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Abstract—Recently, in response to the low efficiency and high
transmission latency of traditional centralized content delivery
networks, especially in congested scenarios, edge caching has
emerged as a promising method to bring content caching
closer to the edge of the network. However, traditional content
delivery methods might still lead to low utilization of cache
resources. To tackle this challenge, this paper investigates a
content recommendation-based edge caching method in multi-
tier edge-cloud networks while considering content delivery and
cache replacement decisions as well as bandwidth allocation
strategies. Firstly, we consider a multi-tier edge caching-enabled
content delivery network architecture combined with a content
recommendation system and formulate the optimization problem
with the objective of minimizing long-term content delivery
delay and maximizing cache hit rate. Secondly, considering time-
varying system environments and uncertain content demands,
we approximate the optimization process of content delivery
and cache replacement for each agent as a Partially Observ-
able Markov Decision Process (POMDP) and propose a single-
agent Deep Deterministic Policy Gradient (DDPG)-based method.
Subsequently, we extend the POMDP to a multi-agent scenario.
To address the issue of agents converging to local optima and
establish more personalized models, we propose a Federated
Distributed DDPG-based method (FD3PG) to solve the corre-
sponding problem in a multi-agent system. Finally, simulation
results demonstrate that the proposed FD3PG achieves lower
delivery delay and higher cache hit rate compared with other
baselines in various scenarios. Specifically, compared with FADE,
MADRL, and DDPG, FD3PG achieves a significant decrease in
average delivery delay, approximately 10%, 11%, and 35% on
the Synthetic dataset, and 12%, 14%, and 48% on the MovieLens
Latest Small dataset, respectively.

Index Terms—Edge caching, content recommendation, dis-
tributed training, federated learning, deep reinforcement learn-
ing.
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N the current digital era, with the exponential growth

of online content and a surge in demand for rapid and
customized content delivery, network caching systems are
facing unprecedented challenges [1]-[4]. Traditional Content
Delivery Networks (CDNs) typically employ a centralized
architecture, relying on cloud servers or other centralized
servers for content caching and distribution. While this method
has proven effective over the years, the explosive growth of
information and the constantly evolving demand for real-time
and personalized contents from User Devices (UDs) have put
enormous pressure on this method [5], [6]. The drawback
of centralized CDNs lies in the fact that servers are often
deployed far from UDs, resulting in long-distance transmission
that may significantly increase transmission delay. The expec-
tations of UDs for instant access to information and highly
personalized content pose challenges for centralized CDNs
to meet the growing demands for real-time and personalized
content. Simultaneously, the fixed cache location and limited
cache capacity make it increasingly challenging to accurately
predict and meet the various content requirements of UDs
[71, [10], [11]. As a result, the search for a more flexible
and efficient content delivery method has become an urgent
priority.

Recently, edge caching has emerged as a promising method
[12]. In contrast to traditional CDNs heavily relying on
centralized data centers, edge caching deploys cache-enabled
Edge Servers (ESs) at the network edge, such as Base Stations
(BSs), bringing contents closer to UDs. This decentralized
architecture offers several advantages. Firstly, ESs are de-
ployed closer to UDs than cloud servers, significantly reduc-
ing content delivery delay. Secondly, edge caching enhances
scalability and adaptability to constantly changing content
demands [16]. Additionally, this architecture helps alleviate
network congestion by distributing content delivery across
multiple ESs. Despite these potential benefits, edge caching
faces challenges [17]. Due to the limited cache space of
ESs deployed on BSs, only a subset of contents can be
cached locally on these servers. When UDs request content not
available in ESs, they still need to retrieve it from cloud servers
or other centralized servers, diminishing the advantages of
edge caching, especially in cases of numerous content requests
[18]. Therefore, finding a solution to alleviate this limitation
is crucial for improving the utilization of limited cache space
and the overall performance of edge caching.

The Content Recommendation System (CRS) can analyze
the interests and personalities of UDs to recommend specific
contents to them. By integrating edge caching with CRS, edge



servers can provide alternative solutions closely related to the
content requested by UDs. This makes content requests easier
to fulfill, even when the requested contents are not readily
available in the ES’s cache space [13]-[15]. The combination
of edge caching and CRS not only optimizes the utilization of
limited cache space but also reduces reliance on centralized
servers. This enhancement benefits both the Quality of Expe-
rience (QoE) for UDs and the Quality of Service (QoS) for
ESs. Inspired by this, this paper investigates recommendation-
enabled edge caching, combining caching strategy and CRS
in multi-tier edge-cloud networks. Initially, a multi-tier edge
caching-enabled CDN architecture is considered. CRS is com-
bined into the CDN to recommend similar contents to UDs
when the requested contents are unavailable at Small Base
Stations (SBSs). Cooperative caching among multiple SBSs
and a Macro Base Station (MBS) is utilized to reduce content
delivery delay and backhaul traffic in the CDN.

Furthermore, adopting appropriate caching strategies by
SBSs is crucial. With the development of 5G networks, there
has been an exponential growth in content diversity and data
complexity [8], [9]. Traditional optimization methods, relying
on fixed, static rules or manual configuration, evidently cannot
adapt flexibly to environmental changes. In contrast, Artificial
Intelligence (AI)-based methods, such as Deep Reinforcement
Learning (DRL), can utilize data-driven intelligent decision-
making and optimization techniques to automatically learn and
adjust caching strategies to adapt to evolving data access pat-
terns and network conditions. This makes them more feasible
and effective for practical applications. However, traditional
multi-agent DRL methods often aim to train a unified model
for all agents, neglecting the need for personalization required
by agents deployed in different environments. Therefore, im-
proving cache hit rate and reducing content delivery delay
while ensuring agent personalization for each agent is a
pressing issue that needs to be addressed.

To tackle these challenges, the decision-making process of
each SBS is approximated as a Partially Observable Markov
Decision Process (POMDP) in this paper. Then, a single-agent
Deep Deterministic Policy Gradient (DDPG)-based method is
proposed, in which each agent interacts with the environment
and learns the optimal policy based on the feedback (rewards)
from the environment. It is worth noting that we embrace a
cooperative model wherein multiple agents coexist simultane-
ously. However, single-agent DRL-based methods frequently
face challenges in multi-agent scenarios and may converge
to local optimal solutions. Many existing multi-agent DRL-
based methods often follow a training strategy of centralized
learning and distributed execution. This strategy necessitates
cross-communication between agents to share their intelli-
gence and achieve the optimal global solution, which could
increase the communication load. Federated Learning (FL),
as a novel distributed machine learning approach, conducts
model training across multiple devices or servers rather than
concentrating on a single central location [51], [52]. Moti-
vated by this technique, we propose a Federated Distributed
Deep Deterministic Policy Gradient-based method (FD3PG),
which allows all agents to share their intelligence and carry
out federated updating after several episodes. Furthermore,

unlike traditional federated averaging algorithms that prioritize
model generalization at the expense of personalization, FD3PG
utilizes an Earth Mover’s Distance (EMD)-based method for
model selection to ensure personalized training while optimiz-
ing overall performance.

