt

i = 1
10: end if
11: Assign αt

iG(i, j, t) to link ϵji
12: end for
13: end for
14: Find the maximum weighted bipartite matching using

Hungarian algorithm

The problem of maximizing the total system utility subject
to fairness can be formulated as follows:

max
∑

i∈I

T∑

t=1

αt
iU(i, t) (1)

s.t. xt
ji ≤ ptjb

t
j/p

t
ji, ∀i, j : j ∈ H, i ∈ I (2)

xt
ji ≤ btji, ∀i, j : j ∈ H, i ∈ I (3)

xt
i ≤ bti, ∀i ∈ I (4)

yti ≤ xt
ip

t
i +

∑

j∈H

xt
jip

t
ji, ∀i ∈ I (5)

[xt
ji] ∈ Co(R) (6)

where, U(i, t) is the utility of client i at time slot t. Also, xt
ji

and ptji are the transmission rates of helper node j to client
i and the delivery rate of the link ϵji at time t, respectively.
We represent the total download rate of client i at time t as
yti . The objective function (1) is to maximize the total utility
of the client nodes. Here, we consider U(i, t) = f(yti), where
f(yti) is a monotonic increasing concave function.

The receiving rate of helper j equals ptjbtj . Therefore, client
i cannot receive data from helper j at a rate greater than
ptjb

t
j . On the other hand, the receiving rate of client i equals

xt
jip

t
ji; therefore, we have xt

jip
t
ji ≤ ptjb

t
j , which is stated as

the set of Constraint (2). The set of Constraints (3) and (4) are
bandwidth constraints. The set of Constraint (5) calculates the
total receiving rate of the clients. Constraint (6) implies that
the transmission rate should be feasible. Here, R is the set of
possible scheduling, and Co(R) is the convex hull of R. In
our model, a helper cannot transmit to more than one client
at the same time slot. Moreover, a client cannot receive data
from multiple helpers concurrently. Therefore, if for helper j
and client i we have xt

ji > 0, then xt
j′i = 0, ∀j′ ̸= j and

xt
ji′ = 0, ∀i′ ̸= i.
Our scheduling algorithm for time slot t works as follows.

First, for each client i we calculate its maximum utility when
it only uses the cellular connection. We then calculate the
increase in client i’s maximum utility in the case of using
helper j in addition to the cellular connection. Since we do not
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consider the energy consumption and the credit payments, the
utility of each client node is an increasing concave function.
Therefore, the optimal rate assignment for client i is to use
the full bandwidth of both of the links from the base station
and helper j. The increase in the utility of client i in the case
of using helper j is equal to:

G(i, j, t) = f(min(btjip
t
ji, b

t
jp

t
j) + btip

t
i)− f(btip

t
i)

The reason for taking the minimum of the two values is that the
receiving rate of client i cannot exceed the bandwidth of the
link ϵji and the receiving rate of helper j. Then, we multiply
each utility enhancement G(i, j, t) by αt

i, and assign the result
to the link ϵji. We run the Hungarian algorithm [16] to find
the maximum weighted bipartite matching of the helpers to
the clients. In order to have a fair resource sharing, in this
paper we calculate α as αt

i = 1/
∑t−1

t′=1 G(i, t), and we set
α1
i = 1, ∀i ∈ I . Here, G(i, t) is the received utility by client

i at time slot t. The details are shown in Algorithm 1.
Consider the example in Figure 3. For simplicity we assume

that the bandwidth of the links from the base station to the
helpers are not bottleneck, i.e. their bandwidth and reliability
are much higher than the links between the helpers and the
clients. Furthermore, we do not consider the direct links from
the base station to the clients. The bandwidth of the links
between the helpers and clients are equal to 5. The delivery
rate of the links are shown in the figure. Assuming function
f(.) = log(x+ 1), the utility of client 4 in the case of down-
loading from helper 1 and 2 becomes log(5× 0.7 + 1) = 1.5
and log(5× 0.5 + 1) = 1.25, respectively. Also, the utility of
clients 3 and 5 when they download through helpers 1 and 2 is
equal to log(5× 0.8+1) = 1.61. Thus, the bipartite matching
that maximizes the total utility is assigning helper 1 to client
3, and helper 2 to client 5.

