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Abstract—Instead of relying on remote clouds, today’s Augmented Reality (AR) applications usually send videos to nearby edge
servers for analysis (such as objection detection) so as to optimize the user’s quality of experience (QoE), which is often determined
by not only detection latency but also detection accuracy, playback fluency, etc. Therefore, many studies have been conducted to
help adaptively choose best video configuration, e.g., resolution and frame per second (fps), based on network bandwidth to further
improve QoE. However, we notice that the video content itself has significant impacts on the configuration selection, e.g., the videos
with high-speed objects must be encoded with a high fps to meet the user’s fluency requirement. In this paper, we aim to adaptively
select configurations that match the time-varying network condition as well as the video content. We design Cuttlefish, a system
that generates video configuration decisions using reinforcement learning (RL). Cuttlefish trains a neural network model that picks a
configuration for the next encoding slot based on observations collected by AR devices. Cuttlefish does not rely on any pre-programmed
models or specific assumptions on the environments. Instead, it learns to make configuration decisions solely through observations of
the resulting performance of historical decisions. Cuttlefish automatically learns the adaptive configuration policy for diverse AR video
streams and obtains a gratifying QoE. We compared Cuttlefish to several state-of-the-art bandwidth-based and velocity-based methods
using trace-driven and real world experiments. The results show that Cuttlefish achieves a 18.4%-25.8% higher QoE than the others.

Index Terms—Augmented reality, reinforcement learning, configuration adaption
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1 INTRODUCTION

INTELLIGENT mobile devices supporting Augmented
Reality (AR) become sought after by the masses with

diverse requirements. AR is defined as an approach to
“augment” the real-world with virtual objects. Accord-
ing to Azuma et al. [1], the AR system has the following
attributes: to combine real and virtual objects in a real en-
vironment; to geometrically align virtual objects and real
ones in the real world; to run interactively and in real
time. AR technology has been applied to a wide range
of fields: tourism, entertainments, marketing, surgery,
logistics, manufacturing, maintenance and others [2] [3].
Reports foretasted that 99 million AR/VR devices will
be shipped in 2021 [4], and that the market will reach
108 billion dollars [5] by then. Existing mobile AR sys-
tems, such as ARKit, Microsoft HoloLens [6] and the
announced Magic Leap One [7], facilitate the interaction
between humans and the virtual world.

Benefited from the emerged Mobile Edge Computing
(MEC) [8], [9], [10], the compute-intensive object detec-
tion in AR applications is pushed from remote cloud
to edge servers. The AR device uploads the encoded
video to the edge server for detecting and rendering,
then downloads the well handled video. The AR system
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on the edge leverages the state-of-the-art detecting al-
gorithms such as YOLO [11], [12], [13] that adopts one
state detector strategy that views the object detection as a
regression problem and learns the boundary coordinates
as well as the corresponding class probability.

However, current AR systems lack effective mecha-
nisms to achieve the adaptive configuration to bridge
the performance gap resulting from (1) the fluctuation
of network throughout over time; (2) the conflicting
Quality of Experience (QoE) requirements (i.e., accuracy
and latency of detecting, and fluency of video play); and
(3) the time-shifted moving velocities of target objects.
Specifically, we take the fps and resolution selection
as an example to elaborate the impacts of AR video
configuration on user QoE. We divide the total time of
interest into multiple slots of equal length, and define
the fps as the number of frames per slot. Images with
higher resolutions, divided into multiple grid cells in
YOLOv3, are likely to enhance the detecting accuracy,
but inevitably cause longer transmission delays when
fixing the fps. Similarly, AR videos encoded with a high
fps may lead to a better fluency without any stutters,
but they lead to larger uploading and detecting delays.
When the network bandwidth changes over time, en-
coding the AR videos with an exorbitant configuration
may lead to a deteriorating QoE and degraded network
status, but assigning a poor configuration abates the
network utilization as well as QoE. Apart from the
unpredictable network bandwidth, the moving trends of
objects in term of moving velocity and direction are also
unknown. The video with high-speed objects usually
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needs a high fps to guarantee the fluency, but a much
lower fps is enough if the objects are almost static.
Hence, the video configuration should match the time-
varying network bandwidth and the moving velocities of
the objects in the videos. We will further describe these
challenges in Section 2.

In this paper, we pursue a black-box approach for
adaptive configuration of AR video that embraces in-
ference while not relying on detailed analytical per-
formance modeling. Encouraged by recent inspiring
achievements of deep reinforcement learning (DRL) [14],
[15], [16] in the Alpha-go game [17], video streaming
[18], and job scheduling [19], we propose and design
the learning-based Cuttlefish1, an intelligent encoder for
adaptive video configuration selection, without using
any pre-programmed models or specific assumptions.

