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Abstract—By using increasingly popular smartphones, partic-
ipatory sensing systems can collect comprehensive sensory data
to retrieve context-aware information for different applications
(or sensing tasks). However, new challenges arise when selecting
the most appropriate participants when considering their differ-
ent incentive requirements, associated sensing capabilities, and
uncontrollable mobility, to best satisfy the quality-of-information
(QoI) requirements of multiple concurrent tasks with different
budget constraints. This paper proposes a multitask-oriented par-
ticipant selection strategy called “DPS,” which is used to tackle the
aforementioned challenges, where three key design elements are
proposed. First is the QoI satisfaction metric, where the required
QoI metrics of the collected data are quantified in terms of data
granularity and quantity. Second is the multitask-orientated QoI
optimization problem for participant selection, where task budgets
are treated as the constraint, and the goal is to select a mini-
mum subset of participants to best provide the QoI satisfaction
metrics for all tasks. The optimization problem is then converted
to a nonlinear knapsack problem and is solved by our proposed
dynamic participant selection (DPS) strategy. Third is how to
compute the expected amount of collected data by all (candi-
date) participants, where a probability-based movement model
is proposed to facilitate such computation. Real and extensive
trace-based simulations show that, given the same budget, the
proposed participant selection strategy can achieve far better QoI
satisfactions for all tasks than selecting participants randomly or
through the reversed-auction-based approaches.

Index Terms—Data collection, incentive schemes, participant
selection, participatory sensing, quality-of-information (QoI).

I. INTRODUCTION

PARTICIPATORY sensing was first proposed in [1], where
the key idea was to have ordinary citizens collect and share

sensory data from their surrounding environment by using their
smartphones [2]. Early participatory sensing systems, such as
PEIR [3] and SoundSense [4], were prototyped for a single
sensing task or, simply, tasks. They did not explicitly consider
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the coexistence of multiple concurrent tasks or how to best
motivate more users to contribute. Recent approaches such as
Campaignr [5] and PRISM [6] can provide multidimensional
sensory data simultaneously for multiple concurrent tasks.
Meanwhile, the latest research system MEDUSA [7] points
out that participatory sensing systems must support ways in
which participants can be motivated by incentives to contribute
sensory data, since participating in crowd sensing may incur
real monetary costs (e.g., bandwidth usage). Therefore, support
for multiple sensing tasks with rewards is critical for future
participatory sensing systems and is our research path in its
own right.

Our research is motivated by the application scenario shown
in Fig. 1, which is also derived from the smartphone-based
environmental monitoring system described in [8]. It shows a
group of mobile users subscribing to a central server, which
receives the sensing tasks from task publishers. Each task is
associated with certain quality-of-information (QoI) require-
ments. Broadly speaking, QoI relates to the ability to judge
whether information is fit for use for a particular purpose
[9]–[11]. For the purposes of this paper, we will assume
that QoI is characterized by a number of attributes, including
the sensing region, sensing time period, data granularity, and
quantity requirements, and the incentive budget it is willing to
afford. For simplicity, we only consider a sensing region as a
2-D (longitude and latitude) area in the same plane. It is worth
noting that the proposed strategy is also suitable for 3-D sensing
space with altitude dimension. On the server’s side, the targeted
sensing region is divided into virtual areas of the same size,
according to the task publisher’s data granularity requirement.
Each task lasts for a certain period of time, which is also divided
into several discrete time slots according to the associated
data granularity requirement. In each time slot on each area, a
number of measurements (sensory data samplings) are required.
According to [8], when there are adequate samples, the use of
their average value per area, instead of the originals, does not
affect the accuracy of the system. On the participant’s side, they
move around in the sensing region. When they receive the task
requirements, they contact the central server to register their
current location, required amount of incentive if participating
in the data collection, and their sensing capabilities. In our
considered scenario, the sensing capability of a participant is
measured by how many data samples the user can collect in a
time unit for all tasks, which is decided by both the sampling
frequency and the type/amount of sensors equipped on his/her
smartphone. For simplicity, we assume equal sampling fre-
quency for all participants and, thus, use the number of sensors
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Fig. 1. Considered participatory sensing scenario, where the task publisher request for different types of sensory data is in a targeted region. A subset of all
candidate participants is selected from all users with different sensing capabilities, initial locations, and incentive requirements to carry on sensing tasks.

to uniquely represent the sensing capability of a participant’s
smart device. When a particular participant is selected by the
central server as the collector, his/her smart device measures
the required environmental parameters periodically and uploads
the collected data to the server. As a result, a reward is finally
paid as a return. The environmental data collection phase stops
either when all QoI requirements are fully satisfied or when the
given task budget runs out.

In urban environments, the density of the available partici-
pants can be remarkably high. Thus, it is possible and necessary
to use only part of all available participants to achieve multiple
concurrent tasks. Different participant selection strategies lead
to different system performance in terms of the achieved level
of QoI satisfactions.

A highly simplified participant selection scene with four
sensing tasks is shown in Fig. 1. For each task, samplings are
required in (4, 4, 3, 2) areas, respectively. Three users named
{a, b, c} are walking in the region, where each carries two
kinds of sensors. According to their future trajectory, selecting
{a, b} as participants can collect sensory data in (4, 3, 3, 2)
areas for each task, respectively, whereas selecting {b, c} can
collect sensory data in (4, 4, 1, 0) areas for each task, respec-
tively. Although {b, c} can collect data for one more area for
the second task, they collect much less data for the third and
fourth tasks, compared with {a, b}. Therefore, in this highly
simplified example, selecting {a, b} as participants can obvi-
ously fit the tasks’ requirements better than {b, c} and achieve
more accurate sensing results. However, in practice, there are
far more tasks and participants; to evaluate how a subset of
participants can satisfy the requirements of multiple tasks can
be quite complicated. Moreover, it is not possible to assume that
the trajectories of participants are known a priori. Therefore,
selecting the most efficient participants to achieve the tasks’
QoI requirements by minimum incentives and a constrained
budget is the challenge that needs to be addressed.

Participant selection has always been a major challenge in
participatory sensing systems, due to the diversity of users’
sensing capabilities and incentive requirements. It is even
more so when considering their unpredictable mobility pattern
and the associated QoI requirements by various tasks. Many
researchers proposed different participant selection strategies
from different aspects, which either considered only one sin-

gle sensing task, such as in [12]–[17], or ignored the budget
constraint, such as in [18]–[20]. The aim of this paper is to
find a subset of participants whose sensory data collection can
best satisfy QoI requirements of multiple concurrent tasks in
both temporal and spatial dimensions, with a constrained task
budget. The contribution of this paper is fourfold as follows.