Assuming that the reliability and bandwidth of the links are
fixed, in time slot 2 the utility of clients 3 and 5 is divided
by the utility that they received at time slot 1. As a result,
the weight of the links from helpers 1 and 2 to clients 3 and
5 becomes 1. The weight of the links from helpers 1 and 2
to client 4 is still 1.5 and 1.25, respectively. Therefore, the
optimal weighted bipartite matching is to schedule clients 4
and 5 to receive from helpers 1 and 2, respectively.

Our proposed optimization method can be implemented in a
distributed way as follows. Calculating the utility of the client
for each helper assignment can be performed in a distributed
way by each client (or the helpers). Moreover, the α variables
are calculated by each client node separately. The products
of the G(i, j, t) and αt

i variables are used as the weight of

the links ϵji. Then, we can apply a distributed version of the
maximum weighted bipartite matching algorithm, e.g. [17], to
find the optimal scheduling. We refer to this method as the
joint scheduling and rate control (JSRC) method.

B. Transmission with WiFi Considering the Costs
1) Formulation: In the previous subsection, we did not

consider the energy consumption and the credit payments in
the scheduling. As a result, the utility of the client nodes was
an increasing function of their received data rate. However,
when we take the energy consumption and the credit payments
into account, a client might prefer not to use the full capacity
of the link that is assigned to it. The reason is that, as the
receiving rate of a client increases, its energy consumption
and the credits that need to be paid to the helper node
increase as well. These increases in the costs are linear to
the download rate. However, the function f(.) is not linear,
and f(.) is strictly concave. Consequently, the whole utility
might decrease depending on the receiving rate.

In the case of considering energy consumption and the credit
payment to the helper nodes, we can formulate the problem
as the following optimization problem:

max
∑

i∈I

T∑

t=1

αt
iU(i, t) (7)

s.t U(i, t) = f(yti)−x
t
ip

t
ie

c
i−

∑

j∈H

[xt
jip

t
jie

w
i + zxt

ji] (8)

xt
ji ≤ ptjb

t
j/p

t
ji, ∀i, j : j ∈ H, i ∈ I (9)

xt
ji ≤ btji, ∀i, j : j ∈ H, i ∈ I (10)

xt
i ≤ bti, ∀i ∈ I (11)

yti ≤ xt
ip

t
i +

∑

j∈H

xt
jip

t
ji, ∀i ∈ I (12)

[xt
ji] ∈ Co(R) (13)

The objective function (7) is maximizing the total utility of
the clients. Similar to the previous subsection, α variable is
used to insure the fairness. The utility of a client node at time
t is calculated from (8). The second and third terms in (8)
are the energy consumption and the credit payments. We use
Constraint (9) to limit the receiving rate of client i from helper
j to the receiving rate of the helper. The set of Constraints (10)
and (11) are bandwidth constraints. The set of Constraint (13)
are constraints of the feasibility of the scheduling. The set of
feasible scheduling is denoted by R, and Co(R) is the convex
hull of R. A helper cannot transmit to more than one client at
each time slot, and each client cannot receive data from more
than one helper simultaneously.

This optimization contains two sub-problems: (1) schedul-
ing the links, and (2) finding the optimal data rates. In order to
find the optimal solution, we decompose the optimization into
scheduling and rate optimization. Assuming that the number
of helper and client nodes is equal to n, there are n! possible
matchings. Therefore, the time complexity of checking the
total utility of all of the possible matchings is exponential.

In this problem, there is no need for checking all of
the possible matchings. In our model, each client node can
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download from one of the m helpers, and each helper cannot
serve more than one client. Therefore, the utility of each
client node only depends on the matching of the helpers to
the clients, and is independent of the download rate and the
utility of the other clients. Consequently, our polynomial time
algorithm calculates the difference in the optimal utilities of
client i in the cases of using the assistance of helper j and
not using any helpers, denoted by G(i, j, t). We then, assign
αt
iG(i, j, t) as the weight of link ϵji, and run the Hungarian

algorithm [16] to find the maximum weighted matching of
the helper nodes to the clients. The Hungarian algorithm can
find the maximum weighted matching of a bipartite graph in
a polynomial time. It should be noted that other maximum
weighted bipartite matching algorithms can be used instead of
the Hungarian algorithm.