Cuttlefish starts with no knowledge and gradually
learns to make better configuration decisions through
reinforcement, in the form of reward signals that reflect
user’s QoE from past decisions. Cuttlefish depicts its
policy as a neural network that maps “raw” observa-
tions (e.g., estimated bandwidth, captured velocity and
historical configurations) to the configuration decision
for the next slot. The neural network incorporates a rich
diversity of observations into the configuration policy
in a scalable and expressive way. Cuttlefish aims to
maximize the accumulative discounted reward rather
than a temporary maximum reward, since a current well-
performing configuration may not benefit future config-
urations. Particularly, Cuttlefish trains its policy network
using the state-of-the-art asynchronous advantage actor-
critic network model (A3C) [15]. After training over
numerous episodes, we can adopt the Cuttlefish to make
efficient video configuration decisions.

Our major contributions are summarized as follows:

• We identify several subtle factors to adaptive con-
figuration selection in edge-based video analysis ap-
plications. First, time-varying bandwidth constrains
the encoded fps and resolution, and time-shifted
moving velocity limits the encoded fps. Besides,
current information may be instructive for future
configuration selection. Last but not the least, di-
verse personalized QoEs usually lead to a latency-
accuracy-fluency tradeoff. We combine these factors
to make configuration decisions, which has not been
revealed in the existing literature.

• We present Cuttlefish, an intelligent system that
learns an adaptive configuration policy from past
traces. We train the Cuttlefish with the A3C al-
gorithm that takes the current observed state (es-
timated bandwidth, captured speed of target ob-
jects, et al.) as input, and outputs the probability
distribution of all configurations, from which the
video encoder selects an optimal configuration that
maximizes the accumulative discounted reward.

1. Cuttlefish, sometimes referred to as “chameleons of the sea”, can
rapidly alter their skin color to camouflage themselves.
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Fig. 1. Bandwidth fluctuation over time. (a) The uplink and
downlink bandwidth. (b) The Y-axis denotes the fraction of
slots, in which the bandwidth is within [80%, 120%] of the
average bandwidth of the past 1, 3 or 5 slots.

• We implemented a prototype of Cuttlefish. We sim-
ulate the bandwidth over a large corpus of network
traces, and deploy YOLOv3 in the servers config-
ured with RTX2080 Ti GPUs. We compare Cuttlefish
to several state-of-the-art algorithms using diverse
types of AR videos, and Cuttlefish rivals or outper-
forms these algorithms by improving the average
QoE by 18.4%-25.8%.

2 OBSERVATIONS AND CHALLENGES

In this section, we expound some vital observations that
motivate us to propose Cuttlefish.

2.1 Latency-accuracy-fluency Tradeoff
The AR devices upload real-time video stream to edge
cloud for detecting and rendering, in which detecting
and uploading processes occupy the majority of the total
latency. Generally, the detecting accuracy and video play
fluency are positively correlated with the encoded reso-
lution and fps. Users embrace accurate and fluent well-
crafted AR videos in real time, however, high detecting
accuracy, high perceived fluency and low completion delay are
difficult to meet simultaneously. A video stream encoded
with a higher resolution can get a gratifying accuracy,
but assigning a resolution that exceeds the available
bandwidth may lead to an unbearable uploading delay
when facing a degraded network. Similarly, a video with
a higher fps gains desired fluency without stutters, but
may be followed with an extra latency due to detecting
and uploading more frames. Hence, a well-balanced QoE
is urgently-needed to mitigate this tradeoff.

2.2 Variability in Network Bandwidth
Many AR applications are initiated from mobile devices
over cellular networks like LTE, which may experience
frequent bandwidth fluctuation [20]. To cater to the vari-
able bandwidth, the encoded resolution and fps should
be selected adaptively. To illustrate the variability of
bandwidth, we depict two ATT-LTE network traces from
the Mahimahi [21] project as Fig. 1 shows.

Across the upload and download traces, we made the
following observations:
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• Periods of extreme low/high throughout are un-
common: only 14.5% of the time, the upload band-
width is 0 or larger than 10 Mbps, and 14.9% for the
download bandwidth;

• The bandwidth of the next slot is closely related
to the average values of the past several slots: as
Fig. 1b shows, for uploading capacity, 76.3% slots
own less than 20% bandwidth variation compared
to the previous one slot, and it reaches 89.2% when
referring to the past five slots;

• The download capacity shares the similar pattern
with the upload capacity.

These observations suggest that, the bandwidth fluc-
tuates in a specific range (e.g., [0,28] in Fig. 1) during the
whole time scale, but varies less (e.g., [0,5]) in a smaller
interval (e.g., from 400 to 410). These observations pro-
vide a feasible approach to estimate the bandwidth
without future network information, and then guides the
resolution selection.