• We introduce a QoI satisfaction metric in terms of data
granularity and quantity, which is used to quantify the
degree of how collected sensory data can satisfy multidi-
mensional task QoI requirements.

• We introduce a probability model to estimate the expected
amount of data collected on a participant in the sensing
region. From the historical trajectory information of a user,
his/her probability of moving from one location to another
can be calculated. Then, given the transition possibilities
between quantized areas and their sensing capabilities, the
expected amount of collected data by all participants can
be predicted/computed.

• We propose a dynamic participant selection strategy called
“DPS.” The participants are selected based on a greedy
algorithm that explicitly considers their expected amount
of data collected, required QoI of multiple tasks, and
users’ incentive requirements, under the constraint of an
aggregated task budget.

• The effectiveness and flexibility of the proposed strategy
are extensively evaluated by real-trace-driven simulations.

The rest of this paper is organized as follows. Section II
reviews the related research activities. Section III establishes
a formal model of our system and Section IV describes the
QoI satisfaction metric. Section V formulates the optimiza-
tion problem of participant selection, describes our proposed
DPS in detail, and gives the formal model to estimate the
amount of data collected by mobile participants, as an input to
DPS. Section VI extensively evaluates the performance of the
proposed strategy by real-trace-driven simulations, and finally,
Section VII concludes this paper.

II. RELATED WORK

Since Burke et al. first proposed the concept of participatory
sensing in [1], most early systems have been designed to
support some specific task and are not suitable for multiple
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tasks. For example, the Common Sense project [21] devel-
ops a participatory sensing system that allows individuals to
measure their personal exposure to air pollution. Other ap-
plications of participatory sensing include the collection and
sharing of information about noise pollution [22]. Moreover,
vehicle sensing is one important aspect of participatory sensing,
for vehicles exhibit better mobility than pedestrians and have
no strict limits on processing power and sensing capabilities.
Zhou et al. in [23] propose a probe-car-based traffic monitoring
strategy, followed by an improvement in [24] by recruiting
4000 probe cars (taxis) to cooperatively work. Lee et al. in
[25] take a further step forward by providing ordinary drivers
a framework with which mobile users can participate in traffic
monitoring.

As most of these early works do not have a participant
selection scheme (i.e., they select participants randomly or
just use laboratory workers as testers), they are not suitable
for large-scale real-world deployment. Some recent research
activities have proposed system models for multitask-oriented
participatory sensing systems with reward. PRISM [22] first
studies platforms for multiple sensing tasks and proposes a pro-
cedural programming language for collecting multiple kinds of
sensor data from a large number of mobile phones. MEDUSA
[7] synthesizes participatory sensing and crowdsourcing and
puts forward a runtime system for multiple sensing tasks with
the following stages: task submission, worker selection, and
monetary incentives management.

The collaboration and scheduling of sensors is a problem
similar to participant selection in wireless sensor networks
(WSNs). Krause et al. in [26] consider the simultaneous place-
ment and scheduling of sensors and propose an algorithm to
decide where and when to place and activate the sensors using
the submodularity of the utility function. He et al. in [27]
consider the quality of sensing as the utility function and uses
a greedy algorithm for sensor allocation. Joshi and Boyd in
[28] consider minimizing the estimation error as the objective,
involving convex optimization in solving it. However, WSNs
are quite different from participatory sensing, since participants
have uncontrolled mobility patterns and unpredictable incentive
requirements.

Some researchers have noticed the lack of participant selec-
tion methods. Two representative works, i.e., [12] and [13],
use the trajectories of participants in the participant selection
phase. In [12], Reddy et al. develop a selection framework to
enable organizers to identify well-suited participants for data
collection, based on geographic and temporal availability as
well as participation habits. In [13], Tuncay et al. exploit the
stability of user behaviors and select participants based on the
fitness of mobility history profiles. Similarly, Weinschrott et al.
in [14] and Zhong and Cassandras in [15] discuss task assign-
ment for opportunistic in situ sensing, and Lu et al. in [29]
focus on initiating sampling around specific location “bubbles”
(regions). Gaonkar et al. in [30] propose a coverage maxi-
mization algorithm that records participants’ tracks and selects
participants whose availability matches the campaign coverage
constraints. Such methods rely heavily on the knowledge of
participant trajectories and, thus, may lead to increased risk of
mobile users’ privacy leakage.

Participant selection in multitask systems is quite different
from single-task systems. As far as we are concerned, the
work of Duan et al. [19] is the first to propose the participant
selection method for multiple tasks. Assuming that incentive
requests of participants and the utility of sensory data on all
locations are known, the proposed method selects a subset
of participants, who have the maximum sensory data utility-
deducting incentive requirements. In [18], Riahi et al. further
improve the work in [19] by defining how to calculate sensory
data utility on a certain location. Both works concentrate on
selecting participants to maximize the difference between the
value and the price of sensory data. Another approach [20] is
aimed at minimizing the overall sensing cost of mobile devices
with heterogeneous sensing capabilities while achieving the
sensing tasks’ requirements. The authors did not consider the
scenario that in suburb areas with few people, the incentive
requirement of noncompeting participants could be too high
for the task publishers to afford, nor the scenario that sensing
resources should lean toward satisfying those tasks affording
higher budgets. It is more practical in real-world participatory
sensing applications that task publishers offer the maximum
incentive budget they are willing to afford and expect the
central server (sensing platform) to provide them as high QoI
satisfaction as possible.

As an incentive mechanism that also includes participant
selection [16], [17], its aim is to obtain the maximum amount of
sensory data by minimal payment. In [17], a reversed-auction-
based approach is proposed, which gathers the bid price of all
participants and selects those with the lowest bid price.

In comparison, we aim to best satisfy QoI requirements
of multiple tasks by selecting participants with a constrained
task budget. Moreover, we also consider the protection of user
privacy, and only assume knowing their historical and current
location, but not future trajectories.