The main contributions of this paper can be summarized as
follows:

o A multi-tier edge caching-enabled CDN architecture,
combined with a CRS, is contemplated. The optimization
problem is formulated with the objective of minimizing
long-term content delivery delay and maximizing cache
hit rate.

o To minimize content delivery delay and maximize cache
hit rate, the optimization process of content delivery
and cache replacement for each SBS is approximated
as a POMDP. A single-agent DDPG-based method is
proposed to solve the POMDP.

o The POMDP is then extended to a multi-agent scenario.
To address the issue of agents converging to local optima
and establish more personalized models, a more effective
method is further designed, referred to as FD3PG. It
combines FL principles into the single-agent DDPG.

« Extensive simulations are conducted to rigorously evalu-
ate the performance of FD3PG under various scenarios.
Simulation results show that, compared with FADE,
MADRL, and DDPG, FD3PG achieves a significant
decrease in average delivery delay, approximately 10%,
11%, and 35% on the Synthetic dataset, and 12%, 14%,
and 48% on the MovieLens Latest Small dataset, respec-
tively.

The rest of this paper is organized as follows: We summarize
the related work in Section II and describe the system model
as well as the problem formulation in Section III. Then, we
approximate the decision-making process of each SBS as
a POMDP and propose a single-agent DDPG-based method
in Section IV. In Section V, we extend the POMDP to a
multi-agent scenario, and further propose FD3PG to solve the
optimization problem. We analyze the simulation in Section
VI. Finally, we summarize the conclusion in Section VII.

II. RELATED WORK

Currently, various works have explored the realms of edge
caching and content recommendation. In this section, we
provide a brief review of existing works from these four
perspectives.

A. Edge Caching

In recent years, edge caching technology has become inte-
gral to CDNs. Lyu et al. proposed a strategy for deploying
edge caches at a large scale in WiFi networks in [19],
and designing a traffic-weighted greedy-based algorithm to
maximize long-term caching gain. Tian et al. in [20] intro-
duced a FL-based cooperative caching framework to address
computational complexity and communication cost issues in
mobile edge networks. In [21], Li et al. exploited a joint
optimization scheme for FL, considering participant selection
and resource allocation to minimize energy consumption and



training delay. Qiao et al. in [22] proposed an adaptive FL-
based active content caching algorithm to meet low-delay
requirements for content access. Saputra et al. in [23] designed
both a centralized caching-delivering algorithm to minimize
content delivery delay and then extend it to a large-scale
network. Kharbutli et al. in [24] introduced a last-level cache-
based cache replacement algorithm that is cost-sensitive and
locality-aware.

While these studies have successfully showcased the ef-
fectiveness of edge caching technology, their focus remains
predominantly on scenarios where content requests must be
fully fulfilled. Unfortunately, this singular focus may overlook
the inherent challenges posed by the limited cache capacity of
ESs, potentially undermining the advantages of edge caching
in certain cache hit methods. Moreover, many of the cache
replacement strategies proposed in the aforementioned studies
may not perform optimally in highly dynamic and large-scale
scenarios, introducing a need for more robust solutions in these
complex environments.

B. Content Recommendation

Recommendation algorithms play a crucial role in assisting
users with information tasks. Content recommendation serves
as a method to identify contextually relevant information
for these tasks. For instance, Xu et al. in [26] introduced
MetaCAR, utilizing a dual conditional variational autoencoder
to generate user ratings and design mutually exclusive tasks in
recommendation scenarios. Liu et al. combined a graph-based
goal planning module with a goal-guided responding module
in [27], presenting a two-stage multi-goal-driven conversation
generation framework.

The integration of edge caching and CRS enhances ESs’
ability to meet users’ demands by providing relevant alter-
natives closely aligned with the requested content. While this
area of research is relatively underexplored, several works have
made notable contributions. Sheng et al. in [28] investigated
cooperative content caching with recommendations to max-
imize caching gains. Sun et al. in [29] explored a mobile
computing network combining edge caching and CRS and
employed a soft hit method to reduce content delivery delay.
Song et al. in [30] presented a method that combines user-side
recommendation and D2D-assisted caching, considering per-
sonalized preferences and relative locations of users through
D2D links. Yu et al. in [31] proposed a system to reduce the
cost of content service centers by jointly considering content
caching and recommendation through opportunistic mobile
networks. Li ef al. in [32] introduced a recommendation-aided
edge caching approach using a group interest aggregation algo-
rithm to determine content caching strategies for edge nodes.
Fu et al. in [33] investigated a cache hit rate maximization
problem and proposed a framework to achieve the optimal
solution regarding joint cache placement and recommendation
decisions. However, when considering CRS, the above studies
ignore the impact of the heterogeneity of user references on
the accuracy of recommendation algorithms.

C. Multi-agent DRL-based Methods

Al-based methods, such as DRL, have been applied in many
works due to their ability to autonomously learn and adjust
caching strategies. Ndikumana et al. in [34] proposed a deep
learning model to predict the contents cached in self-driving
cars and multi-access edge computing servers attached to
roadside units. To reduce the overall backhaul congestion and
access delay, Lekharu e al. in [35] proposed a deep learning-
based caching model according to the content popularity at
different time slots of the day. Yu et al. in [36] proposed a
mobility-aware proactive edge caching scheme based on FL to
adapt to the changing popularity of content. This method em-
ploys Context-aware Adversarial AutoEncoder to predict the
highly dynamic content popularity. Bakr et al. in [37] proposed
an end-to-end Deep Learning framework for proactive content
caching that considers the dynamic interaction between users
and content items, particularly their features. Pang et al. in
[38] developed a deep-learning-based solution, DeepCache, to
facilitate smart caching beyond simple frequency- and time-
based replace strategies and cooperation among BSs. Although
the above works have proven their effectiveness, they aim to
train a uniform model for all agents leading to suboptimal
solutions when agents are deployed in diverse environments.

D. Federated DRL-based Methods

To further enhance training efficiency and reduce the com-
plexity of agent interactions, federated DRL is gradually
becoming a significant research direction. Zhao et al. in [39]
proposed a unified federated deep (Q-learning caching scheme
for collaborative edge networks, aiming to minimize the long-
term average system cost under the uncertainties of heteroge-
neous user demands and dynamic content popularity. Li et al.
in [40] utilized federated DRL to optimize content caching and
distribution strategies, enabling adaptive collaboration between
different UAVs while optimizing overall network performance.
Wu et al. in [41] proposed a multi-agent federated DRL-based
cooperative caching strategy for vehicular edge networks. By
utilizing a recurrent neural network and a multi-head attention-
based popularity prediction model, this strategy effectively
enhances cache hit rate and content delivery efficiency. Jiang
et al. in [42] combined asynchronous FL and DRL to design a
mobility-aware edge caching strategy, which reduces backhaul
pressure and delay in the Internet of Vehicles. Lei et al
in [43] proposed a federated DRL-based partial cooperative
edge caching scheme. This scheme balances user-specific local
characteristics and overall global characteristics by switching
data training between two models maintained at each fog
access point.

