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This article presents a Light Intensity–based Positioning System (LIPS) for indoor environments. The system
uses off-the-shelf light-emitting diode lamps as signal sources and light sensors as signal receivers. The
design is inspired by the observation that a light sensor has deterministic sensitivity to both the distance
and incident angle of a light signal, an under-utilized feature of photodiodes now widely found on mobile
devices. We develop a stable and accurate light intensity model to capture the phenomenon, based on which
a new positioning principle, Multi-Face Light Positioning, is established that uses three collocated sensors to
uniquely determine the receiver’s position, assuming merely a single source of light. We have implemented
a prototype on both dedicated embedded systems and smartphones. Experimental results show average
positioning accuracy within 0.4m across different environments, with high stability against interferences
from obstacles, ambient lights, temperature variation, and so on.
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1. INTRODUCTION
The prospect of indoor location-based services (LBS) and the poor performance of in-
door global positioning services (GPS) have recently fueled much interest in indoor
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Fig. 1. LED lamps and light sensors. (a) LED lighting in an airport terminal. (b) LED lighting in a large
warehouse. (c) An infrared LED lamp, 8W. (d) A high-power visible light LED lamp, 100W. (e) A smartphone
with a light sensor (enclosed by red square).

positioning techniques. Among the numerous approaches to achieving such a service,
the radio-frequency- (RF) based positioning technique has attracted perhaps the most
attention, due to the wide deployment of WiFi access points. A major challenge faced by
this approach is that RF is subject to serious multipath effects and is vulnerable to en-
vironmental interferences. This makes it difficult to establish an accurate propagation
model that allows accurate distance estimation. Recent work has focused on the RF
fingerprint approach, which obviates the need of a propagation model but then requires
manual effort to establish a fingerprint database in support of mapping from signal
strengths to positions. The fingerprint collection process is often laborious, leading to
various research efforts to reduce the cost (e.g., Chintalapudi et al. [2010] and Yang
et al. [2012]). Despite significant advances made in this direction, a fully automatic
solution for general indoor environments has remained open.

In this article we explore an alternative approach, using visible or infrared (IR) light
signal rather than RF, to achieving indoor positioning. The main advantage of light
signal over RF is that the propagation of light is more predictable than that of RF. This
is because on ordinary objects, such as walls and furniture, the light signal experiences
only insignificant reflection, thus the signal at a receiver is subject to negligible mul-
tipath effect. This largely eliminates the uncertainty in characterization of received
signal strength (RSS), laying a sound basis for further modeling and derivation of
position.

Our system, called the Light Intensity–based Positioning System (LIPS), uses com-
modity light-emitting diode (LED) lamps (see Figure 1) as signal sources and light
sensors available on mainstream mobile devices as signal receivers. A low-end micro-
controller is used to make the LED lamp switch on and off at specified frequencies,
so the light signals from sources of interest can be separated from ambient ones in
the frequency domain. The recovered light signal strength on the light sensor reliably
reflects the sensor’s distance and orientation with respect to the lamp. This allows one
to establish an accurate RSS model that paves the way to fingerprint-free position-
ing. From a practical point of view, the LIPS design could re-use the existing lighting
infrastructure for indoor positioning in many public environments, such as airport ter-
minals (Figure 1(a)), warehouses (Figure 1(b)), shopping malls, and hospitals, where
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lamps are extensively deployed. These lamps can conveniently serve as positioning
references, provided they are distinguishable in the frequency domain with different
flashing rates and have known positions.

Compared to the RF-based approach, LIPS essentially trades off obstacle penetration
ability for improved predictability of signal propagation. The design is centered around
two questions: (1) how accurate and stable is a light sensor in producing position-
related information, and (2) how do we exploit that information for positioning while
minimizing the line-of-sight limitation of light signal?

For the first question, we conduct extensive experiments to study a light sensor’s
characteristics. The results show that a light sensor can be used to infer not only dis-
tance but also angular information from light signal. The angular information turns out
to be very useful for obtaining the position of a light sensor. Based on this, we propose
a Multi-Face Light Positioning (MFLP) method for positioning, which uses three collo-
cated sensors to uniquely determine the receiver’s position, assuming merely a single
source of light. This single-source positioning method alleviates the concern of possible
high deployment density of light sources, especially in a complex environment, where
the light signal’s line-of-sight restriction makes it expensive to circumvent obstacles.
We show that in such an environment, MFLP requires far less than 1/3 (the theoretical
ratio) of the lights as required by trilateration for the same degree of coverage, thus
slashing the deployment cost to more accessible levels.

We present two designs for indoor positioning, one for a dedicated receiver and the
other for smartphones. We evaluate the systems in various realistic environments and
show that LIPS can produce positioning accuracy to 0.4m on the average, and that is
stable across significant environmental variations.

The proposed positioning scheme is particularly suitable for indoor vehicles (e.g.,
Automated Guided Vehicles [WIKI-AGV 2016]) or robotics (e.g., automatic cleaning
robot). It can be used alone to support LBS, or it can be used in combination with other
positioning techniques, depending on specific environmental features. For example,
when WiFi signal is available, a WiFi fingerprint database could be established while
the LIPS receiver is being used. This database can in turn help the LIPS receiver
position itself in places where line of sight is unavailable.

The next section establishes the light intensity model, Section 3 describes the posi-
tioning principle, Section 4 and Section 5 describe the implementation of two prototype
systems, Section 6 presents the experimental results, Section 7 discusses possible ex-
tensions of the design, Section 8 documents related work, and Section 9 concludes the
article.

2. LIGHT SENSOR CHARACTERISTICS
In order to examine the characteristics of a light sensor under different light frequencies
and power supplies, we considered two typical types of LED lamps,

—An IR LED lamp, with an 8W power rating and a 12V direct current (DC) power
supply (see Figure 1(c)), as well as an illuminating angle of 120◦. It has a sensing
range of 7.5m for the sensor, covering an open area of 130m2 on the ground when
hung on a 3m-high ceiling.1

—A visible light LED lamp, with a 100W power rating (see Figure 1(d)), and a sensing
range of 30m, covering 2000+ m2 in open space when hung at a proper height.

Each lamp has a small illuminating chip around the size of 1.5cm × 1.5cm and thus
can be approximately viewed as a point source of light from a distance of a few meters.
We focus on the IR lamp and only briefly report on the visible light one. In practice, IR

1At the time of this writing, a lamp costs about $30 US.
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Fig. 2. RSS in the time domain and frequency domain (excluding the DC component). The LED lamp flashes
at a frequency of 65Hz, and the nearby fluorescent lamps flash at a frequency of 100Hz.

lamps can be deployed in environments where lighting devices already exist and extra
visible lights are undesirable.

The light sensor used is an Intersil ISL29023,2 which is used by the Samsung Omnia
II GT-I8000 smartphone. We used a stand-alone sensor connected to a microcontroller
for the experiment.