III. SYSTEM MODEL

This section presents a formal model for describing our par-
ticipant selection system. We consider a scenario of multitask-
oriented participatory sensing in a selected spatial region L
during a particular time period T , as shown in Fig. 1. The
system is composed of a central server, a set of task publishers,
and a set of M smartphone users moving in region L during
time period T as candidate participants. They are denoted as

M Δ
= {m = 1, 2, . . . ,M}. Let q present, for example, an envi-

ronmental monitoring task in the considered region within that
time period and Q be the collection of all concurrent running
tasks. The incentive budget of q is denoted as cq , and the
entire budget of all tasks can be calculated by Ctotal =

∑
cq ,

∀ q ∈ Q. Moreover, according to the task’s QoI requirement,
or more precisely, the required data granularity of task q, the
task publisher divides the entire region into a set of L areas,

denoted as Lq
Δ
= {l = 1, 2, . . . , L}, and also divides the entire

sensing period into a set of time slots, denoted as Tq Δ
= {t =

1, 2, . . . , T}. On each virtual cube that is composed of a 2-D
area and within a certain time slot, the required amount of
data samples can be denoted as rqlt, ∀ l ∈ Lq , ∀ t ∈ Tq, which
is also given by the task publisher as a requirement. Based
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TABLE I
LIST OF NOTATIONS

on the given budget and QoI requirements of all tasks Q, the
central server aims to select part of all candidate participants
for data collection at the beginning of T , as the key algorithm
we propose in this paper.

As for participants, each candidate demands some kind of
monetary or virtual incentives, denoted as dm, ∀m ∈ M, dur-
ing T . When a particular participant is selected as the data
contributor, his/her device samples the required environmental
parameter periodically by the equipped sensor(s). To simplify
the scenario and avoid loss of generality, we set an equal
sampling frequency for all users, denoted as Δt. Thus, the
number of data samples in T can be calculated by �T /Δt�.
Finally, sqm, ∀m ∈ M, ∀ q ∈ Q is used to denote the sensing
ability of a participant m to task q, where

sqm =

{
0, if m cannot collect data for q
1, otherwise.

(1)

As mentioned earlier, we use the number of equipped sensors
of a participant’s device m to represent his/her sensing capabil-
ity as Sm, as

Sm =
∑
∀ q∈Q

sqm, ∀m ∈ M. (2)

It is worth noting that it is reasonably assumed that the initial
locations of each participant m entering the sensory region is
known and given, denoted as Em(0); the detailed definition in
practice will be described in Section V-C. Table I shows the list
of notations used in this paper.

IV. QUALITY OF INFORMATION SATISFACTION METRIC

As its name implies, the QoI satisfaction metric is used to
describe the level of QoI satisfaction to the extent that the
collected sensory data can satisfy the requirement of a task
(data collection). Suppose that a subset X (of size |X |) of all
participants is selected for a task q and let oqlt(X ), ∀ l ∈ Lq ,
∀ t ∈ Tq denote the amount of samplings collected by X for
task q on a certain area l, within a certain time slot t. The
initial value of each oqlt(X ) is zero. When a new data sample
on area l at time slot t is collected, if the amount of collected

data oqlt(X ) is less than the amount of required data rqlt, then
oqlt(X ) is increased by 1; otherwise, if the amount of collected
data oqlt(X ) has reached the amount of required data, then rqlt,
oqlt(X ) does not change. Such rules can also be applied to the
condition of adding data collection of two different participants
m1 and m2 together, as

oqlt(m1 +m2)

=

{
oqlt(m1) + oqlt(m2), if oqlt(m1) + oqlt(m2) ≤ rqlt

rqlt, if oqlt(m1) + oqlt(m2) ≥ rqlt.
(3)

Thus, two matrices, i.e., Rq and O(X )q , are used to de-
note the multidimensional QoI requirements of task q and the
amount of sampling collected by X , respectively. Thus

Rq =

⎡
⎢⎢⎢⎣
rq11 rq12 . . . rq1T

rq21 rq22
. . . . . .

rqL1 rqLT

⎤
⎥⎥⎥⎦ (4)

Oq(X ) =

⎡
⎢⎢⎢⎣
oq11(X ) oq12(X ) . . . oq1T (X )

oq21(X ) oq22(X )
. . . . . .

oqL1(X ) oqLT (X )

⎤
⎥⎥⎥⎦ (5)

where ∀ l ∈ L, ∀ t ∈ T , we have

oqlt(X ) = oqlt

( ∑
∀m∈X

m

)
. (6)

Then, the following lemma immediately follows from the defi-
nition of Oq(X ).

Lemma 1: Given X1 ⊂ X2, we have

Oq(X1) ≤ Oq(X2), ∀X1,X2 ⊂ M, ∀ q ∈ Q. (7)

Lemma 2:

Oq(X ) ≤ Rq, ∀ q ∈ Q, ∀X ⊂ M. (8)

To best satisfy a sensing task’s multidimensional QoI re-
quirements, we aim to minimize the difference between the
required and attained values (i.e., the defined two matrices
Rq and O(X )q in our case) by the Frobenius norm [31].
Since the Frobenius norm is mathematically used to measure
the spatial length of a matrix, ‖Rq −Oq(X )‖ can denote the
vector difference for a particular task q. By using (‖Rq −
Oq(X )‖F /‖Rq‖F ), the difference is normalized with the value
ranging from 0 to 1. Therefore, for a task q, its achieved QoI
satisfaction metric can be computed as

uq(X ) = 1 − ‖Rq −Oq(X )‖F
‖Rq‖F

, ∀ q ∈ Q, ∀X ⊂ M.

(9)

In this way, the achieved QoI satisfaction metric of task q
ranges from 0 to 1, where 0 indicates that no data is collected for
task q, and 1 means that all considered QoI requirements at each
area and within each time slot are fully satisfied. If the collected
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data O(X )q do not meet the requirement matrix Rq , the QoI
satisfaction metric can have room for increase when more data
are collected. Moreover, the Frobenius norm can also denote
the distribution of samplings. When the data collection amount
is fixed, the Frobenius-norm-based QoI satisfaction metric
shows better results when samplings are uniformly distributed
among subregions than when samplings are gathered in a few
subregions.

Proposition 1 below states an interesting fact—that given a
random set of selected participants, adding a participant into
the selected set can never decrease the QoI satisfaction of all
tasks.