Compared to the aforementioned studies, the FD3PG pro-
posed in this paper considers personalization of users and
agents, and optimizes edge caching strategies from a dis-
tributed perspective. Additionally, to address the issue of local
optima, we allow agents to engage in a phase of parameter
sharing and aggregation after a fixed number of training
rounds, which can not only improve model accuracy but also
reduce communication load.



TABLE I
SYMBOLS AND DEFINITIONS

Symbol  Definition

F The content library

cr The size of content f

T The set of BSs

C; The cache capacity of SBS ¢

B; The bandwidth of SBS 7

T The set of time slots

CS§ The cache state of SBS ¢ in time slot ¢

M The set of UDs

M; The set of UDs within the scope of SBS ¢

POSm,i  The position of UD m

qj;ti The content request of UD m

ssz,;q The similarity score between contents f and g
for UD m

)\fn The UD m’s rating score on content f

X, The similarity matrix for UD m

wfrfl The willingness of UD m to accept

recommendations in time slot ¢
B¢ The cache replacement decision of SBS ¢
in time slot ¢

The delivery delay of content f via the UD-SBS link
f ; . y
i The delivery delay of content f among SBSs
! s The delivery delay of content f via the SBS-MBS link
The delivery delay of content f requested by UD m

m

in time slot ¢

rfn, i The wireless downlink transmission rate between
UD m and SBS ¢

Ti,j The wired transmission rate between SBS ¢ and SBS j

7,0 The the wired transmission rate between SBS ¢
and the MBS

bﬁn’ i The proportion of bandwidth allocated by SBS 4
to UD m in time slot ¢

P; The transmission power of SBS 4

an’ i The channel gains between SBS % and UD m

o? The noise power

al(m)  The content delivery decision of SBS i for
the content request of UD m in time slot ¢

ht The cache hit rate of SBS ¢ in time slot ¢

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the system model of
a cooperative edge caching-enabled CDN architecture, and
then present the problem formulation in detail. The symbols
employed throughout this paper are summarized in Table L.

A. System Model

We consider a multi-tier edge caching-enabled CDN archi-
tecture, comprising a MBS and multiple SBSs equipped with
ESs, as illustrated in Fig. 1. Let 7 = {1,2,..., F'} denote the
finite set of the content library, where the size of content f
is denoted as cy. Each content is assumed to be indivisible in
this paper, and content popularity follows the Mandelbrot-Zipf
distribution [44], [45]. The MBS is connected to the Content
Service Provider (CSP) to provide all content services. The
set of BSs is denoted as Z = {0,1,2,...,I}, where {0}
represents the set of MBS and {1,2,...,I} represents the
set of SBSs. The state of SBS i is represented as {C;, B;},
where C; and B; denote the cache capacity and bandwidth of
SBS i, respectively. Due to their limited memory size, SBSs
can only cache a subset of contents from the content library.

-»
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Fig. 1. Overview of the system model.

The system operates in fixed-length time slots ¢ € T =
{1,2,...,T} with routine updates of caching strategies for all
SBSs. The cache state of SBS 1 in time slot ¢ is denoted by
CSt = {es)' st .. B0 where es!' € {0,1}. Here,

f f =1 51gn1ﬁes that SBS i has cached content f, while

f ! = 0 indicates the opposite. The UDs are represented
by the set M = {1,2,..., M} and are randomly distributed
within the areas covered by SBSs. They send content requests
to their associated SBSs. The position of UD m is described
by posm,; € {0,1}, where pos,,; = 1 indicates that UD m
is located within the coverage area of SBS ¢, and SBS i is
referred to as the local SBS for UD m. Without considering
the range overlap between the areas covered by adjacent
SBSs, multiple SBSs cannot simultaneously serve a UD, i.e.,
ZieI posm,; = 1. We denote the set of UDs within the
coverage area of SBS i as M; = {m € M|pos,,; = 1},
where M; € M.

Within the area covered by MBS, each SBS is able to
cache certain contents to fulfill content requests from UDs.
Specifically, let qf;tZ € {0, 1} denote the content request of UD
= 1, it indicates that UD m is requesting content f
from its local SBS in time slot ¢. Otherwise, q = 0. Upon
receiving a content request for content f from UD m, SBS
1 searches for the content in its cache space. If content f is
cached in SBS i’s cache space, it directly delivers content f to
UD m. Otherwise, it proceeds to content f from other SBSs
or the MBS.

m. If qf’t

B. Content Recommendation Model

This paper investigates a content similarity-based recom-
mendation system where various contents exhibit distinct de-
grees of similarity. Specifically, when UD m requests content
f from SBS 7 and content f is not available in its cache space,
SBS ¢ can recommend other cached contents that bear a high
degree of similarity.



According to the collaborative filtering algorithm [29], [46],
the similarity score between two different contents can be
calculated as

M Y
simf =, @))
[MI[/| M9
where |M/| and |M?Y| represent the number of UDs who
desire contents f and g, as well as |M7 () M?Y| denotes the
number of UDs who desire both. However, variations exist in
the behavior and preferences of UDs in different areas. For
instance, some UDs may favor a larger variety of contents,
while others prefer a more limited selection. These high-
activity UDs may overestimate the similarity score for low-
activity UDs. Consequently, the same similarity score between
two different contents may not be suitable for different UDs.
To address this and to personalize the content similarity,
we introduce the rating score of content, denoted as S,
representing UD m’s individual rating score for content f.
By combining it with sim/*9, the new similarity score can be
expressed as
sim$9 = M sim?9, 2)

Remarkably, the similarity score of content f with itself is 1,
ie., sim{;/ = 1. Subsequently, we build a similarity matrix
X, for UD m, comprising the set of similarity scores.
It is essential to highlight that not all UDs are inclined to
accept recommendations from SBSs. To denote this, we use
f !, € {0,1} to signify whether UD m is willing to accept

the recommendation in time slot ¢. Specifically, mfl =1
indicates that UD m is open to accepting the recommendation
from SBS z or can obtain the requested content f from SBS
1, while wm . = 0 signifies that UD m insists on requesting

its preferred content.

C. Cache Replacement Model

Given the dynamic content popularity in different periods,
the implementation of intelligent content replacement strate-
gies becomes a crucial prerequisite for effectively managing
limited cache space [47]-[49]. During the cache replacement
phase, each SBS is able to update its cache state. This process
enhances overall cache utilization and efficiency, reducing the
long-term system overhead associated with content delivery.
When an SBS requests contents from the MBS within a
specific time slot, it must make decisions regarding whether
these contents need to be cached. Furthermore, considering the
limited cache space, the SBS must determine whether cached
contents need to be replaced and, if so, which of them should
be prioritized for replacement.