2) Optimization: In order to find the optimal rate alloca-
tions for each helper node assignment, we need to perform
an optimization algorithm. Consider client node i, which is
scheduled to receive from helper j at the current time slot
t. The optimal transmission rates from the base station and
helper j to client i can be found by solving the following
convex optimization:

max U(i, t) = f(yti)− xt
ip

t
ie

c
i − xt

jip
t
jie

w
i − zxt

ji

s.t xt
ji ≤ ptjb

t
j/p

t
ji; xt

ji ≤ btji; xt
i ≤ bti; yti ≤ xt

ip
t
i + xt

jip
t
ji

We can find the optimal rate allocation by solving the
Lagrangian dual of the problem using the gradient method.
In this way, we gradually update the transmission rates, based
on the Lagrange variables. Since the Slater condition holds
in this problem (see reference [18]), there is no duality gap
between the primal and the dual problems. Consequently, the
dual approach can be used to solve the problem. Let λj

1, λji
2 ,

λi
3, and λi

4 be the Lagrange variables for the constraints. For
simplicity, we do not show the t superscripts. The Lagrange
function becomes:

L(xi, xji, yi, λ⃗) = f(yi)− xipie
c
i − xjipjie

w
i − zxji

− λj
1(xji − pjbj/pji)− λji

2 (xji − bji)

− λi
3(xi − bi)− λi

4

[
yi − xipi − xjipji

]

By rearranging the terms and removing the constants, we have:

L(xi, xji, yi, λ⃗) = f(yi)− λi
4yi (14)

+ xji(λ
i
4pji − λj

1 − λji
2 − z − pjie

w
i ) (15)

+ xi(λ
i
4pi − λi

3 − pie
c
i ) (16)

The objective function of the dual problem is D(λ⃗) =
maxxi,xji,yi L(xi, xji, yi, λ⃗). The dual problem is minλ D(λ⃗).
We can solve the dual optimization problem using the gradient
method. The updates of the Lagrange variables are as follows:

λj
1(τ + 1) =

[
λj
1(τ) + β(xji(τ)− pjbj/pji)

]+

λji
2 (τ + 1) =

[
λji
2 (τ) + β(xji(τ)− bji)

]+

λi
3(τ + 1) =

[
λi
3(τ) + β(xi(τ)− bi)

]+

λi
4(τ + 1) =

[
λi
4(τ) + β

(
yi(τ)− xi(τ)pi − xji(τ)pji

)]+

The projection on [0,+∞) is represented as [.]+. Also, β is
the step size. In order to find the yi that maximizes (14), we

Algorithm 2 Calculation of xji and xi (for client node i)

1: γi = λi
4pji − λj

1 − λji
2 − z − pjiewi

2: if γi
j > 0 then

3: set xji = min(bji, bjpj/pji)
4: else
5: xji = 0
6: end if
7: if λi

4pi − λi
3 − pieci > 0 then

8: set xi = bi
9: else

10: xji = 0
11: end if

set the first derivative of (14) with respect to yi equalling zero.
If we consider f(yi) = log(yi + 1), the optimal yi becomes
yi = 1/λi

4 − 1. For iteration τ , if yi becomes infinity, we set
yi to pibi + pjibji.

Equations (15) and (16) are linear functions of xji and
xi. Thus, in order to maximize their summation, when the
multipliers of xji and xi are greater than zero, their value
should be set to the maximum possible value, which de-
pends on the bandwidths. On the other hand, in the case
of negative multipliers, we should set xji and xi to zero.
Algorithm 2 illustrates the computation of xji and xi. Here,
γi = λi

4pji − λj
1 − λji

2 − z − pjiewi is the multiplier of xji in
Equation (15). After finishing the iterations, the final values
of xji and xi are set to the average calculated values of the
iterations.