2.3 Time-shifted Moving Velocity

In real AR scenarios, target objects may not always move
fast or keep still as Fig. 2 shows. Fig. 2a depicts the de-
tection of moving vehicles in a dynamic traffic video for
pedestrian alert. Apparently, a large encoded fps should
be adopted to meet the fluency gap resulting from the
dramatic location changes of vehicles and pedestrians
over time, but it causes a remarkable rise in both the
uploading and detecting latencies. While in Fig. 2b, we
render a virtual Minions that stands next to the boy in a
relatively static video. In such a scenario, a smaller fps
is enough to pledge the fluency. Therefore, not only the
bandwidth but also the video content should be taken
into consideration when we need to adaptively configure
the video for a better QoE.

2.4 Challenges

Intuitively, the video encoding can be viewed as a se-
quential decision-making process. We select one of the
best configurations for the AR video encoder at each time
slot. DRL has been widely used for sequential decision-
making in an unknown environment, where an agent ob-
serves the current state from the environment, selects an
action based on the current policy and updates the policy
with the feedback (i.e., reward from the environment).
Generally, the policy is represented as a neural network
trained through numerous trial-and-error interactions
with the environment to maximize cumulative reward
over time. It seems that we have a practical solution to
realize adaptive configuration based on the above three
observations. However, it is nontrivial to use DRL in our
problem, as indicated by the following knotty challenges:
• The state, action and reward in DRL are sophisti-

cated. The essence of state, accurate bandwidth and
velocity, are difficult to obtain. How to model the es-
timated real-time bandwidth and capture the mov-

(a) Safe driving (b) Virtual Minions stands
next to the boy

Fig. 2. AR video with diverse velocities. (a) Detecting the
moving vehicles and pedestrians. (b) Rendering a virtual
Minions in a nearly static AR video.

ing velocity are unsolved. We try to mitigate latency-
accuracy-fluency tradeoff and integrate them into
the reward. The reward not only represents the
user’s real experience for the selected configuration,
but also significantly affects the final performance of
Cuttlefish. However, the well-crafted reward func-
tion is not easy to design.

• Training samples are not readily available. It’s im-
practical to obtain the training data by trial and error
in real AR scenarios. How to faithfully model video
stream with live AR video player is never trivial.

In the following section, we strive to solve the above
challenges and present the design details of Cuttlefish.

3 SYSTEM ARCHITECTURE OF CUTTLEFISH

We consider a real-time Augment Reality (AR) appli-
cation with personalized QoE (Quality of Experience).
The encoded video stream is uploaded to the edge
cloud for the object detecting and rendering process, and
then sent back for providing the fascinating AR stream
for mobile users. To overcome the challenges above,
we propose Cuttlefish, a novel system that enables us
to adaptively select configuration to achieve a better
tradeoff among latency, accuracy and fluency. Cuttlefish
leverages a highly representative DRL model rather than
a random strategy to choose a valuable configuration.
The offline training and online object detecting make up
the two fundamental components of Cuttlefish, which is
illustrated in Fig. 3 and Fig. 4, respectively.

Offline training. Pure online learning of the policy
network from scratch inevitably results in poor policies
in the beginning, namely cold start, as DRL typically
requires a lot of trials and errors in order to converge to
an ideal policy. Thus, the offline training is indispensable
to generate a well-designed model to meet the real-time
detecting. To overcome the cold start, we collect some ex-
pert data to train the policy network through supervised
learning. Hence, it can reach better initial parameters
compared to the random schemes. As Fig. 3 illustrates,
the DRL agent takes the current state observed from
the environment including bandwidth, previous frames,
moving velocity and previous configurations as inputs,
and then generates configuration decision. The agent is
able to obtain the instant reward, and effectively expand
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Fig. 3. Offline training. DRL agent pretrains its policy
network with past traces collected from interactions with
the environment.

the available trace set for DRL training. Based on the
SGD method and several advanced techniques such as
the Actor-Critic network and exploration enhancement,
the network weights are finally well trained. Note that
the DRL model will periodically update its parameters
to adapt to the changing environment.

Online object detecting. Since the DRL model has
been well-trained, we apply them to make configuration
decisions for live AR video streams. As Fig. 4 shows,
before the AR device encodes the video of the next
time slot, it first collects the current state (i.e., estimated
bandwidth, captured velocity et al) and extracts the
past several configurations. Then, it takes this state as
the input of the Actor-Critic network, and outputs the
probability distribution of all optional configurations,
based on which the AR devices make configuration
decisions. Hence, the AR devices encode the video with
the selected configuration, upload the AR video to the
edge cloud for detecting and rendering, and download
the results. During the realtime interaction, Cuttlefish
integrates the state, action, instant reward and the next
observed state into a quadruple that can be viewed
as a newly collected sample, and retrains Cuttlefish’s
policy periodically to continuously improve the selected
configuration over time. In the following section, we
show the detailed design.