In reality, what the sensor receives is a mixture of the light signals from the sources
of interest and the background, including daylight and artificial lights. (Note that
visible lights also contain IR signals.) The ambient light could be so strong that the
useful signals are completely overwhelmed. In order to isolate the useful light signals,
we make the LED lamp switch on and off with a specified frequency using a low-end
microcontroller. We then use FFT and inverse FFT to extract the signal strength at a
particular frequency. Figure 2 shows a sequence of raw measurements of IR intensity
and the FFT result. In this test, the IR LED lamp flashed at a frequency of 65Hz,
and the nearby fluorescent lamps at the standard 100Hz, with daylight imposing a
strong intensity on the sensor with reading about 850, an order of magnitude higher
than the lamp’s effect on the sensor. Two spikes corresponding to the IR lamp and the
fluorescent lamps can be clearly identified from the figure, which allows us to recover
the intensity of the IR signal faithfully. In the following, when we say a light signal
sensed by a light sensor, we mean the signal after the FFT processing.

The model for light intensity, or receive signal strength (RSS), is similar to a conven-
tional light propagation model (e.g., the model in Yang et al. [2013b] or the Lambertian
model [Li et al. 2014]), with a focus on its stability in a realistic environment. The RSS,
denoted by s, on a light sensor is mainly determined by three factors: the distance of
the light sensor to the light bulb d, the incident angle µ of light, and the emitting angle
ω. The incident angle µ plays an important role here, due to the working principle
of the photodiode, which generates current under the striking of photons. When the
flat contact layer is not perpendicular to the light, the energy with which the photons
strike the contact layer decreases, and thus the received light energy drops. Normally,
the larger the deviation to the perpendicular orientation, the more loss to the light
intensity [Intersil 2012]. Finally, s decreases with increasing ω, following the charac-
teristics of light emitting diodes that behave in the same way. We call the direction
with ω = 0 the central ray. Furthermore, we say that the lamp is vertically oriented
when the central ray is vertical and horizontally oriented when the central ray is hori-
zontal. Figure 3 shows the RSS model of a vertically oriented lamp, in which the tilted
rectangle represents the sensor’s surface, called its sensing face. Figure 4 shows the
placement of the lamp of sensor in our real experiments.

2The ISL29023 is an integrated ambient and infrared light to digital converter [Intersil 2012]. The same
family of sensors are also found on other phones such as the Motorola XT882.
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Fig. 3. RSS model of the light sensor. The light sensor’s surface (sensing face) is centered at (0, 0, 0), while
the lamp is located at (x, y, z). The RSS of the sensor, s, is a function of distance d, incident angle µ, and
emitting angle ω.

Fig. 4. Placement of the LED IR lamp and sensor in the experiments.

We need to determine three functions that respectively represent the influences of
the three factors on RSS.

— fd(d), representing the impact of d on s, is obtained by varying d while fixing µ = π/2
and ω = 0, that is, making the sensing face perpendicular with the central ray.

— fµ(µ), representing the impact of µ on s, is obtained by varying the angle of the
sensing face at a fixed d, with ω = 0.

— fω(ω), representing the impact of ω on s, is obtained by moving the sensor along a
circle while keeping µ = 0, that is, making the sensing face perpendicular with the
emitting ray.

The light intensity function is then modeled as:

s = fd(d) · fµ(µ) · fω(ω). (1)

Interference-free scenario. First, we examined the property of the light sensor
in a dark room at nighttime, where no ambient light is present. The first column of
Figure 5 shows the impacts of the three factors, d, µ, and ω, on the RSS. It can be seen
that fd(d) quite closely follows the well-known inverse square law for light intensity.
These could be accounted for by calibration but are ignored in our current design.) We
can also see that fµ(µ) decreases with µ with fairly high predictability. The trends can

ACM Transactions on Sensor Networks, Vol. 12, No. 4, Article 28, Publication date: September 2016.



28:6 B. Xie et al.

Fig. 5. The light sensor’s reading as a function of d, µ, and ω in two scenarios for the IR lamp.

be roughly captured by a sin function. For fω(ω), the trend is also very deterministic,
which can be modeled with a polynomial function.

Impact of ambient lights. This set of experiments was conducted in the morning,
when the daylight imposed an IR intensity reading of 800 on the sensor. In addition,
three fluorescent lamps were turned on, emitting periodic IR signals with frequency
100Hz. The intensity of ambient IR light was strong enough to overwhelm the RSS
from the lamp at a distance of a few meters; however, the frequency domain treatment
can successfully extract the component of light intensity that we are interested in.
The second column of Figure 5 shows the impacts of the three factors, d, µ, and ω,
on the RSS. It can be seen that the results in both interference and interference-free
environments are quite consistent, with differences normally within 10% of each other.

Figure 6(a) shows the impact of ambient light intensity as experienced by the sensor
at different times (e.g., nighttime and daytime) and at various places in a room. The
maximum value 4,000 corresponds to the RSS near an open window around noon on
a sunny day. It can be seen that the extracted IR intensity of the LED lamp remains
relatively stable, with a standard deviation as small as 0.58.

Impact of light reflection. This experiment examines how light reflection from
surrounding objects affects the RSS. In a dark room, we kept the lamp horizontally
oriented, with its central ray parallel to a wall and the floor, additionally varying
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Fig. 6. Properties of a light sensor under various conditions. (a) Sensitivity to ambient light intensity.
(b) Sensitivity to light reflection. (c) Sensitivity to ambient temperature. (d) Sensitivity to d under the visible
light lamp. (e) Sensitivity to µ under the visible light lamp. (f) Sensitivity to ω under the visible light lamp.

the ray’s distance to the wall. The light sensor was placed at a certain distance from
the lamp with its sensing surface being perpendicular to the central ray. Figure 6(b)
shows how the RSS changes with the distance to wall. It can be seen that the RSS
experiences only insignificant changes. In our daily life, most materials (except glasses,
polished metals, etc.) give no more than a few percentages of specular (i.e., mirrorlike)
reflection [WIKI-DifRef 2016]; that is, most of the light, on hitting the surface of an
object, is scattered in all directions, leaving only a small portion of reflected energy on
the sensor. This explains the robustness of the RSS against wall reflection.

Impact of ambient temperature. Figure 6(c) shows how the RSS changes with
ambient temperature. The low temperatures were produced by placing ice cubes around
the sensor, and the high temperatures were generated by blowing at the sensor using a
hair drier. We can see that the RSS increases with temperature, which agrees with the
property of the photodiode reported in Intersil [2012]. The trend is very mild, suggesting
that only small errors are introduced by the temperature factor. In addition, the trend
is monotonic, so the error could be compensated for with simple calibration.

High-power LED lamp. We repeated the above experiments with the visible light
lamp. Figure 6(d) shows the relationship between d and RSS, which closely matches
the baseline curve of function k/d2. Due to the much increased power, the lighting
range extends to nearly 30m, and for the same d, the RSS is much higher than with the
IR lamp. In this test, the lamp was horizontally oriented and placed within a narrow
corridor (about 2m wide) surrounded by walls, the floor, and wooden boards, which
presented complex conditions for light reflection. Compared to the low power IR lamp,
the increased power causes a more noticeable reflection effect. However, the variability
is still below approximately 10% of the baseline. In a practical system, the lamps will be
hung on ceilings and sensor oriented primarily upward, so the sensor is unlikely to be
exposed to as strong of a reflection. It is thus reasonable to assume that the reflection
effect does not fundamentally invalidate our RSS model in typical environments.
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Figures 6(e) and (f) show that the two functions fµ(µ) and fω(ω) remain highly
deterministic and consistent at different positions, though their particular forms differ
from those of the IR lamp, due to the different photoelectric effects of the light sensor
under IR and visible lights and also because of the different scattering effects of the
lamp covers.