The optimal rate allocation in the case of not using the assist
of helpers can be found by setting the first derivative of f(xi)−
xipieci respect to xi equal to zero. Then, G(i, j, t) is equal to
the difference of the utilities in the case of using helper j and
in the case of not using any helper. We assign αiG(i, j, t) to
link ϵji, and select the maximum weighted bipartite matching
using the Hungarian algorithm, and pick its respective optimal
rates.

Similar to the JSRC method, our optimization in the case
of considering the download costs can be implemented in a
distributed way. First, each client uses the proposed gradient
approach to find the optimal rate when helper j is assigned
to it, calculates G(i, j, t), and multiplies G(i, j, t) by αi.
Then, the result is assigned as the weight of link ϵji. Finally,
the distributed version of the maximum weighted bipartite
matching algorithm, e.g. [17], is run to find the scheduling
that maximizes the total utility. We refer to this method as the
joint scheduling and rate control with payments (JSRCP).

C. Transmission with WiFi and Bluetooth

It is typical for mobile devices to have both WiFi and
Bluetooth technologies. As a result, the helpers and clients
can use both of them to increase the transmission rates.
Each helper node can serve two different clients at the same
time, one client using its WiFi radio and the next client
using Bluetooth. Moreover, each client can receive from two
different helper nodes at the same time.
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1) Formulation: We represent the energy consumption of
client i to receive one byte through WiFi or Bluetooth channel
as ewi . Also, the bandwidth and delivery rate of the links
between helper j and client i at time t are denoted by btji
and ptji, respectively. The optimization problem becomes:

max
∑

i∈I

T∑

t=1

αt
iU(i, t)

s.t U(i, t) = f(yti)− xt
ip

t
ie

c
i −

∑

j∈H

[xt
jip

t
jie

w
i + zxt

ji]

∑

i∈I

xt
jip

t
ji ≤ ptjb

t
j , ∀j : j ∈ H (17)

xt
ji ≤ btji, ∀i, j : j ∈ H, i ∈ I (18)

xt
i ≤ bti, ∀i ∈ I (19)

yti ≤ xt
ip

t
i +

∑

j∈H

xt
jip

t
ji, ∀i ∈ I (20)

[xt
ji] ∈ Co(R) (21)

In our new model, a helper node can serve two clients.
Therefore, the rate at which a helper receives data from the
base station can be shared among two client nodes, which is
reflected as the set of Constraint (17). The receiving rate of
helper j is equal to ptjb

t
j , and the receiving rate of client i from

helper j is equal to xt
jip

t
ji. The summation of the receiving

rate of the clients that are served by helper j cannot exceed the
helper’s receiving rate; therefore we have

∑
i∈I x

t
jip

t
ji ≤ ptjb

t
j .

The set of Constraint (21) is the scheduling constraints, and R
is the set of possible schedulings. Also, Co(R) is the convex
hull of R. In this extended model, each helper cannot transmit
to more than two client nodes and each client cannot receive
data from more than two helpers.

In contrast with the previous model, in the case of using
WiFi and Bluetooth, a helper can serve two clients. As a result,
the data rates that the client nodes receive are coupled together.
This means that we cannot find the optimal transmission
rate to each client separately. Therefore, we propose a two-
phase resource sharing algorithm. In the first phase, we find
a relatively fair matching of the helper nodes to the clients.
Then, in the second phase, we perform an optimization to find
the optimal transmission rates.

In the first round of our matching algorithm, we assign
the WiFi channels of the helpers to the clients, and in the
second round, we match the Bluetooth links of the helpers and
clients. Before running the second phase, if the WiFi channel
of helper j is assigned to user i, we remove the Bluetooth link
between these two nodes. This way, we can make sure that
the same client and helper are not connected using both WiFi
and Bluetooth channels. In our matching algorithm, we use
αt
ip

t
ji as the weight of the link ϵji, and perform the Hungarian

algorithm to find the maximum weighted bipartite matching.
We refer to this algorithm as joint scheduling and rate control
with Bluetooth links (JSRCB).