Let 8! = {ﬂl ot ﬂ2t ...,ﬁFt} denote the cache replace-
ment decrsion of SBS i in time slot ¢, where 3/ € {0,1}.
When ﬂz =1, it indicates that SBS 7 will replace content f
with the requested content from MBS. SBS ¢ replaces nothing

when Zfe}-ﬂif’t =0

D. Communication Model

In this paper, we assume that the UD-SBS link is wireless,
while the SBS-SBS and SBS-MBS links are wired. The

delivery delay of content f via the UD-SBS link is denoted

by Lm ;» Which can be given by
£t _ Cf
Lm,i ot (3)
m,t
where ! is the wireless downlink transmission rate between

m, 7
UD m and SBS i in time slot ¢, which can be expressed as

P‘Gﬂl 'L|2 (4)
O—2+Zm/€/\/{i PZ|G7t77,”i|2 ’

where P; denotes the transmission power of SBS <. an,i and
Gm,i indicate the channel gains between SBS 7 and UD m
and between SBS 7 and other UDs within the scope of SBS ¢,
respectively. o2 represents the noise power. bfn,i denotes the
proportion of bandwidth allocated by SBS ¢ to UD m in time
slot ¢, and 0!, ; € [0, 1].

The delivery delay of content f among SBSs can be
calculated by

Tfn, i brn LB lOgQ (1 =+

ft_ Cf
L 0,7 7,47 (5)
where r; ; denotes the wired transmission rate between SBS 4
and SBS j. The delivery delay of content f via the SBS-MBS
link is represented by L{ . which can be expressed as

.t — & (6)

where ;o denotes the wired transmission rate between SBS
1 and the MBS. Because the data size of a content request is
much smaller than the content itself, the uplink link delivery
delay is ignored in this paper.

The content delivery decision of SBS i for the content
request of UD m in time slot ¢ can be represented as
ai(m) - {az z’azg’ 7, O} where az (A zg’ and az 0 € {0 ]‘}
Since contents are 1nd1V151b1e it is assumed that the content
request of each UD can only be fulfilled in one way, i.e.,
oz‘;l- +al ;+ al o = 1. Then, the different delivery decisions
can be analyzed in detail as follows:

o a}; = 1 indicates that SBS 7 has cached the content
requested by UD m or other contents with high similarity
in the local cache space during time slot ¢. If SBS ¢
possesses the requested content, it transmits the content to
UD m via a wireless link. In the absence of the requested
content but with another content bearing high similarity,
SBS ¢ can recommend those alternatives to UD m to
fulfill the content request. The content delivery delay in
this case is denoted as L;> ’t

. al j = 1 signifies that SBS 1 cannot fulfill the content
request of UD m during time slot ¢ and must seek the
content from other SBSs. To simplify the search process,
SBS ¢ only requests content from its nearest neighbor,
termed the adjacent SBS. The adjacent SBS j delivers
the content to UD m via SBS ¢ if it has the requested
content or similar alternatlves The total delay for content
dehvery in this scenario is L + L j

o af, = 1 indicates that SBS i is unable to fulfill the
content request of UD m during time slot . Consequently,
SBS ¢ must request the content from the MBS. Since all



contents are available in the MBS, content recommen-
dation is not considered when making requests to the
MBS. The total delay for content delivery in this case is
It It
L+ Liy.
Therefore, the delivery delay of content f requested by UD
m in time slot ¢ can be given by
)t )t ,t .t
L, = Z qg@,i [ag,iLfn,i + ag,j(Lfn,i + L{,j)
fer @)
it ¢
+O‘§,O(L1};1,i + sz",o)] .

In our model, we refer to the proportion of content requests
fulfilled by SBSs as the cache hit rate, i.e., aﬁ’i =loral, =

i,
1. Then, the cache hit rate can be expressed as
it fit
Bt domem; 2o fer G Wi g <a§,11 + ag,j) g
i = fit ®)
Zme./\/li Zfe]—' Qi

E. Problem Formulation

In this paper, our dual objective is to minimize content
delivery delay while simultaneously maximizing the cache hit
rate. Solving these two optimization goals concurrently poses
a significant challenge. In an ideal scenario, where SBSs can
fulfill all content requests locally, the content delivery delay
is minimized, resulting in a high cache hit rate, and vice
versa. Consequently, optimizing for reducing overall content
delivery delay inherently leads to an increased cache hit rate.
The optimization problem can be reformulated as minimizing
content delivery delay across all SBSs while satisfying certain
constraints, which can be described as

. . t
i fm 2 2 I
A teT i€ meM;

sit. 01 :af,;,0f 5 af, € {0,1},Vi,Vj, Vt,
02 : B € {0,1}, Vi, Vf, ¥,
03 : b, ; € [0,1],Vi,Vm, Vi,
04:af,+af ; +al, =1,Vi,Vj, Vi,
c05: ) Bt <1,vi vt 9)

fer

> bk, <1V

meM;

Z cs{’tcf < Cy, Vi, Vt,

feF

sim{9 > st™" Vm,Vf,Vg,

ht > h™in Vi Vit

c06 :
c07 :

c08 :
c09 :

where c01 and c04 correspond to the content delivery decisions
of SBS 4, where each UD’s content request can only be
fulfilled by a single decision per time slot. c02 and c05
represent cache replacement decisions, allowing SBS ¢ to
replace one content per time slot. ¢c03 and c06 indicate the
bandwidth allocation strategy for UD m, with the sum of
allocated bandwidths constrained not to exceed the upper limit
B, in each time slot. c07 ensures that the total size of cached
contents does not surpass the cache capacity C;. c08 sets a
limit on the similarity between the requested content f and

the recommended content g, ensuring it is not lower than the
similarity tolerance st"*". c09 mandates that the cache hit rate
of SBS ¢ should surpass the minimum threshold A™*".

F. Problem Analysis

To address the optimization problem described above, it
is necessary to find the optimal decision of «f(m), B!, and
b.,; in each time slot. However, these variables are highly
dynamic and discrete, and the complexity of the problem
grows exponentially as the number of contents, or SBSs, in-
creases. Meanwhile, o (m) and 3! are integer variables, while
bfn’i is a continuous variable. It can be determined that the
objective function is a Mixed Integer NonLinear Programming
(MINLP) issue, which is NP-hard [23]. Furthermore, in a
more realistic scenario, the prior information about content
request patterns over time is not known in advance. Traditional
methods struggle to adapt to dynamic environments and make
intelligent caching decisions. Thus, a DRL-based method is

adopted here to solve the optimal decision problem.

IV. SINGLE-AGENT DRL-BASED METHOD

In this section, we analyze the optimization problem men-
tioned above and propose a single-agent DRL-based method to
solve the corresponding problem. Specifically, we first discuss
how to approximate the decision-making process of agents as a
POMDP, and then provide detailed explanations of parameter
updates for agents during the training process.