3. LIGHT POSITIONING PRINCIPLE
In this section, we describe two principles of light sensor positioning, one called MFLP,
which is our emphasis, and the other following the classic trilateration method.

The basic idea of MFLP is to have three (or more) properly oriented sensors to collect
signal strengths as well as the sensors’ orientation measures. Along with the pre-
defined RSS model, the measured data provide sufficient spatial constraints to locate
the receiver. We call the top contact layer of the photodiode the sensing face of a light
sensor and the plane containing it the sensor’s sensing plane.

3.1. Multi-Face Light Positioning
Assume the considered sensing face is centered at the origin O = (0, 0, 0) and the point
source of light is located at X = (x, y, z), where x > 0, y > 0, z > 0, µ ∈ (0,π/2),ω ∈
(0,π/2). The corresponding sensing plane has the form Ax + By + Cz = 0, where
A, B, C are determined by the sensor’s tilt and heading. Then, the distance between X
and O is

d =
√

x2 + y2 + z2,

and the distance between X and the sensing plane is

d′ = |Ax + By + Cz|√
A2 + B2 + C2

.

Following Equation (1), let fd(d) = k/d2, fµ(µ) = sin(µ) = d′/d, and fω(ω) =
fω(arccos(z/d)), where fω(·) is a monotonically decreasing function of ω (hence z).
Therefore,

s = k
d3

|Ax + By + Cz|√
A2 + B2 + C2

fω
(

arccos
z
d

)
, (2)

where d =
√

x2 + y2 + z2, x > 0, y > 0, z > 0, k > 0, and s is a real number between 0
and some maximum reading value sm > 0.

THEOREM 3.1. When no measurement errors occur, three linearly independent sensing
planes that pass through the origin and that satisfy the RSS model as specified by
Equation (2) determine a unique solution of X = (x, y, z).

The system of equations generated by the mentioned three sensing planes is a high-
order and nonlinear one, whose properties are in general not easy to obtain. Fortunately,
the structure of A, B, C is simple enough to enable reduction among the equations,
which makes it possible to establish an exact relationship between the solvability and
the linear independence property of (Ai, Bi, Ci). The proof is provided in Appendix A.

Theorem 3.1 suggests that if we can create three linearly independent sensing planes
on a receiver, and that these sensors can simultaneously “see” the light source (i.e., in
line of sight), then one can determine a position of the light source. With a bit of
coordinate transformation, we can determine the position of the receiver provided the
position of the light source.

When measurement errors exist, three linearly independent sensing faces may
not lead to a solution. In this case, what we look for is a least-squares solution that
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Fig. 7. The location solution sets of the sensor for different sensing faces.

minimizes the sum of the squares of the errors between each measured s and the
calculated s from the corresponding equation.

3.2. Why Linear Independence of Faces
Since the geometric structure of the problem is not immediately intuitive, we now
give a hypothetical example of MFLP to illustrate the necessity of the faces being
linearly independent, which provides a key guideline for our system design. For the
purposes of demonstration, we assume a simplified RSS model, in which fd(d) = 1/d2,
fµ(µ) = sin(µ), and fω(ω) = cos(ω). Then Equation (2) can be rewritten as

s = z|Ax + By + Cz|√
A2 + B2 + C2(x2 + y2 + z2)2

,

where x > 0, y > 0, z > 0.
Consider four sensing faces centered at the origin, whose sensing planes are x = 0,

y = 0, z = 0, and x + 2y = 0, as shown in Figures 7(a)–(d), respectively. The lamp is
located at X = (10, 10, 10) and imposes light intensity s1, s2, s3, and s4 on the sensors,
respectively. Given the known position of the lamp, the theoretical light intensities
should be s′

1 = s′
2 = s′

3 = 1/900, and s′
4 = 1/300

√
5. Assume no errors occurring from

the light propagation and measurement, the RSS seen on the sensors should be si = s′
i.

Now we choose the first three sensing faces, x = 0, y = 0, z = 0, which are linearly
independent. These faces lead to a system of equations h · z/(x2 + y2 + z2)2 = 1/900,
where h = x, y or z. Each of these equations will generate a solution set for the sensor,
as depicted by the curved surfaces in Figures 7(a′)–(c′), respectively. Figure 8(a) shows
the intersection of these three solution sets. It turns out that these surfaces intersect
at a single point (10, 10, 10), which matches the true location.

Next, consider an alternative set of three sensing faces, x = 0, y = 0, x + 2y = 0,
which are linearly dependent. Figure 8(b) shows the intersection of their corresponding
solution sets. Differing from the first case, these sets do not intersect at a single point
but instead produce a curve segment (only partly shown due to the blocking of surfaces),
meaning infinitely many valid location solutions for the sensor. This comparison shows
why linear independence of the sensing faces is necessary for a unique solution of the
sensor’s location.
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Fig. 8. The uniqueness of position solution. (a) The solution sets for the three sensing faces x = 0, y = 0, z = 0
intersect at a single point (red box). (b) The solution sets for the three sensing faces x = 0, y = 0, x + 2y = 0
intersect at a curve (partly shown).

Fig. 9. Trilateration requires many more lamps than MFLP does for a full coverage of the environment.
Small triangles and red dots represent the lamps. In all cases, MFLP needs only a single lamp (red dot).

3.3. MFLP vs. Trilateration
The trilateration method assumes a single sensor, with three (or more) lamps as posi-
tion references [Li et al. 2014]. To reduce unknowns, the sensing face is assumed to be
placed horizontally. Assume the sensor is located at (x, y, z), and there are three non-
collinear lamps at distinct positions (xi, yi, zi), i = 0, 1, 2; then, the following system of
equations can be established with which one can solve for the solution:

k
d3

i
· |z − zi| · fω

(
arccos

z − zi

di

)
= s, (3)

where di =
√

(x − xi)2 + (y − yi)2 + (z − zi)2, k > 0, and s is the RSS.
While simplifying the design at the receiver side, trilateration shifts cost to the

transmitter side. In theory, trilateration requires 3 times as many lamps as MFLP does.
In practice, however, the difference can be much higher. Figure 9(a) shows a scenario
where two adjacent rooms share a wall and a relatively narrow gate. With trilateration,
every point needs to see at least three lamps. For a minimum deployment cost, the three
lamps could be deployed near the gate. However, trilateration further requires that the
lamps not be close by or collinear, or huge errors or position ambiguities may arise. This
makes it necessary to place at least two additional lamps in each room (Figure 9(b)).
Thus, trilateration ends up using 5 times as many lamps as used by MFLP. Figure 9(c)
further shows a case where trilateration needs 9 times as many lamps. In a real-world
environment, obstructions may appear in different forms, but a similar comparison
can be drawn between the two approaches in terms of light coverage and deployment
density.
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Fig. 10. (a) Dodecahedron (conceptual model). (b) Half dodecahedron (implementation model) on which six
light sensors, represented by green blocks, are installed.