2) Optimization: For simplicity, we do not show the t
superscripts in the following equations. Let λj

1, λji
2 , λi

3, and
λi
4 be the Lagrange variables for the Constraints (17), (18),

(19), and (20), respectively. The Lagrange function becomes:

L(x⃗, y⃗, λ⃗) =
∑

i∈I

[
f(yi)− xipie

c
i −

∑

j∈H

(xjipjie
w
i + zxji)

]

−
∑

j∈H

λj
1(

∑

i∈N(j)

xjipji − pjbj)−
∑

j∈H

∑

i∈N(j)

λji
2 (xji − bji)

−
∑

i∈I

λi
3(x

t
i − bti)−

∑

i∈I

λi
4

[
yi − xipi −

∑

j∈N(i)

xjipji
]

where N(i) and N(j) are the helpers and clients assigned to
client i and helper j in the matching phase. Moreover, x⃗, y⃗, and
λ⃗ are the vectors of the x, y, and λ variables. By rearranging
the terms and removing the constants, we can separate the
variables xi, xji, yi as follows:

∑

i∈I

[f(yi)− λi
4yi] (22)

+
∑

j∈H

∑

i∈N(j)

xji(λ
i
4pji − λj

1pji − λji
2 − pjie

w
i − z) (23)

+
∑

i∈I

xi(λ
i
4pi − λi

3 − pie
c
i ) (24)

The objective function of the dual problem is D(λ⃗) =
maxx⃗,y⃗ L(x⃗, y⃗, λ⃗), and the dual problem is minλ D(λ⃗). We
can solve the dual optimization problem using the gradient
method. The updates of the Lagrange variables are as follows:

λj
1(τ+1) =

[
λj
1(τ) + β(

∑

i∈N(j)

xji(τ)pji − pjbj)
]+

, ∀j ∈ H

λji
2 (τ+1) =

[
λji
2 (τ) + β(xji − bji)

]+
, ∀j ∈ H, i ∈ N(j)

λi
3(τ+1) =

[
λi
3(τ) + β(xi − bi)

]+
, ∀i ∈ I

λi
4(τ+1) =

[
λi
4(τ)+β

(
yi(τ)−xipi−

∑

j∈N(i)

xji(τ)pji
)]+

, ∀i ∈ I

Here, [.]+ is the projection on [0,+∞). In order to find the
optimal y⃗, we set the first derivative of (22) with respect to y⃗
equalling zero. Assuming f(yi) = log(yi + 1), the optimal y⃗
becomes y⃗ = 1/λi

4 − 1.
Algorithm 3 illustrates the computation of x⃗ji. Here, γi =

λi
4pji − λj

1pji − λji
2 − pjiewi − z is the multiplier of xji

in Equation (22), and rem is the remaining bandwidth bj
of helper node j. Equation (23) is a linear function of x⃗.
Therefore, in order to maximize (23), each helper j should
give a larger portion of its downloading bandwidth bj to the
client node i with a greater γi. Also, xji for the clients with
negative γi value should be equal to zero. In order to find the
optimal xi, each client node i computes λi

4pi − λi
3 − pieci . If

the result is greater than zero, xi is set to bi. Otherwise, xi

is set to zero. After finishing the iterations, the values of each
xi and xji is set to its average calculated values over different
iterations.

V. SIMULATIONS

A. Simulation Setting
In order to evaluate our proposed methods, we develop a

simulator in MATLAB environment. In the previous sections,
we proposed a method for the case of using only WiFi radio,
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Algorithm 3 Calculation of x⃗ji (for helper node j)
1: rem = bjpj , calculate γi, ∀i
2: for each i in descending order of γi do
3: if γi

j > 0 and rem > 0 then
4: set xji = min(bji, rem/pji), rem=rem−xjipji
5: else
6: xji = 0
7: end if
8: end for
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Fig. 4. Total utility of the client nodes, delivery rates ∈ [0.5, 1], n = 10,
T = 50, btj ∈ [2, 4], btji ∈ [1, 2]. (a): bti ∈ [0.2, 0.4]; (b): bti ∈ [0.5, 1].