Proposition 1: Given X1 ⊂ X2, we have uq(X1) ≤ uq(X2).
Proof: Assume that

uq(X1) > uq(X2) ⇐⇒ uq(X1)− uq(X2) > 0, ∃q ∈ Q.
(10)

According to our definition of the QoI satisfaction metric in (9),
we have

uq(X1)− uq(X2) =
‖Rq −Oq(X2)‖F

‖Rq‖F

−‖Rq −Oq(X1)‖F
‖Rq‖F

> 0, ∃q ∈ Q. (11)

According to the definition of Frobenius norm, we have

‖Rq −Oq(X )‖F =

√ ∑
∀ l∈L,∀ t∈T

(rqlt − oqlt(X ))
2
. (12)

According to Lemma 2, we have

rqlt − oqlt(X1) ≥ 0

rqlt − oqlt(X2) ≥ 0

∃q ∈ Q, ∃l ∈ L, ∃t ∈ T . (13)

As rqlt can be taken as a constant here, when oqlt(X ) increases,
rqlt − oqlt(X ) decreases, and ‖Rq −Oq(X )‖F decreases. Thus

‖Rq −Oq(X2)‖F > ‖Rq −Oq(X1)‖F , ∃q ∈ Q ⇐⇒
rqlt − oqlt(X2) > rqlt − oqlt(X1), ∃q ∈ Q, ∃l ∈ L, ∃t ∈ T ⇐⇒
oqlt(X2) < oqlt(X1), ∃q ∈ Q, ∃l ∈ L, ∃t ∈ T . (14)

However, according to Lemma 1, given X1 ⊂ X2, we have

oqlt(X2) ≥ oqlt(X1), ∀ q ∈ Q, ∀ l ∈ L, ∀ t ∈ T . (15)

The contradiction shows that our assumption is fake. As a
result, we have

uq(X1)− uq(X2) ≤ 0 ⇐⇒ uq(X1) ≤ uq(X2), ∀ q ∈ Q.
(16)

Therefore, Proposition 1 is established. �

V. PROBLEM FORMULATION AND SOLUTIONS

The goal of this paper is to find a set of participants whose
collected amount of sensory data can best achieve the required
QoI for all concurrent tasks being serviced. We denote the
targeted set of selected participants as X∗. Moreover, their total
incentive requirement should be less than the total available
budget Ctotal from all tasks. Hence, the optimization problem
is formulated as

Maximize : U(X ) = [u1(X ), u2(X ), . . . , uQ(X )]T

subject to : X ⊆ M;
∑
m∈X

dm ≤ Ctotal (17)

where U(X ) is a vector of objective functions. Each element
of U(X ) is the QoI satisfaction metric of the sensory data
collected by X .

Until now, the problem of participant selection remains an
optimization problem. Different from the existing optimization
problems formulated in [20] and [32] that aim at fully satisfying
the data collection requirement of tasks, the novel optimization
problem (17) treats the total budgets Ctotal of all tasks as
constraint for selecting participants and aims at maximizing all
tasks’ QoI satisfaction, which is of more practical significance,
for some data requirements cannot be fully satisfied due to the
uncontrollable trajectories of participants.

A. Problem Transformation

Apparently, (17) is a multiobjective optimization (MOO)
problem, whose optimal solution may not exist. Then, Pareto
optimality can be used to describe solutions for MOO problems.
A solution is Pareto optimal if it is not possible to move
from that solution and improve at least one objective function,
without detriment to any other objective function.

A simple but efficient problem transformation for MOO
problems is the weighted-sum method [33]. By using it, one
selects scalar weights ωq for each task ∀ q ∈ Q and minimizes
the following composite objective function:∑

q∈Q
ωquq(X ). (18)

If all weights are positive, as assumed in this paper, then min-
imizing the weighted sum provides a sufficient condition for
Pareto optimality, which means the solution that can minimize
the weighted transformation is always a Pareto optimal solution
for (17).

Specifically, here we use the incentive budget of each task
as the weight function to make sure that task publishers who
pay more will eventually receive more data collection ser-
vices, as

ωq = cq

/∑
q∈Q

cq, ∀ q ∈ Q. (19)

Hence, the optimization problem can be converted to a
single-objective optimization problem to select a set of X∗,
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denoted as

X∗ = argmax
x

∑
q∈Q

ωquq(X )

= argmax
x

∑
q∈Q

ωq

(
1 − ‖Rq −Oq(X )‖F

‖Rq‖F

)

subject to X ⊆ M;
∑
m∈X

dm ≤ Ctotal. (20)

B. Proposed DPS Strategy

The objective function of (20) fits the basic form of nonlinear
knapsack problem [34]. The knapsack problem is a problem in
combinatorial optimizations like the following: Given a set of
items, each with mass and a value, determine the number of
each item as to be included in a collection, so that the total
weight is less than or equal to a given limit, and the total value
is as large as possible. Several other knapsack-like problems
exist, including the nonlinear knapsack problem [34].

The optimization target of the nonlinear knapsack problem is
a function of set x, instead of the total value of x. The general
statement of the nonlinear knapsack problem is given by

min f(x)

s.t. : g(x) � b

x ∈ S. (21)

In our case, we have

f(X ) =
∑
q∈Q

ωquq(X ). (22)

The decision problem form of the knapsack problem is NP-
complete, and thus, greedy algorithms are frequently used to
provide a suboptimal approximated solution. They first sort the
items in decreasing order of value per unit of weight and then
proceed to insert them into the sack, starting with as many of
the front items as possible, until there is no longer any space in
the sack for more.

The central part of our participant selection strategy is also in
line with the heuristic greedy algorithm, which selects the most
“efficient” participant in an iterative way. Here, the efficiency of
a participant in each round of iteration is computed by the ratio
between the increase in the optimization objective function by
selecting him/her and the incentive paid to him/her. Specifically,
let X ′ denote the set of participants that were selected in the
previous round, then the efficiency ϑ(m,X ′) of a participant m
in this round can be calculated by

ϑ(m,X ′) =

⎛
⎝∑

q∈Q
ωquq(X ′ +m)−

∑
q∈Q

ωquq(X ′)

⎞
⎠/

dm.

(23)

An example of how to calculate ϑ(m,X ′) will be given in the
detailed description of our proposed DPS, which runs at the
beginning of the time period to select participants by rounds of

iterations. The pseudocode of DPS is given in Algorithm 1, and
a detailed description is given as follows.

Step 1: Initialization. At the beginning of the sensing time
period, the participant selection strategy is initialized. All
available participants are divided into two sets, i.e., the
selected set A and the unselected set B. In this step, all
participants are put in B, and A is set to ∅.