Therefore, when the positioning system is deployed from scratch and lamp deploy-
ment cost is a primary concern, the MFLP approach appears to be a more economical
solution. On the other hand, when there already exist dense lamps (as in some public
places such as shopping malls, airport terminals, etc.) that can be re-used for position-
ing, and when a small-sized receiver is preferred, the trilateration approach might be
the choice. Since the trilateration approach is well studied and understood, we shall
concentrate on the MFLP approach in the following sections.

4. LIPS RECEIVER DESIGN
In this section we describe a design for a dedicated LIPS receiver based on the MFLP
principle.

4.1. Number and Placement of Light Sensors
We say that a sensor face can “see” a point p if there is a line of sight between p
and all points on that sensing face. Although a receiver can be positioned with only
three sensors at particular places, visibility of those sensors to a lamp may be lost
when the receiver is moving around. Thus, we need more than three sensors to support
positioning everywhere (assuming full coverage of light on the ground). Toward that
goal, we need to answer two questions: How many sensors do we need, and how do we
place them?

For convenience of implementation, we focus on a regular polyhedron framework
on which the sensors are to be placed. Our choice is a dodecahedron model, as shown
in Figure 10(a), in which 12 regular pentagonal faces each host a sensor. This model
possesses three desirable properties:

(1) Tri-face visibility: Any point p in the space beyond a short distance from the dodec-
ahedron can see at least three faces of that dodecahedron;

(2) Tri-face linear independence: Any three of the faces seen by the above-mentioned
point p are linearly independent;

(3) Minimal faces: Among all regular polyhedra, a regular dodecahedron has the small-
est number of faces that satisfy the above two properties.

Theorem 4.1 gives a more formal description of the tri-face visibility property. The
theorem can be proved with basic trigonometric operations and is thus omitted here.

THEOREM 4.1. Assume the edge length of a regular dodecahedron centered at the
origin is a, then, for an arbitrary point at a distance D from the origin, at least three
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Fig. 11. Errors of pitch, roll, and heading, produced by an acceleration sensor and a magnetic sensor.

faces of the dodecahedron can see it if

D ≥
(√

1 + 2
5

√
5 + 1

2

√
5
2

+ 11
10

√
5

)

a ≈ 2.49a.

In LIPS, a is at the order of a few centimeters, so the dodecahedron faces can be
viewed as roughly passing through the origin from the perspective of the lamp. Theo-
rem 4.1 means that if we place 12 sensors along the faces of a regular dodecahedron,
then the receiver can always be positioned, regardless of the receiver’s orientation.

The tri-face linear independence property can be easily verified by examining the
plane coefficients of the faces of a dodecahedron. Finally, the minimal faces property
can be proved by excluding the regular polyhedra with fewer faces. For example, a
cube-aligned placement of sensors may be able to position a receiver sometimes, as
demonstrated in Section 3.2, but it is easy to pick a point in the space from which only
a single face is visible.

To further reduce the cost, we make a simplification to the conceptual model by em-
ploying only one half of the dodecahedron, which is fixed on a base plane (Figure 10(b))
of the receiver. This way we need only six sensors attached to the six exposed faces.
This does not affect the positioning ability as long as lamps are hung above at ceilings
and the half dodecahedron is oriented upward.

4.2. Sensing Plane Coefficients
The coefficients of a sensing plane, namely A, B, and C, are obtained from acceleration
and magnetic sensors. Following the aircraft convention, we use three attitude angles,
pitch, roll, and heading, to describe a receiver centered coordinate system. Figure 10(b)
shows the coordinate system, in which x, y, and z are defined as forward/right/down
based on the right-hand rule, and the three attitude angles are referenced to the local
horizontal plane which is perpendicular to the Earth’s gravity.

Denote the pitch, roll, and heading by θp, θr, and θh. The first two angles can be
obtained with an acceleration sensor, which produces three components of the gravity
along the x, y, and z axes. Comparing these components against the acceleration of
gravity can give the two angles. Figures 11(a) and (b) show that these two angles can
be measured with accuracy to 2◦. A standard way of obtaining θh is using an electronic
compass. However, a compass is very susceptible to interferences. To confirm this, we
rotate a compass containing a magnetic sensor and obtain the heading error with re-
spect to a calibrated electronic compass. Figure 11(c) shows that the raw measurement
of heading can vastly deviate from the true value, with errors up to 60 degrees. We
discuss how to calibrate a compass in the next section.
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Fig. 12. Heading errors under auto-calibration. (a) Half do-
decahedron calibration. (b) Circular calibration.

Fig. 13. Heading accuracy vs. number of
magnetic sensors.

The three angles θp, θr, and θh entirely determine the orientation of the sensing plane
and thus the coefficients A, B, and C. We use the rotation matrix [WIKI-RotMatrix
2016] to convert the angles to A, B, and C.

4.3. Accurate Heading Measurement
Magnetic sensor is known to be vulnerable to environmental interferences, because
the Earth’s magnetic field is a weak signal. A mobile receiver carried around may ex-
perience distinct distortion patterns at different locations. This property is exploited
by Chung et al. [2011] to enable receiver positioning but causes trouble for a sys-
tem that needs accurate heading information in real time. The general approach to
auto-calibration of a compass requires multiple types of sensors to provide redundant
measurements to correct heading errors. The redundant information can be from op-
tical trackers [Gottschalk and Hughes 1993], inertial sensors [Hoff and Azuma 2000],
or visual analysis [You et al. 1999]. In our context, these techniques are unsuitable
because they either involve extra infrastructure or do not provide bounded errors in a
long period of time [Hoff and Azuma 2000].

LIPS uses a new auto-calibration technique for heading measurement. The idea is
inspired by the standard manual calibration method, in which sufficient 3D rotation
or several full-round 2D rotations are performed to collect magnetic field strengths.
Ideally, the readings along the three axes should form a sphere centered at the origin.
In practice, environmental interference will distort the sphere, resulting in a tilted
ellipsoid [STMicroelectronics 2010]. Given a set of manually collected magnetic field
data, the least-squares fitting method can be used to discover the parameters of the
ellipsoid, which are then applied to correct the raw measurements.

LIPS avoids the manual operation by using multiple magnetic sensors that are placed
in a spherical or circular layout. These sensors can produce a number of magnetism
readings at once, thus providing a sparse sampling of the needed magnetic data. For
3D measurement, the spherical layout is approximated with a half dodecahedron. In
this experiment, we manually collected the readings along the six faces using the same
magnetic sensor. Figure 12(a) gives the heading errors with the half dodecahedron
calibration at the same position that produced the errors in Figure 11(c). We can see
that the original error of 60+◦ is now reduced to around 4◦.

To simplify the hardware design, we can place multiple magnetic sensors in a circular
pattern when the receiver is placed horizontally. Before performing the collective cali-
bration, the magnetic sensors are individually calibrated to achieve a consistent effect
by rotating the board in an interference-free environment and collecting the readings
from individual sensors. On a horizontal plane, the reference model of the magnetic
field strength should be an ellipse instead of an ellipsoid, meaning that the fitting pro-
cess deals with fewer parameters. As a result, the heading accuracy after calibration
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Fig. 14. The CompEye receiver, sized 9.5cm×5.7cm. The six light sensors are embedded in a half-
dodecahedron model and are connected to the main board from within the model.