and extended it to the case of using WiFi and Bluetooth
simultaneously. We compare each proposed method with the
optimal solutions in the case of not considering the fairness,
which is referred to as the Unfair method. In order to remove
the fairness constraint from the optimization constraints, we
set αt

i = 1 ∀i ∈ I . As a result, at each iteration, the
matching that maximizes the total utility of the client nodes
is selected as the optimal solution. We also modify our JSRC
and JSRCP methods by setting αt

i to the inverse of the amount
of increment in the utility of the client i in the previous time
slots that is due to using the helpers. We refer to these methods
as JSRC-M and JSRCP-M, respectively. Recall that in the
JSRC and JSRCP methods, the inverse of the total received
utility in the previous time slots in assigned to alphati, and
we have αt

i = 1/
∑t−1

t′=1 G(i, t). In other words, in the JSRC
and JSRCP methods, the total utility of client i is used to
calculate αt

i. However, in the JSRC-M and JSRCP-M methods,
the portion of the utility which is due to using the helper nodes
is used to calculate αt

i.
In our simulations, we consider f(yi) = log(yi + 1). The

reason to add one to yi is to set the utility function U(i, t)
equal to zero in the case that the download rate of user i from
the base station and the helper nodes is equal to zero. We run
each simulation 200 times and report the average results.

B. Simulation Results

1) WiFi without Credit Payments: We compare the JSRC
and JSRC-M methods with the cases of not using helpers and
the Unfair methods. In the first experiment, we evaluate the
utility of the methods. The simulation setting is shown in the
caption of Figure 4. Here, T represents the number of time

slots that we run the algorithms. It is clear that the total utility
without using the helper nodes should be less than the other
methods, which is confirmed in Figure 4(a). Moreover, the
Unfair method has the highest utility compared to the other
methods. However, the utility of our proposed fair scheduling
method JSRC is about only 5% less than that of the Unfair
method. The figure illustrates that the utility of the JSRC-M
method is about 6% lower than that of the JSRC approach.
As we increase the number of helpers, more resources are
provided to the client users, which increases the utility of the
JSRC, JSRC-M, and the Unfair method.

We increase the bandwidth of the links between the base
station and the client nodes to the range of [0.5, 1] and repeat
the pervious experiment. The results are shown in Figure 4(b).
It is clear that the total utility of all of the methods should
increase when the clients can download more data directly
from the base station. In Figure 4(b), the difference between
the utility of the No-helper method and the other methods is
less than those in Figure 4(a). When the cellular connection
of the client nodes has sufficient bandwidth, there is no need
for the helper nodes.

The previous two experiments show that there is no major
difference between the utility of the Unfair, JSRC, and JSRC-
M methods. These results illustrate the effectiveness of our
opportunistic scheduling in using the resources. In order to
check if our opportunistic scheduling mechanisms can provide
fairness, we compare the standard deviation of the total utility
that the different client nodes receive in the case of using
the Unfair, JSRC, and JSRC-M methods. Figure 5 depicts
the utility standard deviation of the scheduling methods. The
figure shows that the standard deviation of the JSRC and
JSRC-M methods are almost equal. However, the standard
deviation in the case of using the Unfair method is between
3 to 4.5 times that of the JSRC and JSRC-M methods. The
utility standard deviation of the Unfair method increases as
we increase the number of helper nodes. This is due to the
fact that more helpers will increase the chance that some of
the client nodes are connected to the helpers through channels
with good conditions. Therefore, these client nodes receive
much more utility than the other clients.

Figure 5(b) shows the empirical CDF of the utility standard
deviation in the case of using the JSRC method to that of the
Unfair method. For each run, we divide the utility standard
deviation of the Unfair method by that of the JSRC method,
and plot the empirical CDF. The figure shows that in 50% of
the cases, the utility standard deviation of the Unfair method
is up to 5 times that of the JSRC method. Moreover, in 20% of
the cases, the utility standard deviation of the Unfair method
is more than 6 times that of the JSRC method.