Step 2: Select one participant at a time from B to A. A
participant is selected from set B in each round of iteration.

Given the data collection expectation of each par-
ticipant, the value of the optimization objective (20) by
selecting A can be calculated by

∑
q∈Q

ωq

(
1 − ‖Rq −Oq(A)‖F

‖Rq‖F

)

=
∑
q∈Q

ωq

(
1 −

∥∥Rq −
∑

m∈A Oq(m)
∥∥
F

‖Rq‖F

)
. (24)

For each participant m in B, if he/she is selected and moved
from B to A to form a new set Â, the change θ(m,A) of
the optimization objective (20) is

θ(m,A) =
∑
q∈Q

ωq

(
‖Rq −Oq(A)‖F

‖Rq‖F

)

−
∑
q∈Q

ωq

(
‖Rq −Oq(A)−Oq(i)‖F

‖Rq‖F

)
, ∀m ∈ B. (25)

According to Proposition 1, θ(m,A) ≥ 0, ∀m ∈ B, ∀A ⊂
M. The incentive m requests is dm. For all tasks, a partic-
ipant’s efficiency ϑ(m,A) in this round can be calculated
by the increase in optimization objective (20) divided by
his incentive requests, as is denoted by

ϑ(m,A) =
θ(m,A)

dm
=

⎛
⎝∑

q∈Q
ωq

(
‖Rq −Oq(A)‖F

‖Rq‖F

)

−
∑
q∈Q

ωq

(
‖Rq −Oq(A)−Oq(i)‖F

‖Rq‖F

))/
dm. (26)

The selected participant of each round is denoted by (27)
and is moved from B to A, i.e.,

argmax
m

ϑ(m) =
θ(m,A)

dm
, ∀m ∈ B. (27)

Step 3: Looping. Loop step 2, until the given budget for this
unit sensing time period can afford no more participants
or the QoI satisfaction metrics of all tasks reach 1 (fully
satisfied).

It is worth noting that other optimization algorithms, e.g.,
dynamic programming and simulated annealing, are also ap-
plicable in solving optimization problem (20). However, these
methods are more time consuming. In large-scale sensing
applications that involve a huge amount of participants and
tasks, dynamic programming and other algorithms may fail
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to meet the time latency requirement of real-time participant
selection.

Algorithm 1 DPS Algorithm

Require:
tasks Q; incentive of tasks cq ,
area and time division of tasks Lq , Tq,
data requirement of each task Rq , ∀ q ∈ Q;
participants M;
incentive requirement of each participant dm,
sensing capability of each participant sqm,
initial locations of participants Em(0), ∀m ∈ M;
interval between samplings Δt;
transition matrix obtained from historic traces P (Δt).

Ensure:
Selected participants as set X∗;

1: set of unselected participants B = M, set of selected
participants A = NULL

2: incentive_left = Ctotal

3: while 1 do
4: flag ← 0
5: selected_id ← 0
6: max_efficiency ← 0
7: for mobile user m ∈ B do
8: if dm > incentive_left then
9: continue
10: end if
11: compute m’s efficiency ϑ(m,A) in (26)
12: if ϑ(m,A) > max_efficiency then
13: selected_id ← m
14: max_efficiency ← ϑ(m)
15: flag ← 1
16: end if
17: end for
18: if flag = 0 or selected_id = 0 then
19: break
20: end if
21: A ← A+ selected_id
22: B ← B − selected_id
23: incentive_left ← incentive_left− dselected_id
24: end while
25: Return: final selected participant set X∗ = B.

C. Expected Amount of Collected Data by Participants

When a particular participant is selected as the data contrib-
utor, he/she measures the required environmental data periodi-
cally by the sensor(s) embedded on his/her smartphone. Recall
that the sampling frequencies of different users are set equal
to Δt, and then, the time points when a participant m takes
samples of environmental parameters can be denoted as H =
{h = 1, 2, . . . , H}, H = �T /Δt�. The relationship between
the time slots during a task’s lifetime and the epochs when
participants take samplings are demonstrated in Fig. 2, where
|H| samplings are uniformly distributed in a total of T time
slots.

Fig. 2. Temporal relationship between time slots of tasks and samplings of
participants.

To estimate how much data a participant can collect requires
the knowledge of both his/her sensing capability and the areas
he/she is in when the samplings are taken. Recall that all
participants have registered their sensing capability and initial
locations to the central server; we adopt a probability-based
method [35] for estimating future locations of participants when
they move around the sensing region, instead of trajectory
prediction methods, for existing trajectory prediction methods
suffer from rapid loss of accuracy when being applied to
predict time-lasting movements [36], [37]. Specifically, their
historical trajectories are used to calculate the probability to
move from one location to another after a certain period of
time. The assumption that participants’ historical trajectories
are known to the central server is reasonable, for most partici-
patory sensing applications require the collected sensory data
to be labeled with time and location information, as well as
collector’s ID [12], [22], some collaborative sensing applica-
tion requires potential participants to periodically upload their
GPS information [32], and some participatory sensing systems
specifically collect the trajectories of participants [38].

Let pl1,l2 denote the probability that a user moves from area
l1 to l2 within time interval Δt, and accordingly, let P (Δt)
denote the position transition matrix, computed as

P (Δt) =

⎡
⎢⎣
p11 p12 . . . p1L
p21 p22
. . . . . .
pL1 pLL

⎤
⎥⎦ . (28)

For convenience, let δl(t) denote the possibility that a partic-
ipant appears in area l, ∀ l ∈ L at time point t, and let Em(t)
denote the possibility that a participant m appears in L at t,
where Em(t) = [δ1(t), δ2(t), . . . , δL(t)], ∀m ∈ M. The initial
location of the participant can be denoted as El(0), where

δl(0) =

{
0, if the participant is not in subarea l
1, if the participant is in subarea l

∀ l ∈ L. (29)

Based on [35], Em(Δt) = Em(0)× P (Δt).
Theorem 1: Given the position matrix P (Δt), a participant

m’s data collection expectation Oq(m) of task q can be calcu-
lated by his sensing abilities sqm and his initial location Em(0).

Proof: For a particular participant m, the possibility that
he/she takes a sample on each areas in L at sampling time h×
Δt can be calculated by

Em(h×Δt) =Em ((h− 1)×Δt)× P (Δt)

= · · · = Em(0)× P (h×Δt), ∀h ∈ H. (30)
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Fig. 3. Simulation setup and observations. (a) Simulation region (red rectangle). (b) Initial locations of mobile users. (c) User trajectories. (d) The possibility
that a user stays in an area.