Fig. 15. Main board of LIPS receiver, sized 5cm×5cm.

will be more accurate than with the half dodecahedron calibration. Figure 12(b) shows
that the heading error has now dropped to around 2◦ with six sensors.

The number of magnetic sensors used should strike a balance between measurement
accuracy and cost. We perform a manual two-dimensional (2D) rotation of the magnetic
sensor at different places, obtaining varying numbers of samples (which simulate mul-
tiple sensors) to correct the heading measurement. Figure 13 shows the result at a spot
near a desktop, where the machine imposes a great interference to the magnetic field
around the sensor. In the figure, the ranges of heading error for different numbers of
sensors are shown. We see that the errors generally decrease with more sensors, and
the trend flattens at six sensors. A similar result is observed at other places in our
office. Thus, our design finally uses six sensor for heading measurement.

5. PROTOTYPE IMPLEMENTATION
We have implemented a dedicated LIPS receiver and a smartphone-based receiver.
This section details the implementation.

5.1. The CompEye Receiver
Figure 14 shows the dedicated LIPS receiver, called CompEye (compound eye), for
position-tracking applications. The receiver consists of two parts: the main board,
shown in Figure 15, and the light-sensing component. The former is a circuit board
integrating an STM32F103RC microcontroller (MCU), six AKM8975 magnetic sensors,
and an ST LIS33DE accelerometer. The magnetic sensors are arranged along a circle
for heading calibration. The light-sensing component comprises six ISL29023 light
sensors fixed on the surfaces of a half-dodecahedron model; each sensor is linked to
the main board individually. In the prototype design, the receiver is powered by an
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external battery and uses a wireless serial adapter for transmitting data to a server.
In the future, the power module will be replaced by a lithium battery like one used by
a mobile phone, and the WiFi module will be integrated into the main board.

The MCU samples each light sensor at a rate of 640Hz and performs the FFT trans-
formation to extract the light intensities of surrounding light sources (identified by
peaks in the frequency domain). The MCU also samples each magnetic sensor at a
rate of 20Hz and performs calibration, first individually and then collectively, to obtain
the current heading of the receiver. The tilt and pitch are calculated from the reading
of the acceleration sensor. The MCU maintains a sliding-window for each sensor and
performs the above calculation every $ seconds (e.g., $ = 0.3) and sends the light
intensities, heading, roll, and pitch to the server. The server stores a digital map of the
physical environment and of the deployed lamps, with which it solves for the receiver’s
position using a least-squares optimization algorithm.

5.2. Smartphone
We used a Samsung Omnia II GT-I8000 smartphone to evaluate the design. We in-
stalled an Android system with Linux kernel 2.6.32, which allowed us to configure the
light sensor in the driver to sense infrared light instead of the default visible light.

After the configuration, the phone can give correct readings of IR intensity, as veri-
fied against a stand-alone sensor. However, under periodic sampling, the sequence of
readings produced by the Android interface contains many uneven gaps in time, mak-
ing the frequency analysis difficult. This is because the OS kernel contains a routine to
smoothen sensed data and filter out readings with only small changes. This treatment
seriously affects frequency analysis. We modified the input_defuzz_abs_event() func-
tion in input.c to disable the smoothing procedure for the light sensor and re-built the
kernel, after which the sensor started working normally.

The smartphone can be positioned with the trilateration method, since there is only
one sensor. We evaluate its effectiveness in the next section.

6. EXPERIMENTS
We conduct experiments in three static scenarios and one mobile scenario. We mainly
consider IR LED lamps as they can be incrementally deployed without interfering with
the existing lighting design of an environment.

(1) In this scenario, labeled Empty-room (Figure 16(a)), an IR LED lamp is hung on the
ceiling of an empty room, where there are few obstructions and the floor is reflective.
We selected 50 points of interest with rough uniformity across the sensing area for
testing.

(2) The second scenario, Office (Figure 16(b)), is a crowded office environment with
dense cubicles, which create complex conditions for light reflection. A single IR
LED lamp was again used, and 50 points, both on the floor and on the desk, were
selected for positioning.

(3) The third scenario, Three-lamps (Figure 16(c)), is similar to the second one, except
that there were three lamps used that flashed at rates of 55Hz, 65Hz, and 75Hz.
We deliberately made the lamps’ sensing areas overlap more than necessary to
examine the effect of increased face exposure to light signals. In this scenario, 98
points of interest were chosen, with a bias to the overlapped areas. Throughout the
test, the receiver had its base plane placed horizontally on either the floor or the
desk.

(4) The fourth scenario, Three-lamps-mobile (Figure 16(d)), consists of three lamps
placed in a similar layout as in the Three-lamps scenario. This experiment is
conducted in a different building, which creates more diversity of experimental
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Fig. 16. Experimental scenarios for LIPS prototype. (a) Empty-room: An empty room with a single IR LED
lamp. (b) Office: An office environment with a single IR LED lamp. (c) Three-lamps: An office environment
with three IR LED lamps flashing at rates of 55Hz, 65Hz, and 75Hz. (d) Three-lamps-mobile: Another office
environment with three IR LED lamps flashing at rates of 55Hz, 65Hz, and 75Hz; the receiver is being
moved.

conditions. The receiver is moved along three straight lines while position data
are collected. We compare the collected traces against the ground truth to check
the system’s mobile performance.

6.1. Position Accuracy
CompEye receiver. When there is no obstruction, a CompEye receiver can normally
find at least three faces visible to a lamp in range; normally it can find four. We have
found that the additional face generally does not improve the positioning result, be-
cause of its small incident angle µ that produces a very low RSS, potentially introducing
an increased error. Therefore, for a particular lamp, we always choose the three faces
with the strongest RSS for position calculation. When the receiver is covered by two
or more lamps, it chooses the lamp that imposes a stronger average RSS (over three
faces) for positioning.

Figures 17(a)–(c) show the maps of the various environments as well as the position-
ing results. In the figures, the red dots represent lamps, small dots true positions, and
a line segment connects a true position to its corresponding result of positioning. The
length of a line segment is thus proportional to the positioning error. In all cases, the
median and average errors are below 0.4m (Table I). The consistence is also reflected
in the small standard deviation. Notice that quite different environmental conditions,
including floor/wall reflection, ambient temperature, and ambient light intensity (im-
plied by time of day), and so on. are contained in these scenarios. These variations

ACM Transactions on Sensor Networks, Vol. 12, No. 4, Article 28, Publication date: September 2016.



LIPS: A Light Intensity–Based Positioning System for Indoor Environments 28:17

Fig. 17. Positioning results of a CompEye receiver. Gray areas represent desks or obstacles, red dots lamps,
and small circles test spots. (a) Empty-room, size 12m×10m, (b) Office, size 12m×10m, (c) Three-lamps, size
24m×16m. (d) Three-lamps-mobile, 18m×12m.