A. Problem Transformation

Given the decentralized CDN environment, which com-
prises multiple decision-makers without a central controller,
each SBS lacks direct access to the complete state of the
environment. Instead, these entities rely on observation se-
quences to glean insights into the system. Moreover, to mit-
igate additional bandwidth and time costs, we operate under
the assumption that there is no information exchange between
different agents during the training stage [50]. In other words,
each SBS remains unaware of decisions made by others.
Consequently, we re-model the decision-making process for
each SBS as a POMDP and design a single-agent DRL-based
method to address the POMDP, where each SBS acts as an
agent to learn the optimal policy. Each critical element of
POMDP is defined detailedly as follows:

1) State Space: Let S = st,sh, ..., s} denote a specific
condition or situation of the system, where s! represents the
set of possible observations that agent ¢ can observe. In this
paper, the state information observed by agent ¢ in time slot ¢
can be denoted as

st = {CS gl wllilm € Mi}},

m,i)

(10)
where {qf;;fi,wf,mm € M;} denotes the set of content
requests and decisions on whether UDs accept recommenda-
tions.



2) Action Space: The set of actions available for each
agent is denoted as af. In this paper, each agent is tasked
not only with making dec1510ns regarding content delivery and
cache replacement but also with determining the allocation of
bandwidth to UDs. Therefore, the action space of agent ¢ can
be expressed as

a; = {{ai(m), by, ;lm € Mi}, 8},

where {af(m),bl, ;lm € M;} denotes the set of content
delivery decisions and bandwidth allocation strategies.

3) Reward Function: r! defines the immediate reward or
cost associated with executing an action in the given state,
which can be used to measure the quality of actions. As our
goal is to minimize the content delivery delay for all SBSs,
the reward function can be set as follows:

Tf(Sf,af) = - Z Lin -

meM;

(1)

12)

where Pe is the penalty when agent ¢ violates constraints,
which can reflect the undesirable consequences or costs of
performing an action or reaching a certain state.

In our proposed model, each agent learns adaptively and
makes decisions through interactions with the environment in
each time slot. For instance, agent ¢ observes its observation
st and selects an action a! based on its policy ; in time slot
t. Subsequently, after all agents take their respective actions,
the current state S! transitions to the next state S**!. The
probability of transitioning from S* to St*! can be given by

Pow = P[S!! = 5/|St = 5], (13)

Let U' represent the reward in time slot £, which can be
calculated by

T

=y,

=0

Ul =t poyptt2 o (14)

where v € [0, 1] denotes the discount factor, indicating the
importance agents attach to future rewards. A small value
of v tends to make agents more inclined to adopt short-
term strategies, implying a focus on maximizing immediate
rewards. Conversely, when v is large, agents may also lean
towards adopting long-term strategies to maximize future
rewards. The state-value function is used to estimate the state,
which is given as

= E[U'S! = s,7].

Va(s) 5)

Then, according to the Bellman Equation, we can transform
the state-value function into the following equation by com-
bining Egs. (14) and (15), which can be expressed as

Va(s) = E[U'|S" = s, 7]
= E[Tt+1 + et 4 ()23 St = s, ﬂ
=E[r't (T2 4t )[S =5, 7] (16)
=E[r'" +U"S" = 5, 7]
=E[r' + 4V, (s)[S" = 5,8 = ¢, 7).

According to Eq. (13), we can further transform Eq. (16) into
the following equation:

Va(s) =7r(s) +v Z Pos Vi ().

s'eS

a7

Thus, our objective is to find an optimal policy 7* to maximize
the cumulative discount reward, which can be given by

Ve (s) = max Ve (s). (18)

B. DDPG-based Method

Given the challenges posed by the large and dynamic
network environment, solving Eq. (21) becomes a formidable
task. To address this, we employ a DDPG-based method. The
fundamental concept of DDPG involves optimizing the policy
to enhance the decision-making capabilities of each agent.
This policy optimization is facilitated through the use of two
neural network models: Critic and Actor networks. The Critic
network, denoted as Q(+|6<), evaluates the actions selected by
the Actor network and provides guidance for policy updates.
Simultaneously, the Actor network, represented as p(-|0"),
learns a policy function 7 that maps states to corresponding
actions, aiming to maximize cumulative rewards. DDPG intro-
duces the target Actor network z/(-|0*") and the target Critic
network Q'(-|09") to enhance the stability of the learning
process.

Similar to Eq. (17), we can derive the ()-value function,
which represents the reward Q)(S,.A) obtained after taking
action A in state S,

Qn(s.0) =r(s,a) +7 3 Pl 3 (d|8)Qn(s ).

s'eS a’€A
(19)

After that, the relationship between the state-value function
and @)-value function can be gotten as

Va(s) = Z m(a|s)Qx(s,a).

acA

(20)

In POMDP, the current state is only related to the previous
state. Therefore, the action that maximizes the value function
in the current state can maximize the cumulative reward in the
current state. Thus, the optimization problem in Eq. (19) can
be transformed into

Vi (8) = max Q-+ (s,a).

acA

21

The traditional @-learning method employs a @-table to
store the value of the Bellman Equation and then iterates con-
tinuously to update the ()-values. However, as the state space
and action space expand, maintaining the ()-table becomes
increasingly challenging. In our method, DDPG uses the Critic
network to approximately estimate the ()-value, which is given
as

Q (5, 1(s(0")10%) ~ Qx(s, ),

where 69 and #* are parameters of the Critic network and
Actor network, respectively. u(-|6#) is the Actor network. In
order to obtain a more accurate ()-value, the Critic network

(22)
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Fig. 2. Overview of the proposed FD3PG.

Algorithm 1: Experience Replay Procedure

foreach agent i do

if the number of transitions < |5 | then

Randomly sample {s!,al,r?, s™'} from &;

Calculate the target @-value via Eq. (23);

Update the Critic network by minimizing the
loss function using Eq. (24);

Update the Actor network by maximizing the
evaluation according to Eq. (25);

Update the target networks using Eq. (26).

end
end

aims to minimize the difference between estimated value
Q(s,a|0%) and target value, which can be calculated by

y=1+Q (s, 1/ (1069,

where #9" and 6" are parameters of the target Critic network
and target Actor network. 0 is the target Actor network. The
loss function of the Critic network can be expressed as

T
= 23 - Qs a9)’
t=0

On the other hand, the Actor network aims to choose the
optimal action. Therefore, the update goal of the network is
to maximize the (Q-value by gradient backpropagation, and its
gradient is expressed as follows:

(23)

L(6° (24)

VouJ = *Zan S (l|0 |a st,a= u(s\a“))vé‘“u( ‘0#)
=0 0Q/ou

A/ D0k
(25)
Finally, the target networks of Critic and Actor networks can

be updated, respectively, as follows:
09 — 09 + (1 —¢)09,
AR (26)
O — ¢O* + (1 — <)o",

where ¢ is the update weight.
Additionally, experience replay technology is incorporated
to enhance the utilization rate of data samples and training
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stability. Each agent observes the state s?, selects an action
a' based on the current policy 7r and receives an immediate
reward rt. The current state s’ transitions to the next state

sttt after the agent interacts with it. These experiences are
then encapsulated into a tuple {sf,a’, 7!, s'T'} and stored in
the replay buffer £. During training, each agent can randomly
sample experiences from its own buffer. The experience replay
procedure is summarized in Algorithm 1.