Knowing T and Δt, the expected number of samplings on
each area within time slot t can be calculated as the sum of
possibilities of all samplings taken during time slot t, as

[oq1t(m), oq2t(m), . . . , oqLt(m)] =

Δt×h≤Tt∑
Δt×h≥Tt−1

Em(h×Δt)× sqm.

(31)

Based on its definition, Oq(m) can be expressed by

Oq(m) = [Oq
1(m), Oq

2(m), . . . , Oq
T (m)]

T (32)

where

Oq
t (m) = [oq1t(m), oq2t(m), . . . , oqLt(m)] , ∀ t ∈ T (33)

and superscript “T ” denotes the transposed set. Thus

Oq(m)

=

⎡
⎣hΔt≤T1∑
hΔt≥T0

Em(h×Δt), . . . ,

hΔt≤Tt∑
hΔt≥Tt−1

Em(h×Δt)

⎤
⎦
T

×sqm

=[Em(0)×κ(1), Em(0)×κ(2), . . . , Em(0)×κ(T )]T ×sqm

=Em(0)× [κ(1), κ(2), . . . , κ(T )]T ×sqm

where

κ(Tt) =
∑

∀h∈{h|Tt−1≤hΔt≤Tt}
P (h×Δt), ∀ t ∈ T . (34)

Thus, Theorem 1 is established. �
Based on Theorem 1, when a participant’s initial location

and sensing capabilities are registered to the central server,
his/her expected amount of collected data for all tasks can be
calculated.

VI. PERFORMANCE EVALUATION

A. Setup

We assess the proposed DPS scheme by using the (Microsoft
Research Asia) GeoLife data set [38], where real movement
traces of ordinary citizens are used to represent mobile users in
the considered scenario. The GeoLife project has collected 182
volunteers’ trajectories in Beijing for three consecutive years.
Each trajectory is marked by a sequence of time-stamped GPS
points that contain users’ latitude, longitude, and altitude at a
given time. We adopt the following procedures to set up our
simulation platform.

• As all traces were spread in different parts of Beijing, a
specific rectangular region where the traces mostly appear
is needed. We store all trajectories in a geographical
MySQL database and find a 200 × 500 m2 region that is of
high movement density, as shown in Fig. 3(a), that happens
to be around the area of the Microsoft Research Asia site.
We use this region as the simulation area for the considered
data collection application.

• If not specially mentioned in the following experiments,
three tasks are simulated in the region, i.e., |Q| = 3.
For simplicity reasons, we consider the data granularity
requirement of all tasks to be the same. Thus, for all
tasks, the entire region is divided into 8 × 20 areas
of 25 × 25 m2, i.e., |Lq| = 160, ∀ q ∈ Q. Moreover, by
setting |Tq| = 10, the lifetime of all tasks is composed
of ten time slots. For each area, the required amount of
data in a time slot is set to be 5 (rqlt = 5, ∀ q ∈ Q, l ∈ L,
t ∈ T ). Since a participant’s incentive requirement could
be realized in different formats in practice, such as real
money or bonus points, we use dimensionless units to
represent both the participants’ incentive requests and the
tasks’ budget constraints. The default budget of each task
is set to be 200 or cq = 200, ∀ q ∈ Q.

• All 618 trajectories in the considered region are taken
as potential (candidate) participants, i.e., |M| = 618, as
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shown in Fig. 3(c). Since these traces are recorded at
different times, in our simulation, we simply neglect their
time index and overlay them into the same time period. For
each mobile user, given that the best GPS accuracy is about
5 m, we divide the entire region into 40 × 100 subregions,
where each subregion covers an area of 5 × 5 m2, and we
identity them as the mobile users’ locations instead of the
original GPS coordinates. The first GPS record of each
trajectory that falls into the aforementioned simulation
region is used as the initial location of a mobile user.
Fig. 3(b) shows initial locations of all 618 users. The total
number of samplings |H| of each participant is set to 100,
and the next 100 GPS records of each trajectory are used
to represent the actual locations of samplings. In addi-
tion, users’ sensing capabilities are randomly generated
as a uniformly distributed random variable with which
each user has 50% likelihood of carrying the sensor for
each task, as sqm = rand(0, 1), ∀m ∈ M, q ∈ Q. If not
specifically mentioned in the following experiments, their
incentive requirements dm for participating in the entire
sensing time period are also randomly generated from 1 to
20 units.

• To construct the location transition matrix P (Δt), we
analyze the adjacent movement of all 618 trajectories from
one point to another. Each square in the figure represents
an area l, ∀ l ∈ L, and its gray value denotes the summed
possibility for a participant to appear in this area from
any initial location. It can also be regarded as the average
amount of time that a participant spends in a specific area
during the duration of simulation.

Collectively, it is interesting to put Fig. 3(a)–(d) together, and
we obtain the following observations.

• The concentrated trajectories in “Region 1” [see Fig. 3(a)
and (c)] are exactly the main road to the Sigma Building,
as the office building of Microsoft Research Asia, where
employees spend most of their day.

• The “yellow strip” in “Region 2” [see Fig. 3(a) and (c)]
corresponds to the very busy Zhichun Road, where traffic
is always high.

• As shown in Fig. 3(a), there is a shortcut from the west
to the east, composed of three road sections between a
couple of residential areas. Its west point connects another
busy road, i.e., the 4th Road of South Zhongguancun. This
observation is confirmed by trajectories in Fig. 3(c).

• “Region 3” [squared by the blue dashed line to the north-
west corner; see Fig. 3(b)] has the highest population
density if considering their initial locations. However, as
shown in Fig. 3(d) for the average sojourn time, most of
them are just pass-by users and will leave the simulation
region soon after.

• Fig. 3(c) also shows that the density of participants’ initial
locations are quite high in “Region 5,” where users spend
most of their time [see Fig. 3(d)]. Through a field trip, we
find that “Region 5” is a newly built residential community
with outdoor fitness facilities (where the elderly like to be),
and it is farthest from the main roads.

• Fig. 3(c) shows that “Region 4” has a relatively lower
density, but Fig. 3(d) shows that many participants enter
into that area and spend quite some time here. From the
map, we see that “Region 4” is the exact spot of the Sigma
Building.