Table I. Position Error Statistics in Different Scenarios. Note That
the Smartphone Case Assumes a Trilateration Method, Which

Requires a Denser Deployment of Lights Than the Other Cases

Error statistics (m)
Test cases Median Mean Max Stdev
Empty room, CompEye 0.36 0.39 0.79 0.20
Office, CompEye 0.33 0.36 0.73 0.20
Three-lamps, CompEye 0.32 0.32 1.08 0.20
Three-lamps, smartphone 0.39 0.44 1.05 0.29

cause unnoticeable differences in positioning accuracy, suggesting that LIPS is robust
to environmental differences.

Figure 17(d) shows the mobile performance of the LIPS receiver. In this experiment,
the receiver is placed on a small cart moving along the central lines of the three
corridors. The positions of the receiver are generated at approximate intervals of 0.3s.
The red lines show the position traces of the receiver; the cells are of size 0.6m × 0.6m.
It can be seen that the positioned traces stay within 0.6m of the true trace lines, with
an average much lower than 0.6m.

Smartphone. We also experimented with the trilateration method using a smart-
phone. A total of 33 points were randomly picked with rough uniformity in the inter-
section area of the three lamps. The phone was horizontally placed when collecting the
RSS. The error statistics are given in the last row of Table I. It can be seen that the
average error now goes up to 0.44m, which is worse than that of the CompEye receiver.
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Fig. 18. Oscillation distance of ten test spots in the Three-lamps-mobile scenario.

This is mainly because of the absorbtion of light by the phone screen and the blocking
of phone body, especially when the incident angle is small.

6.2. Position Stability
It is normal for a positioning system to generate position oscillation due to the in-
stability of signal propagation, environmental interference, and various errors in the
system. The degree of oscillation is an important impact factor for the user’s experience.
Though multiple position samples could be collected to increase stability, in delay sen-
sitive applications oscillation is still likely to cause feelings of uncertainty and visual
discomfort.

Given a spot in the field, we define the positioning system’s oscillation distance as the
average distance of the produced position samples from the centroid of those samples.
In the Three-lamps-mobile scenario, we choose 10 test spots A1, A2, . . . , A10 with
different distances to their closest lamps, and, for each test spot, approximately 300
position samples are collected to obtain an average and a standard deviation. Figure 18
depicts the results against the distance to the closest lamp. First, it can be seen that the
averages remain below 0.25m, indicating that the positions are quite stable. Second,
the oscillation distance generally increases with the spot’s distance to closest lamp, due
to the decreased signal-to-noise ratio at a larger distance.

6.3. Impact of Lamp Density
In the three-lamps scenario, there are 98 points for testing, of which 61 are covered by
a single lamp, 30 by two, and 7 by three. Thus, a receiver may have more than three
faces visible to a lamp, and a sensing face may see multiple lamps. Let m denote the
number of RSS readings a receiver collects. Since the receiver records only the three
highest RSSs with respect to an individual lamp, and there are only three lamps, we
have 3 ≤ m ≤ 9. In fact, each RSS will result in an Equation (2), and we have already
shown that three such equations can lead to a position. Here we want to see if using
more than three RSSs will be beneficial. To that end, we pick m′ highest RSSs for each
point p, where the receiver has m ≥ m′, and establish a system of m′ equations, by
which we solve for positions.

Figure 19 shows how position errors are affected by the number of RSS readings, m.
It can be seen that in general, increasing m results in improved accuracy, reducing the
average error to below 0.2m. In particular, the maximum error and standard deviation
of error drops quite sharply with m, suggesting a significant benefit of multiple lamps
in reducing outliers and improving positioning stability. The declining trend starts
flattening after m > 7, implying a limiting accuracy of around 0.19m under the present
RSS model.
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Fig. 19. Positioning errors of the CompEye receiver for various numbers of RSS readings.

Fig. 20. Impact of distance on position errors. (a) Position error vs. distance. (b) Fitting error of fd(d).

Note that the case of more than three faces provides a generalization of MFLP, which
essentially mixes the principles of MFLP and trilateration.

6.4. Impact of Distance
Intuitively, the farther the receiver is away from the lamp, the lower the signal-to-noise
ratio (SNR) and thus the larger position error produced by the system. Figure 20(a)
shows the position error in the empty-room scenario for different distances between
the receiver and the lamp’s projection on the ground, along with a fitting curve. It can
be seen that for distances above 3m, the error in general increases with distance, but
for a closer range, there is an opposite trend. This is due to the fitting error of the fd(d)
function. Figure 20(b) shows the measured RSS and the fitting function k/d2. Due to
various errors, the fitting is not perfect, leaving some gaps for distance smaller than
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Fig. 21. Impact of light reflection on positioning accuracy.

2m. This discrepancy turns out to be influential enough to make the final position error
increase noticeably. The impact of reduced SNR, as well as increased ω angle (which
causes an extra error), starts to manifest itself for distances beyond 3m, yielding a
growing trend of error. Note the fitting effect is determined mainly by the parameter k,
and we chose such a particular k because it benefits most distances, thus minimizing
the error for a large part of the field. If an alternative k were chosen in favor of small
distances, then the tail of the curve will shift down, and the positioning performance
beyond 2–3m will suffer.

6.5. Impact of Reflection
In this section we examine LIPS’s performance under highly reflective conditions. We
assume the single-lamp, Office scenario, and use a piece of glass and a piece of mirror,
both of size about 40cm × 50cm, as reflectors. A reflector is placed vertically behind
the receiver and has its reflective surface perpendicular to the line pl pr, where pl is the
lamp’s projection on the ground and pr the receiver’s location. The distance between
pr and the reflector is denoted by dr. The receiver is places at 20 different places of the
field for each dr.

Figure 21(a) shows that, despite the presence of a glass reflector, the accuracy re-
mains around 0.4m, with no definite impact from dr. The most seriously affected sensor
of the receiver is the top one, which experiences an average RSS increase of 7.5%, 8.4%,
6.8%, and 5.6% for dr = 5, 15, 25, 35cm, respectively. There are two other sensors whose
RSS measurements are used in position calculation, but they face the lamp, and thus
receive little (if any) reflected light, due to the blocking of the receiver’s body.

Using a mirror as the reflector leads to quite different results. Figure 21(b) shows that
a mirror in close vicinity of the receiver significantly degrades the location accuracy,
because the sensors are subject to strong reflection that distorts the intensity readings.
The top sensor of the receiver now has an average RSS increase of 10% to 17% for
different dr, with a maximum increase about 37%. For dr = 35cm and beyond, the
reflection is so weak that the average position accuracy becomes very close to the case
without a reflector, that is, slightly below 0.4m.

6.6. Impact of Ambient Light
In this section, we consider how LIPS performs under different conditions of ambient
light. We assume the single-lamp, Office scenario, and choose different places in the
room at different times of the day, with five grades of illuminance (lux): 1, 150, 312,
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Fig. 22. Location accuracy under different intensities of ambient light.

Fig. 23. Position errors changing with perturbations to RSS and heading.