V. FEDERATED DISTRIBUTED DDPG-BASED METHOD

As mentioned above, we embrace a cooperative model
wherein multiple agents coexist simultaneously. However,
single-agent DRL-based methods frequently face challenges
in multi-agent scenarios and may converge to local opti-
mal solutions. Many existing multi-agent DRL-based meth-
ods often follow a training strategy of centralized learning
and distributed execution. This strategy necessitates cross-
communication between agents to share their intelligence and
achieve the optimal global solution, which could increase the
communication load.

To address this challenge, motivated by FL principles [51],
[52], we propose FD3PG, which allows all agents to share
their intelligence and carry out federated updating after each
A episodes, as shown in Fig. 2. Because the data size of
model parameters is smaller than that of models, in order to
reduce the communication cost, we use the model parameters
as the intelligence of each agent in this paper. According to the
proposed updating rule, each agent maintains the parameters
with weight w and mixes the parameters of others, which can
be expressed as:

0t+1

=0"-Q, 27)

where 8" = [0%,05,...,60%] denotes the vector of network
parameters of all agents at the ¢-th episode. ) denotes the
weight matrix, which will be given in the following.
However, the distribution of UDs in different areas varies
significantly, resulting in considerable heterogeneity between
the data samples owned by each UD. To illustrate, consider a
real-life scenario: UDs located in a school may request content
that is completely different from those located in a park. This
diversity leads to significant differences in the decisions made
by the SBS deployed near the school and the SBS deployed
near the park in each time slot. Consequently, these two SBSs



Algorithm 2: FD3PG: Federated Distributed Deep
Deterministic Policy Gradient

Input: state space, action space, replay buffer size,
mini-batch size.
Output: optimal action for content delivery, cache
replacement, and bandwidth allocation.
1 Initialize network parameters 9? and Hé‘ R
2 Initialize target network parameters 9?/ — GZQ and
o 6
3 Instantiate replay buffer &; for each agent i;
4 Build similarity matrix X,;
5 foreach episode do
6 Initialize the action exploration e;
7 Recevie initial the state S;
8 Stage 1: Model Training
9 foreach time slot ¢ do

10 foreach agent i do

11 if exp < € then

12 ‘ Randomly select action aﬁ;

13 end

14 else

15 Observes state st;

16 Select action a! = pu(st|6%);

17 end

18 Execute action at to obtain an immediate
reward rt and a new state 5t+1

19 Store transition {st, af, r?, sf“} into &;;

20 if the number of transitions > |E;| then

21 ‘ Replace the oldest experience;

22 end

23 end

24 Run replay procedure in Algorithm 1;

25 end

26 Stage 2: Federated Updating

27 if episode mod A == 1 then

28 foreach agent i do

29 Broadcast model parameters and calculate
the variation values between agent 7’s
model and other models according to Eq.
(3D);

30 Calculate the aggregation weight between
agent ¢’s model and other models using
Eq. (32);

31 Run federated updating using Eq. (27).

32 end

33 end

34 end

need to train different decision-making models. However, the
training strategy adopted by traditional DRL algorithms results
in each agent having the same decision-making model. When
deployed in different environments, this uniformity can lead
to suboptimal decision-making effects for each agent.

To tackle this problem, inspired by [53], [54], we design
an EMD-based method to measure the variations between
different models and calculate the update weights of different

model parameters. EMD is a metric used to measure the
distance between two probability distributions. It describes
the minimum cost required to transform one distribution into
another. This cost is typically interpreted as the minimum total
cost of moving the mass of one distribution from one position
to another.

Specifically, we take a set of sample data as input and use
models X and Y to obtain their action outputs. Then, we
extract eigenvectors from the output action vectors and define
the signature of sample data d € D on model X as

Xd = {(wlal:vl); ($2)l$2)) ceey (mNal:DN)}7

where z,, represents the n-th eigenvalue, and [, represents
the corresponding label of the n-th eigenvalue. D denotes the
dataset. The signature of model Y is the same as above, which
can be expressed as

Yo = {(y17l91)7 (9271y2)7 sy (valyN)} .

In this paper, we use Euclidean distance as a metric for the
EMD value to measure the variation between two feature
values. Then, the EMD value between models X and Y can
be calculated as

EMD,,

(28)

(29)

=2 -y xe Xg,y €Yy

Therefore, the variation value between models X and Y is
defined as

(30)

Var(X,Y) (€29

|D| > ZEMDW

deD n=1

where |D| indicates the size of D. After receiving the model
parameters broadcast by other agents, agent ¢ calculates the
variation values between its own model and others, selec-
tively aggregating a subset of these models. Specifically,
let uf = {uf,,...,uf; 1,uf;y,...,uj } represent the set
of variation values between agent ¢’s model and the other
models. Then, models with variation values less than the
threshold k are chosen for weighted aggregation. The threshold
is dynamically determined based on the number of agents
participating in training. In scenarios with fewer agents in
the network, ensuring the model’s performance necessitates
reducing the threshold for model selection appropriately. This
adjustment allows each agent to aggregate more parameters,
thereby compensating for the limited dataset size. Conversely,
in situations with a larger number of agents, concerns about
insufficient sample aggregation diminish. The aggregation
weight between agents 4 and j is represented as ¢; ;, which
can be expressed as follows:

1-w :
: , ifu; <k
Vi = { Var(X,Y) 5] (32)
0. else
After that, the weight matrix of agent ¢ can be given by
w ©1,2 ©1,1
$2,1 w 2,1
Q; = (33)
©Yr,1 ©Yr,2 P w



TABLE II
PAREMETERS SETTINGS

Paremeter  Defintion Value

I The number of SBS [5,10]

cf The size of content (5,10] MB
C; The cache capacity of SBS 100 MB
B; The bandwidth of SBS 20 MHz
P; The wireless transmission power 38 dBm
o? The noise power —95 dBm
73,0 The transmission rate of SBS-MBS link 50 Mbps

The details of the proposed FD3PG are outlined in Al-
gorithm 2. The main steps of this method are as follows:
In lines 1 to 4, the Critic and Actor networks, along with
the corresponding target networks, are randomly initialized.
Simultaneously, a similarity matrix is built for each UD, and
the experience replay buffer is instantiated. In lines 10 to 17,
agent i observes the state information s! and selects the action
a! based on the policy 7; in time slot ¢. If the exploration
value exp is less than the threshold ¢, agent ¢ randomly selects
actions. In lines 18 to 22, agent ¢ obtains the reward rf— after
executing the action, and the state transitions to the next state
siT!. These experience tuples {sf, af, r!, si*'} are stored in
the experience replay buffer £;. The Critic and Actor networks
are trained using Algorithm 1 in line 24. In lines 27 to 33,
each agent broadcasts its model parameters to other agents and
calculates variation values between two different models using
Eq. (31) after each A episodes. Agents sort these models based
on these variation values and perform federated updating using

Eq. (27).