All these features observed from the real-world trajectories
further confirm the necessity to consider users’ mobility pat-
terns for participant selection.

B. Implementation

We refer to the proposed scheme as “DPS,” and to com-
pare the system performance, two other participant selection
schemes are simulated, namely: 1) the random selection method
(referred to as “RS”) is considered as the benchmark, and 2) a
reversed-auction-based method (referred to as “RA”), which is
slightly modified from the existing algorithm RADP [17]. RS
selects participants randomly until the total incentive budget
runs out; RA is slightly modified from RADP [17] as to better fit
our scenario. That is, the basic idea of RADP is to select partic-
ipants who can provide higher sensing capabilities with a unit
incentive request. According to our definition of participants’
sensing capability in Section I, namely, the number of equipped
sensors, RA used for comparison purposes select participants
who have higher ratios between the number of equipped sensors
and the incentive requirements, until the total incentive budget
runs out. All three schemes and environmental settings are
written by script files in the PHP programming language.

C. Results

We first show the accuracy of our probability-based data
collection method. Ten randomly selected participants are taken
as a test set, and their real-trajectory-based data collection in
the first time slot is calculated. Meanwhile, their data collection
expectations in the first time slot are also calculated using the
generated location transmission matrix and their initial loca-
tions. In each round of the experiment, a location transmission
matrix is generated by randomly selected 10, 50, 100, 200, . . .,
600 participants. The accuracy of each round is shown in Fig. 4,
and we can observe that the average accuracy of data collection
estimation rapidly increases when few trajectories are taken as
the training set and finally reaches 77% when all participants
are involved in the training set.

We show the running process of our proposed approach when
the incentive budget of each task is given as 200. In each round
of iteration, the efficiencies of all unselected participants are
calculated, and the participant with the highest efficiency is
selected and paid. Fig. 5 shows the efficiency of the selected
participant in each round of iteration. We observe that, when
600 allowed incentives are given from three tasks, 107 partic-
ipants are selected. Moreover, the predicted efficiency of the
selected participant in each step sharply decreases in the first
20 steps, followed by a long tail after 40 steps, where 511 uns-
elected participants’ efficiencies are lower than 1. This implies
that our approach can provide considerable QoI satisfaction for
all sensing tasks, although the budget is quite limited.
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Fig. 4. Error rate of data collection estimation under different training sets.

Fig. 5. Efficiency of the participant selected in each round of iteration.

We further show the remaining budget after a participant is
selected and paid in each iteration (see Fig. 6). The remaining
budget of the RS scheme decreases at an almost fixed rate, and
the budget runs out after 62 steps. The remaining budget of our
DPS scheme decreases at a much lower rate, since it considers
both increasing the level of QoI satisfaction and satisfying the
participant’s incentive requirement, and it also runs out after
105 steps. The remaining budget of the RA scheme decreases
at a lowest rate, since it only selects the cheapest participant
without QoI guarantees, and it runs out after 145 steps.

In the experiment, when participants are selected, we are able
to calculate their total collected data by their known trajectories.
Next, we use the amount of collected data, the number of
selected participants, and data uniformity as three indicators to
evaluate their performance. Here, data uniformity is measured
by the proposed method in [39]. That is, the entire region
contains n areas (n = |L| = 160 in our case), and let a denote
the total amount of collected data. Then, n′ (n′ = 50 in our
case) uniformly distributed areas are randomly generated, and
the number of samplings on these areas is denoted as a′ accord-
ingly. If n′ areas are randomly generated by enough times (e.g.,
100 in our case), the average difference between a/n and ′/n′

Fig. 6. Remaining incentive budget after each round of iteration.

Fig. 7. Impact of task budget on the total amount of collected data.

of each run will show the degree of inhomogeneity of sampling
distribution. Thus, the disuniformity index of samplings can be
denoted as

100∑
i=1

∣∣∣∣a′(i)n′ − a

n

∣∣∣∣ . (35)

The larger the disuniformity index is, the more inhomogeneous
the distribution of collected samplings is.

First, we study the impact of tasks’ total incentive budget on
different approaches. We randomly generate 30 different com-
binations of incentive requests and sensing capabilities (i.e.,
the number of equipped sensors) for all participants. For each
combination, we increase the allowed amount of incentives
from each task every ten units, i.e., from 10, to 20, to 30, and so
on, until it reaches 500 units.

Fig. 7 shows the total amount of collected data by three
participant selection strategies. We observe that the amount of
collected data by RA and DPS methods is significantly larger
(>200%) than that of RS. Moreover, DPS exhibits 14.2% more
data than that of RA. Furthermore, the overall trend for the
amount of collected data, with respect to the task budget, is
approximately linear for RS, whereas the amount of collected
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Fig. 8. Impact of task budget on the total number of selected participants.

data rapidly increases for DPS and RA when the total task bud-
get is inadequate. Thus, it is clear that DPS performs better in
collecting more data (and, therefore, has better QoI experience),
particularly under the condition that the total incentive is tight,
consistent with what has been discussed in Section VI-B.

Fig. 8 shows the impact when changing the task budget on the
total number of selected participants, where we observe that, for
fixed task budget, our DPS method involves significantly fewer
participants, i.e., 19.3% fewer than that for the RA scheme.
However, compared with RS, DPS involves 118% more partic-
ipants. Since it is fair to relate the number of participants with
the total energy consumption, we can safely conclude that DPS
uses nearly 20% more energy if compared with the RA scheme.
This is because in each round of iteration, RA selects only
the participants with lowest incentive requests, whereas DPS
selects those considering both the incentive requests and data
collection efficiencies, and thus, DPS recruits less participants,
which is consistent with Fig. 6.

Fig. 9 shows the trend of the defined disuniformity of the
collected data. It can be seen that RS achieves the best data
uniformity, whereas DPS and RA behave closely. The indexes
of DPS and RA rapidly increase when the budget is tight,
which means that the collected data are more nonuniformly
distributed in both temporal and spatial dimensions. How-
ever, when the budget reaches a certain threshold (200 from
each task, as shown in the figure for the DPS scheme), the
uniformity measurement stops increasing. This saturation is
simply due to the spatially nonuniformity distributed participant
trajectories—that when more budget is given, more participants
are selected, thus leading to a higher degree of disuniformity.
However, when all participants are given enough rewards, no
more participants can be chosen, and thus, the defined disuni-
formity index stops increasing.