512, and 4,750, where 1 lux means a dark room at night; 150 corresponds to a room at
dusk, 312 in the morning, and 512 at noon, all inside the room. The maximum 4,750
luxes represents a location near the window at noon on a clear day. Figure 22 shows
that for the different conditions, the average position error is quite stable and remains
below 0.4m, with no noticeable impact from variation of ambient lights.

6.7. Impact of RSS/Heading Errors
In this set of experiments, we examine the sensitivity of positioning quality to two
sources of error: RSS error and heading error. We introduce artificial perturbation
to the measured data and then calculate the position error. For each RSS reading, a
multiplicative perturbation (1 ± ϵ) is applied, where 0 ≤ ϵ ≤ 20% is a parameter and
the sign is chosen randomly. For each heading measurement, an additive perturbation
ϵh ∈ [−10◦, 10◦] is applied. In our experiments, the fluctuation of both measures was
rarely found to exceed half of the assumed ranges.

Figure 23 shows how positioning accuracy changes with the perturbations in the
Office scenario. As expected, the average errors increase with larger perturbations.
The increasing trend, however, is smooth and mild, having average errors well under
1m even for unrealistically large perturbations.

7. DISCUSSION
Power consumption. The LIPS receiver consumes power mainly in three tasks: sens-
ing, computation, and transmission. Each ISL29023 light sensor has a power overhead
of 70µA· 3.6 V = 0.25mW in continuous sensing mode [Intersil 2012]; each magnetic
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sensor uses less than 0.2mW at a 20Hz sampling rate, and a LIS33DE accelerometer
uses less than 1mW [STMicroelectronics 2009]. Overall, the sensing part accounts for
less than 4mW. The MCU and the networking module normally have a much higher
power consumption rate. However, their actual power consumption depends on the po-
sition sampling rate as specified by the application. The computation and transmission
tasks can thus be performed with a low duty cycle to reduce power consumption.

In terms of power overhead by the sensing task itself, LIPS consumes merely 4mW. It
takes less than 1s to obtain a relatively stable position from a cold start, which amounts
to about 4mJ of energy. By contrast, a WiFi scan used by the WiFi-based positioning
system consumes 0.55J [Lin et al. 2010], which is two orders of magnitude higher than
LIPS’s cost.

Limitations. The current design of the LIPS system does not support other forms
of light sources. For example, our RSS model does not apply to the widely used tube-
shaped lamps. In principle, the point-source-based model should be extended to a
line-segment model. We have done some preliminary experiments with LED tubes
and found that the RSS characteristics remain stable, though the relations between
RSS and distance/angle become more complicated. This means that a geometry-based
positioning method is still possible, though its mathematical foundation needs further
investigation.

Currently, the full-scale range of an ISL29023 light sensor is set to 1,000 lux. In a
typical indoor environment (e.g., office lighting), the daylight’s illuminance is less than
500 lux [WIKI-Lux], which is well within the sensor’s capacity. However, the sensor
quickly gets saturated under direct sunlight, for example, in the glass-ceilinged atria
of some modern buildings, making the receiver unable to position itself. This problem
can be mitigated by raising the sensing range (to a maximum of 64,000) when the MCU
detects a constant maximum reading. Notice that the increased range will reduce the
data resolution, which implies lower sensitivity and reduced location accuracy. For
higher adaptability, we will need to seek more powerful light sensors to work under
more challenging circumstances.

8. RELATED WORK
In this section, we review related work from three perspectives: positioning principles,
cost, and performance. For ease of reference, some of the representative schemes are
listed in Table II.

8.1. Positioning Principle
There are two major working principles for indoor positioning systems: signal pattern
matching and trilateration/angulation. In the first approach, a location is mapped to
a particular pattern of signal characteristics. By measuring the signal pattern and
looking up the mapping table, a receiver can obtain its location. RSS fingerprint, for
example, is a commonly used signal pattern for WiFi positioning [Youssef and Agrawala
2005; Bahl and Padmanabhan 2000; Yang et al. 2012; Wu et al. 2012b]. In the domain of
Radio Frequency Identification (RFID), Tagoram [Yang et al. 2014] localizes RFID tags
by constructing an RF phase hologram with observations from several reader antennas.
PinIt [Wang and Katabi 2013] leverages the multipath profiles of target tags, as well
as of reference tags, to generate position. A similar technique is further used to enable
robot navigation and object manipulation in RF-compass [Wang et al. 2013]. A special
case of the signal pattern match approach is proximity detection, in which a receiver
localizes itself simply with the positions of signal sources detected nearby [Raffaele and
Franca 2003; Ni et al. 2004]. This approach can provide only coarse-grained location
information.
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Table II. Comparison of Different Indoor Positioning Schemes. Note the Accuracy Results Provided
in the Literature Often Vary in a Wide Range Depending on Many System and Environmental

Factors, So Here We Only Give a Rough Range of Errors That Cover Typical Cases

Medium Primary Indoor
Schemes/systems type principle Accuracy in-frastructure Limitations
Radar [Bahl and
Padmanabhan 2000]

WiFi RSS pattern
match

3–5m WiFi hotspots High labor
cost

Horus [Youssef and
Agrawala 2005]

WiFi RSS pattern
match

<2m WiFi hotspots High labor
cost

Tagoram [Yang et al.
2014]

RFID Phase pattern
match

<0.2m RFID readers Mobile
objects only

PinIt [Wang and
Katabi 2013]

RFID Multipath
profiles match

<0.2m Mobile readers
and ref. tags

Dense ref.
tags

Ubisense [Sahinoglu
et al. 2008]

UWB TDOA+AOA <0.3m Dedicated
transmitters

Expensive
devices

ABS [Tarzia et al.
2011b]

Ambient
sound

Spectrogram
match

Room level None Low
accuracy

Geo-Magnetism
[Chung et al. 2011]

Magnetic
field

Magnitude
pattern match

4.7m None High labor
cost

FM-fingerprint
[Chen et al. 2012]

FM
broadcast

RSS+PHY info
match

Room level None Low
accuracy

Lighthouse [Romer
2003]

Light Trilateration N/A LED
luminaires

Complicated
design

VL Landmark
[Rajagopal et al.
2014]

Light Proximity Meters LED
luminaires

Low
accuracy

Luxapose [Kuo et al.
2014]

Light AOA <1m LED
luminaires

Dense lamps

Epsilon [Li et al.
2014]

Light Trilateration <1m LED
luminaires

Coverage
degree ≥ 3

LIPS Light Multi-sensor <1m LED
luminaires

Dedicated
receiver

The trilateration/angulation approach can produce accurate position when ranging/
angulation ability is available on the signal transmitter or receiver. Various meth-
ods, such as time-of-arrival, time difference of arrival (TDOA), angle of arrival
(AOA) [Niculescu and Nath 2003, 2004], and two-way sensing [Liu et al. 2012], can be
used to obtain distance or angle, based on which a position can be calculated. To im-
prove accuracy, sometimes the physical layer information is exploited for more accurate
distance estimation [Wu et al. 2012a; Sen et al. 2013; Mariakakis et al. 2014].