VI. PERFORMANCE EVALUATION

In this section, we conduct extensive simulations to verify
the performance of the proposed FD3PG.

A. Simulation Settings

We validate the effectiveness and convergence performance
of the proposed method using both a Synthetic dataset and
the MovieLens Latest Small (MLS) dataset. For the Synthetic
dataset, the network comprises 100 UDs, and the content
library contains 200 to 400 contents, depending on the simu-
lation setting. On the other hand, the MLS dataset consists
of 600 UDs and 6000 to 9000 contents, again depending
on the simulation setting. We model the wireless channel
as a block Rayleigh fading channel following the Okumura-
Hata path loss model. The channel gain is calculated as
G, = 30.6 4 36.7log1o dBm. In the proposed method, we
set the size of the experience replay buffer to 1000, the size
of the mini-batch to 64, and the discount factor v = 0.99. The
simulation parameters are summarized in Table II.

For comparing the performance of the proposed FD3PG, we
introduce the following benchmark baselines:

o FADE: This method combines the DDQN algorithm and

FL to solve the problem of convergence to local optima
by parameter aggregation [58].

o« MADRL: In this method, each agent trains a Critic with

global information and an Actor with local information.

The environment interacts with the actions of all agents
simultaneously, generating distinct rewards for them in
each time slot [56].

o DDPG: This method utilizes a DRL algorithm based on
the Actor-Critic framework.

o Deep Q-Network (DQN): This method employs a DRL
algorithm that combines deep neural networks with the
Q-learning algorithm. Each agent makes decisions based
on the DQN method in each time slot. Each agent makes
decisions based on the DDPG method in each time slot.

o Least Recently Used (LRU): The underlying principle
of this method is that the least recently used content is
unlikely to be used in the future. Each agent employs the
LRU method as the cache replacement strategy, replacing
the least recently used content in each time slot [57].

o Least Frequently Used (LFU): The underlying principle
of this method is that frequently accessed data is likely
to continue being accessed in the future. Each agent
adopts the LFU method as the cache replacement strategy,
replacing the least frequently used content in each time
slot [59].

Besides, there are two metrics used to estimate the perfor-
mance quantitatively:

a) average delivery delay: The average delivery delay
for all requests in each time slot;

b) cache hit rate: The definition is given by Eq. (8).
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Fig. 3. Convergence curves of methods based on FADE, MADRL, DDPG,
DQN, and the proposed FD3PG on (a) the Synthetic dataset and (b) the MLS
dataset.
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Fig. 4. Average delivery delay versus different cache capacities of SBS on (a) the Synthetic dataset and (b) the MLS dataset. Cache hit rate versus different

cache capacities of SBS on (c) the Synthetic dataset and (d) the MLS dataset.

B. Performance Comparison

1) The convergence performance: As shown in Fig. 3, we
present the convergence curves of methods based on DDPG,
DQN, MADRL, FADE, and the proposed FD3PG. Fig. 3(a)
displays the convergence curves of these methods on the
Synthetic dataset, with a content library size of 200 and a
cache capacity of 100 MB set for each SBS. It is noticeable
that the initial rewards of these methods are relatively low,
but rapidly increase as the number of episodes grows. The
proposed FD3PG starts converging to a relatively stable value
after approximately 500 episodes, outperforming other meth-
ods in terms of runtime and rewards.

Specifically, single-agent DRL-based methods, such as
DDPG and DQN, can only observe local state information
in multi-agent systems and utilize limited information for
model training. Due to the absence of comprehensive state
information, the decision-making model of each agent can
easily converge to local optima, leading to suboptimal deci-
sions that fail to maximize the utility of the entire system.
Consequently, when multiple such agents exist in the system,
their decisions collectively diminish the overall effectiveness
of the system. In contrast, MADRL, which employs central-
ized training, achieves better model performance. However,
centralized training necessitates agents employing a larger
and more complex neural network to capture relationships
between numerous global input states and the local policies of
each agent. Consequently, this method significantly increases

the scale and complexity of neural networks, resulting in
slower training speeds. FADE combines DRL with FL, using
parameter aggregation to address the issue of convergence on
local optima and achieves faster training speeds. However, it
does not consider the impact of agent personalization on model
performance. Although parameter aggregation can improve
model performance, the reduction in agent personalization
still negatively affects model performance, especially when
agents are in different environments. In the proposed FD3PG,
agents engage in distributed training based on their local
observations and periodically broadcast their model parameters
to others for aggregation, without relying on a centralized
server. Additionally, we fully consider the impact of agent per-
sonalization on model performance and utilize the EMD-based
model selection method, further enhancing the effectiveness
of parameter aggregation. Continuing to Fig. 3(b), we observe
that all five methods converge much more slowly on the MLS
dataset compared to the Synthetic dataset. It is worth noticing
that, even in this scenario, the proposed FD3PG consistently
outperforms other methods.

2) The impact of the cache capacity of SBS: The impact
of varying cache capacities of SBS on the performance of
different methods is explored, with each SBS’s cache capacity
ranging from 100 to 200 MB, as depicted in Fig. 4. Fig. 4(a)
illustrates the effect of different cache capacities of SBS on the
average delivery delay for the Synthetic dataset. As the cache
capacity of SBS increases, FD3PG consistently outperforms all
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Fig. 5. Average delivery delay versus different numbers of content on (a) the Synthetic dataset and (b) the MLS dataset. Cache hit rate versus different

numbers of content on (c) the Synthetic dataset and (d) the MLS dataset.

other methods in terms of average delivery delay. In the initial
stage, FD3PG achieves the lowest average delay, reducing it
by approximately 10%, 11% and 35% compared to FADE,
MADRL and DDPG, not to mention the simple rule-based
methods, LFU and LRU. Moving on to Fig. 4(b), we observe
the impact of different cache capacities of SBS on the average
delivery delay for the MLS dataset. The average delivery
delay of all methods on this dataset is higher than that on
the Synthetic dataset. Nevertheless, our proposed FD3PG still
reduces the average delivery delay by approximately 12%,
14%, 36%, 53%, and 62% compared to FADE, MADRL,
DDPG, LFU, and LRU, respectively.

Furthermore, an increased cache capacity has a positive im-
pact on the cache hit rate across different datasets, as illustrated
in Figs. 4(c) and 4(d). All methods, particularly DRL-based
ones, exhibit an upward trend in cache hit rate with an increase
in the cache capacity of each SBS. This trend is attributed to
the ability of SBSs to cache more content from the library
as their cache capacity grows, leading to a higher satisfaction
of content requests. Considering cooperative caching among
SBSs, the surplus cache capacity allows them to assist other
SBSs in fulfilling more content requests, reducing duplicate
content delivery and minimizing the necessity to fetch content
from the MBS. Consequently, it is logical that all methods
achieve lower average delivery delay and a higher cache hit
rate with an increase in cache capacity.