2) WiFi with Credit Payments: We repeat our first ex-
periment to compare the utility of the methods in the case
of considering the costs. Figure 6(a) depicts that the total
utility without using the helper nodes is as much as 60% less
than the other methods. The Unfair method finds the optimal
scheduling without considering the fairness constraint, so it has
the highest utility compared to the other methods. Also, the
utility of our proposed fair scheduling method JSRCP is about
only 5% less than that of the Unfair method. The figure shows
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Fig. 5. Total utility of the client nodes, delivery rates ∈ [0.5, 1], n = 10,
T = 50, btj ∈ [2, 4], btji ∈ [1, 2]. (a): bti ∈ [0.2, 0.4]; (b): bti ∈ [0.5, 1].
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Fig. 6. Delivery rates ∈ [0.5, 1], n = 10, T = 50, btj ∈ [2, 4], bti ∈
[0.2, 0.4], btji ∈ [1, 2], eci = 0.3, ewi = 0.1, z = 0.1. (a): Total utility of the
client nodes; (b): Standard deviation of the client nodes’ utilities.

that the utility of the JSRCP-M method is about 2% lower
than that of the JSRCP approach. In the JSRCP-M method,
we use the utility enhancement due to the received help from
the helper nodes to calculate the αi variable. Clearly, as the
number of helpers rises, more help is provided to the clients,
and the utility of the methods increases.

In order to check the fairness of the methods, we compare
the standard deviation of the utility that the client nodes
receive in Figure 6(b). The standard deviation of the JSRCP
and JSRCP-M methods are very close. However, the standard
deviation of the JSRCP-M method is less than the JSRCP
method, which means JSRCP-M is fairer than the JSRCP
method. This is due to calculating αi based on the utility
enhancement that client i receives from the helper nodes. The
standard deviation in the case of using the Unfair method is
up to 4 times that of our proposed methods. From the results
in Figures 6(a) and (b) we can conclude that using the JSRCP
and JSRCP-M methods we can provide fairness in the cost of
about 2-5% reduction in the total performance.

3) WiFi and Bluetooth: We evaluate the utility of the
JSRCB, No-helper, and the Unfair methods in Figure 7(a). The
utility of the Unfair method is up to 3% more than the utility
of the JSRCB method, which is due to the unfair resource
sharing. In addition, the utility of the No-helper methods is
26% to 70% less than the JSRCB and Unfair methods.

Figure 7(b) shows the CDF of the standard deviations. We
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Fig. 7. Delivery rates ∈ [0.5, 1], n = 10, T = 50, btj ∈ [2, 4], bti ∈
[0.2, 0.4], btji ∈ [1, 2], eci = 0.3, ewi = 0.1, z = 0.1. (a): Total utility of the
client nodes; (b): CDF of the standard deviations radio, n = 3.

divide the standard deviations in the case of the unfair method
to that of the JSRCB method and plot its CDF. As the figure
illustrates, in 20% of the cases, the standard deviation of the
Unfair method is up to 3 times that of the JSRCB method.
Furthermore, in 50% of the runs, the standard deviation ratio
is between 4 and 9.4.

VI. CONCLUSION

Ubiquitous Internet connection access is becoming a re-
quirement of our lives as the amount of requested data
by mobile users continues to rapidly increase. An effective
approach to address these two demands is to use cooperative
mobile Internet access. This provides the mobile users the
opportunity to use help from other mobile devices to access
the Internet. The mobile helper nodes download the requested
data by the clients through their cellular connections, e.g
4G connection, and relay the data to the clients. The helper
nodes can use WiFi, Bluetooth, or both to relay the data. In
this work, we consider the problem of providing an Internet
connection to a set of client users with the cooperation of a
set of helpers. In order to increase the total utility of the client
nodes, we use opportunistic scheduling to use the resources
efficiently. In the first proposed method, we only use WiFi
connections to transmit the downloaded data by the helpers to
the clients. Then, we extend our solution to the case of using
WiFi and Bluetooth connections simultaneously. The reported
simulation results show the effectiveness of our scheduling and
rate optimization algorithms.
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