Light signal-based indoor positioning has been considered in many previous stud-
ies. Rajagopal et al. [2014] propose to use LED lamps as light landmarks and exploit-
ing the rolling shutter effect of camera sensors. ByteLight [ByteLight] is a commercial
project that appears to adopt a similar idea. At the time of this writing, however, there
is no detailed information about how the ByteLight system operates. For better accu-
racy, light intensity (i.e., RSS) is often used with a multilateration method to locate the
receiver [Barry 1994; Zhou et al. 2012; Yang et al. 2013a; Yoshino et al. 2008]. In Prince
and Little [2012], a hybrid RSS/AoA algorithm is proposed for location optimization.
Luxapose [Kuo et al. 2014] uses AoA and image analysis techniques to improve the
location accuracy with a smartphone camera, assuming a dense deployment of LED
lights.

In Yang et al. [2013b], a positioning system is designed that uses a single transmitter
and multiple receivers based on visible light produced by white LEDs. The multiple
receivers are independent, and thus the positioning principle behind them differs fun-
damentally from ours. The Epsilon [Li et al. 2014] system also uses light signal and is
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primarily based on the classic trilateration method. A variation of the method is de-
vised to reduce the requirement on number of light sources, but the proposed method
requires special manual operations from the user, which makes automatic positioning
and tracking impossible.

8.2. Infrastructure Dependence and Deployment Cost
Early indoor positioning systems use dedicated devices such as Bluetooth [Raffaele and
Franca 2003], RFID [Ni et al. 2004], or sensor nodes to realize positioning via proxim-
ity detection but, on the other hand, require a relatively dense deployment of signal
transmitters. Higher positioning accuracy is provided by more accurate ranging tech-
niques such as a combination of radio and sound signals [Priyantha et al. 2000; Tarzia
et al. 2011a], Ultra Wide Band (UWB) technology [Sahinoglu et al. 2008], and so on.
These techniques require synchronization and coordination among signal transmitters
or expensive devices, which greatly increases the deployment cost.

A class of positioning techniques require little or no dedicated infrastructure. They
use ambient signals such as cellular radio [Varshavskya et al. 2007], FM radio [Chen
et al. 2012], magnetism [Chung et al. 2011], or ultrasound [Borriello et al. 2005] to
create position fingerprints. These solutions often provide only coarse-grained posi-
tioning, for example, at room-level granularity [Borriello et al. 2005]), or work for only
special environments (e.g., steel-rich buildings [Chung et al. 2011]). The WiFi RSS
fingerprint-based scheme exploits pre-existing Access Point (AP) hotspots to create
signal fingerprints. Depending on the density and placement of APs, the positioning
accuracy varies from below 1m to more than 10m [Turner et al. 2011].

Infrastructure cost depends not only on hardware investment but also on human
effort in site survey. The latter factor is a serious concern for fingerprinting-based
solutions, represented by the WiFi scheme. Recently, researchers have proposed various
schemes that use little or zero explicit human effort [Rai et al. 2012; Yang et al.
2012; Wu et al. 2012b]. These techniques leverage inertial sensors on smartphones to
automatically infer a user’s real position while collecting RSS data. These solutions
are not generic, since they require the environments to possess special structural
characteristics. When the indoor environment contains large free spaces (e.g., in a
factory or a large warehouse), or has a symmetric layout, position ambiguity may arise
that prevents exact positions from being inferred from the user’s trace.

LIPS uses off-the-shelf LED lamps as signal sources, with a cheap microcontroller
attached to each lamp to control flashing. On the receiver side, a dedicated receiver uses
a number of light and magnetic sensors, each costing no more than a few US dollars.

8.3. Accuracy and Stability
Different applications require different levels of positioning accuracy. For example,
in-building pedestrian route guidance may work well with an accuracy to a few me-
ters, while automated handling requires positioning accuracy within 1cm [Sahinoglu
et al. 2008]. The WiFi scheme mostly offers an accuracy of 1m to 3m and is known to
be instable in positioning quality; this is because the RSS at a fixed position varies
significantly over time and is sensitive to obstacle presence, receiver orientation, and
type of device. Also, the distinctiveness of fingerprints depends heavily on AP density
[Chandrasekaran et al. 2009]. It is reported that the same scheme can produce dras-
tically different performance across different environments. For example, the classic
RADAR scheme is found to generate median accuracies of 1.3m and 5m in small and
large buildings, respectively [Chintalapudi et al. 2010]. An empirical study [Turner
et al. 2011] shows that an algorithm can yield 5 times worse accuracy than in its
original test environment. The same problem is shared by some other fingerprint-
based schemes, such as those using sound signal [Tarzia et al. 2011b], magnetic field
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magnitude [Chung et al. 2011], and FM broadcast [Chen et al. 2012]. Some RFID sys-
tems [Yang et al. 2014; Wang and Katabi 2013] use phase pattern match for positioning
and can achieve very high accuracy (e.g., below 0.2m), assuming some special equip-
ment such as mobile objects, mobile antenna, dense reference tags, and so on, which
restricts their applications. Light-based positioning systems can generally achieve ac-
curacy below 1m [Kuo et al. 2014; Li et al. 2014] with good stability.

9. CONCLUSION
We have presented a light intensity–based positioning system, LIPS, for indoor envi-
ronments. LIPS exploits ordinary lighting devices such as LED lamps as signal trans-
mitters and uses light sensors as signal receivers. Several light sensors on a receiver
can jointly determine the receiver’s position with the measured RSS. The main con-
tribution of LIPS is that it explores a new way of indoor positioning, with fairly high
accuracy and high stability. The design is fingerprint free, requiring little human in-
tervention other than the establishment of an RSS model. In the future, we will extend
the design to include more complex lighting environments.

APPENDIX A: PROOF OF THEOREM 3.1

PROOF. Consider three linearly independent sensing planes, Aix + Bi y+Ciz = 0, 1 ≤
i ≤ 3, that generate three nonzero RSS values s1, s2, and s3. Substituting these variables
into Equation (2), we can get a system of nonlinear equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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k
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k
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where A′
i = Ai/

√
A2

i + B2
i + C2

i , B′
i = Bi/
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A2

i + B2
i + C2

i , C ′
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√
A2

i + B2
i + C2

i , and
s′
i = si ∈ (0, sm/k] or s′

i = −si ∈ [−sm/k, 0), depending on the symbol of A′
ix + B′

i y + C ′
iz.

Performing dividing among these equations gives
⎧
⎪⎪⎨

⎪⎪⎩

(
A′

1 − s2

s1
A′

2

)
x +

(
B′

1 − s2

s1
B′

2

)
y +

(
C ′

1 − s2

s1
C ′

2
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z = 0, (7)

(
A′

1 − s3

s1
A′

3

)
x +

(
B′

1 − s3

s1
B′

3

)
y +

(
C ′

1 − s2

s1
C ′

3

)
z = 0. (8)

It can be shown that Equation (7) and Equation (8) are linearly independent; otherwise,
it can be verified that the vectors (Ai, Bi, Ci) are linearly dependent, which contradicts
with the assumption. With this linear independence, we can represent x and y with z
as x = c1z and y = c2z, where c1 and c2 are functions of si, Ai, Bi and Ci. Substituting
them into Equation (4) and using the fact z > 0 can solve for z, which then gives x and
y. Thus we obtain a unique solution of (x, y, z).
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