It is noteworthy that agents in FD3PG, FADE, and MADRL
can learn from their own environment while also accounting

for the impact of decisions made by other agents. This ability
allows them to strike a balance between sacrificing some local
cache hit rate and sharing cache capacity to process content
requests from adjacent SBSs. In contrast, agents in single-
agent-based methods, like DDPG, can only observe limited
local state information and make decisions based on that.
Furthermore, as mentioned earlier, there is no information
exchange between agents in single-agent methods. Therefore,
they can only focus on the impact of their own decisions on the
environment, making them prone to falling into local optimal
solutions. Their efficiency of complex datasets is unstable,
leading to unsatisfactory results. Additionally, simple rule-
based methods, such as LFU and LRU, struggle to fulfill
content requests in dynamic and complex environments.

3) The impact of the number of content: Fig. 5 illustrates
the performance of various methods with different content
numbers. The number of contents ranges from 200 to 400
on the Synthetic dataset and from 6000 to 9000 on the
MLS dataset, while the initial cache capacity of each SBS
is set to 100 MB. As shown in Figs. 5(a) and 5(b), the
average delivery delay for all methods experiences a slight
increase with the rise of the content number. Additionally,
all methods perform worse on the MLS dataset than on
the Synthetic dataset. This trend indicates that the diversity
of content requests increases as the number of contents in
the library grows. However, SBS cannot guarantee that the
cached content can fulfill various content requests in each
time slot due to limited local cache space. This reduces the
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cache hit rate of SBS and increases the probability of SBS
requesting content from other SBSs or MBS. Consequently,
this increases the complexity and frequency of SBS performing
cache replacements to fulfill time-varying content requests.
Therefore, each SBS needs to perform cache replacement more
frequently to fulfill time-varying content requests. On the MLS
dataset, the complexity of content requests further increases,
leading to worse performance for all methods.

Furthermore, the cache hit rate of all methods decreases
with an increasing content number. As depicted in Fig. Fig.
5(c), the proposed FD3PG achieves a cache hit rate of 57%
when the number of contents reaches 400, while LFU and LRU
perform the worst at 24% and 21%, respectively. Similarly,
all methods perform worse on the MLS dataset than on
the Synthetic dataset, as shown in 5(d). Specifically, due to
their simple rule-based nature, LFU and LRU struggle to
learn optimal policies based on different state information in
dynamic and complex environments. In contrast, DRL-based
methods use neural networks to make decisions, replacing sim-
ple rules. They not only leverage historical experience to learn
optimal strategies but also adapt to new requests by continually
interacting with the environment and adjusting their strategies
based on feedback. Moreover, DRL-based methods prioritize
obtaining higher rewards rather than merely satisfying content
requests. As anticipated, FD3PG outperforms other methods
across varying content quantities.

4) The impact of the number of UD and SBS: Fig. 6
illustrates the impact of the number of UD and the number

of SBS on both the average delivery delay and cache hit rate.
The range of the number of UD varies from 100 to 200, while
the number of SBS increases from 5 to 10. Figs. 6(b) and 6(d)
depict the impact of the number of SBS on the average delivery
delay and cache hit rate, respectively. With the increase of
the number of SBSs, the average delivery delay decreases
across all methods. This is attributed to the collaborative
caching among SBSs, which allows UDs to request more
contents through SBSs as their number increases, resulting
in higher cache hit rate and lower average delivery delay. It is
worth noting that the impact of the number of SBS is more
significant for the proposed FD3PG and MADRL compared
to other methods. These two methods consider the interaction
among agents, making the collaborative caching among SBSs
more efficient. In contrast, DDPG, LRU, and LFU, while also
reducing delivery delay and improving cache hit rate, often
focus only on the impact of the action of agents on themselves,
neglecting the actions of other agents. Therefore, the increase
in the number of SBSs has less pronounced impact on them. It
can be observed that the number of UD is positively correlated
with average delivery delay and negatively correlated with
cache hit ratio. Specifically, with a constant number of SBS,
increasing the number of UD leads to greater diversity in
content requests, which implies that UDs will request more
contents that is not cached in SBSs.

5) The impact of the model selection: The impact of the
EMD-based model selection is illustrated in Fig. 7. As shown
in Fig. 7, when model selection is taken into account, the agent
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Fig. 7. (a) Average delivery delay and (b) cache hit rate versus different
numbers of UD.

performs better than when model selection is not taken into
account. As noted in [60], models trained with the participation
of diverse UDs exhibit a certain degree of personalization. In
this study, we assume that there are significant differences in
the average preferences of UDs served by different agents,
which can lead to changes in the required optimal caching
decision. If parameter aggregation is conducted among these
agents, the personalization of their respective models may
diminish. The decisions made by these models might not
be optimally tailored to their specific environments, which
results in a decrease in the QoS for the UDs they serve.
Therefore, by employing EMD-based model selection, we aim
to maintain a high degree of personalization and ensure that
each agent can make decisions that are most suitable for their
unique operational contexts, ultimately enhancing the overall
experience of UDs.

6) The impact of the content recommendation: Finally, we
present a comparison of different methods on the MLS dataset
with and without content recommendation, as depicted in Fig.
8. From Fig. 8(a), it is obvious that all methods utilizing con-
tent recommendation achieve lower delivery delay. Fig. 8(b)
illustrates the comparison of cache hit rate between methods
with and without content recommendation. Traditional edge
caching typically employs the direct hit method, satisfying
content requests but leading to a higher probability of SBSs re-
questing content from other BSs, thereby increasing visits and
content delivery delay. Additionally, not all cached contents
in SBS are popular, resulting in inefficient use of cache space
resources. CRS addresses these issues by analyzing content
similarities and recommending similar content to UDs. This
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approach enhances cache resource utilization, mitigating the
need for SBS to retrieve content from other BSs due to cache
limitations. Furthermore, we consider collaboration between
SBSs to further enhance edge caching resource utilization.
Overall, methods incorporating content recommendation con-
sistently achieve lower delivery delay and higher cache hit rate.
This indicates that the integration of content recommendation
and edge caching significantly improves the QoE for UDs and
the QoS for SBSs.

In summary, it can be concluded that the proposed FD3PG
can not only reduce content delivery delay and achieve sig-
nificantly higher cache hit rate but also exhibit efficiency
in more complex scenarios. Therefore, we demonstrate the
effectiveness of the proposed method across various scenarios.

VII. CONCLUSION

This paper has investigated a content recommendation-
based edge caching method in which each SBS recommends
similar content to UDs instead of requesting content from
the MBS or other SBSs when the requested content is not
available in the cache space. First, we considered a multi-
tier edge caching-enabled CDN architecture, considering the
heterogeneity of content requests in different areas and co-
operative caching among SBSs. Second, we formulated the
optimization problem with the goal of minimizing long-term
content delivery delay, approximated the optimization process
as a POMDP, and proposed a DDPG-based method to solve
it. Finally, we extended the POMDP to the case of multi-agent
systems and proposed the FD3PG to address the corresponding



problem in the multi-agent case. Extensive simulations are
conducted to rigorously evaluate the performance of FD3PG,
and the results demonstrate its effectiveness across various
scenarios compared with other existing methods.
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