We further demonstrate the uniformity of data collection by
DPS, RS, and RA approaches, when setting different incentive
requests for different areas, i.e., incentive requirements are not
uniformly distributed in the spatial dimension. Recall that in
Fig. 3(d), many mobile users spend much time in residential
Region 5 and office Region 4; we therefore set higher incentive
requirements (ranging from 10 to 20) for the 157 mobile users

Fig. 9. Impact of task budget on the spatial distribution of the collected data
when incentive requests are uniformly distributed among areas.

Fig. 10. Impact of task budget on the spatial distribution of the collected data
when incentive requests are not uniformly distributed among areas.

near Region 4, and lower incentive requirements (ranging
from 1 to 10) for the other 195 mobile users near Region
5. This is because users at home may have more time to
contribute, whereas employees will have to be paid more to get
them involved. Fig. 10 shows the change in the disuniformity
index of the collected data. It can be seen that RA is greatly
affected by spatially different requested incentives, because it
tends to select incentive-efficient mobile users in Region 5.
Meanwhile, DPS is also affected, but the average value of the
disuniformity index just slightly increases by 0.023. When the
overall task budget is quite tight, participants selected by DPS
and RA are both randomly distributed in the spatial domain,
since the incentive requests of most participants are randomly
generated. However, when more budget is given, RA rarely
selects those users from the regions in which their incentive
requests are high, but our proposed DPS scheme is driven to
select expensive participants in those regions by Frobenius
norm in (9); as a result, the achieved QoI metric increases
much faster when the required data collection resides in those
regions having less data collected.
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Fig. 11. Impact of the number of tasks on the average amount of collected
data of each task.

Fig. 12. Impact of the number of participants on the total amount of collected
data.

Then, we verify our proposed DPS’s performance while
changing the number of tasks, as shown in Fig. 11. It can be
seen that when 5–17 tasks are required, the average amount of
collected data of all tasks obtained by DPS increases by 53%,
whereas that of RA increases by only 42%, which indicates
that DPS is more efficient when handling more tasks. This is
because the total task budget increases when the number of task
increases. With this extra budget, DPS can select more efficient
participants to collect data, rather than randomly selecting users
by RA, as consistent with Fig. 7.

Moreover, we conduct an experiment to verify the impact of
the number of participants on DPS. We randomly select 100,
200, . . ., 600 trajectories as candidate participants. We decrease
the budget of each task to 100, to motivate the selection of a
subset of participants only. It is shown in Fig. 12 that the amount
of collected data of RS does not increase with the increase
in the number of participants, while the amount of collected
data of DPS and RA increases. It indicates that both DPS and
RA can select more efficient participants from the incremental
extension of candidates, and thus, the achieved QoI satisfaction
index will also increase.

Fig. 13. Impact of task budget on the amount of collected data, when incentive
request proportionally varies to participant’s sensing capability.

Fig. 14. Impact of different trajectory prediction methods on the amount of
collected data.

Finally, we verify the impact of the participant’s incentive
requirement. In practice, most participants tend to request
more rewards in return for contributing more sensory data.
An extreme scenario is then simulated, where all incentive
requirements are exactly proportional to their respective sens-
ing capabilities or the number of equipped sensors on their
smart devices. Fig. 13 shows that the amount of collected data
from the RA scheme is lower than that from RS, whereas our
proposed DPS still performs 43% better than RS. Higher QoI
satisfaction is achieved by not only choosing participants whose
incentive requests are relatively low, but more importantly, it
fully considers how to best fit all participants’ sensing capabil-
ities to the task QoI requirements.

Finally, since our proposed DPS scheme selects participants
based on their future trajectory estimations, this prediction ac-
curacy eventually determines the overall system performance.
To investigate this impact, we compare the amount of collected
data and the number of selected participants achieved by DPS
using the following three trajectories: 1) the probability-based
trajectory prediction method we used in this paper; 2) trajec-
tories known a prori; and 3) directional trajectory prediction.
The directional trajectory prediction supposes that the first
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Fig. 15. Impact of different trajectory prediction methods on the number of
selected participants.

two locations of each mobile user are known, and then users
keep moving toward the same direction with the same speed.
Figs. 14 and 15 show the result in terms of the amount of
collected data and the number of selected participants among
the aforementioned three trajectory prediction-powered DPS
schemes. It can be seen that if the location prediction accuracy
improves, the total amount of collected data can improve by
37% on average, while the energy consumption can be fur-
ther reduced by 35%. On the other hand, probability-based
trajectory prediction involves almost as many participants as
that of the directional prediction scheme, but it collects 29%
more data on average. This indicates that the probability-based
trajectory prediction can achieve higher accuracy in predicting
the data collection of participants compared with the directional
prediction scheme.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, DPS has been proposed to collect the maximum
amount of sensory data for all sensing tasks in both temporal
and spatial dimensions under budget constraints. A QoI satis-
faction metric was introduced to quantify the degree of how
collected sensory data can satisfy multidimensional task QoI
requirements in terms of data granularity and quantity. The
expected amount of collected data by each participant was then
predicted by his/her sensing capability, initial location, and a
probability model that together calculates his/her probability to
move from one location to another, based on the historical tra-
jectory information. Based on all these, DPS is thus established
to select participants whose data collection expectations benefit
the QoI satisfaction metrics of multiple tasks most compared
with their incentive requirements. Extensive experimental re-
sults, based on a real trace in Beijing, show the effectiveness
and robustness of DPS compared with other existing schemes.

As this paper mainly focuses on how to best fulfil multiple
concurrent tasks’ QoI requirements, incentive budgets of tasks
and incentive requirements of participants are just taken as
constraints to the optimization problem and are not expandingly
discussed. However, to best fulfill the QoI requirements while
minimizing the cost is another challenging research issue,

particularly under the condition that participants’ incentive
requirements can be dynamically decided according to the
amount of data (services) they provide or the energy status of
their devices. In the future, we plan to extend our model to
balance the incentive cost and the gain of QoI satisfaction, for
as revealed by the experiment results in Fig. 5 in Section VI, the
gain of QoI by providing extra incentive budget to those partic-
ipants in the long tail section in Fig. 5 is very limited. We also
plan to dig into the field of selecting the most energy efficient
participants, to extend the overall lifetime of the participants’
network as well as collecting satisfactory sensory data for tasks.
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