4 DESIGN DETAILS OF CUTTLEFISH

In this section, we first illustrate the basic learning mech-
anism, and present the formal definition of our DRL
framework. Then, we elaborate on the detailed training
methodology.

4.1 Basic Learning Mechanism

DRL is committed to learning an effective policy for the
current state from the historical experiences. As depicted
in Fig. 3, the RL-agent interacts with the environment,
where RL-agent is the brain for making decision, and
the environment is a highly abstract that integrates the
surrounding information. The RL-agent can observe a
small part of the environment, which forms the state.
At each time interval t, the RL-agent observes a state
st and chooses an action at based on a specific policy π.

AP

...

YOLO3  
 Rendering

Cuttlefish

configuration

downlink

Estimated bandwidth

Past configurations and moving velocity

Past configurations

Fig. 4. Online object detecting. Cuttlefish makes adaptive
configuration decisions for the real time AR video based
on its observed states.

When the action is done, the agent will receive an instant
reward rt and transit to the next state st+1. Through
constant interactions with the environment until done,
the RL-agent is expected to obtain a high accumulative
reward.

4.2 DRL Framework
We propose the model-free DRL-based Cuttlefish to
adaptively generate configurations without any knowl-
edge from the future environment and the state transi-
tion probability. The detailed designs and principles are
shown in Fig. 5.

4.2.1 State Space
The state is viewed as the observation of a RL-agent
(i.e. a MAR device or encoder in making configuration
decisions) from the environment. Through continuously
learning from historical experience, the RL-agent aims
to obtain the comprehensive state that approaches the
perspective of the God (i.e. with future and global
knowledge). Thus, an exhaustive state is critical to the
decision-making efficiency. We take four key elements
into consideration, including the followings:
. Historical configuration decisions (fpst, rest). We

divide the total time T into multiple time slots of equal
length. In each slot, we assume the resolution and fps,
denoted by rest and fpst respectively, are constant. AR
video streams do not have subversive changes in two
consecutive time slots, so that the past decisions may
help in selecting the configuration for the next slot. The
number of referenced past configurations used in Cuttle-
fish, denoted by k shown in Fig. 5, depends on the video
contents. For example, if the video is a highly dynamic
racing game, one past configuration is enough, while
more past configurations may be better in a slightly
changeable AR video stream. In practice, choosing an
optimal k is not easy, since even a static camera can
generate both slightly changeable videos (e.g., midnight)
and highly dynamic ones (e.g., rush hours). This is left
as our future work, and we believe incorporating it into
Cuttlefish can further elevate Cuttlefish.
. Estimated bandwidth B

(t+1)
est . The encoder struggles

to pick the resolution and fps that perfectly match the
available bandwidth, yet lacks the access to gain the
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Fig. 5. The neural network architecture of Cuttlefish.

future bandwidth. As previously stated, the bandwidth
varies around an specific value during solt t, and the
more valuable references of past bandwidths it adopts,
the more accurate estimation it can get. Thus, we calcu-
late the estimated bandwidth B

(t+1)
est of slot t + 1 as the

weighted average bandwidth of past k slots, i.e.,

B
(t+1)
est =

t∑
i=t−k+1

ωiBi, (1)

where ωi < ωj if i < j, and
∑
ωi = 1.

. Average velocity vt. As we know, AR video stream
with target objects of high moving velocities is supposed
to be encoded with a higher fps. Similarly, videos with
nearly still objects correspond to a lower fps. Assume
that the target objects set is Z = {z1, z2, · · · , zn}, and
the last configuration is (fpst, rest). The encoded video
stream is uploaded to the edge cloud for object detecting
with the YOLOv3 algorithm, which directly predicts the
position of target objects, namely Bounding Box Prediction.
For f < fpst and i ∈ Z , suppose that the Bounding
Box Prediction set is (xfi , y

f
i , w

f
i , h

f
i , c

f
i ), which consists

of center coordinates of X and Y (xfi , y
f
i ), height and

width (wfi , h
f
i ), and prediction class cfi . Considering the

moving trends of target objects are not fixed or regular,
we adopt Manhattan distance [22] rather than Euclidean
distance to measure the distance that it moves in unit
time slot. Thus we define the velocity vt as the average
accumulated distance of all objects moved from the
current frame to the next frame during slot t, i.e.,

vt =
1

|Z|
∑
i∈Z

∑
2≤j≤fpst

[∣∣∣xji − xj−1i

∣∣∣+
∣∣∣yji − yj−1i

∣∣∣] , (2)

where Z is the target objects set. Note that some object
may disappear at the end of a slot; in this case, we
assume its location in the last frame of that slot is in the
farthest corner among all four corners from its location
in the first frame of the same slot.
. Feature map of the latest frame. In a convolution

neural network, we’d like to use a network to simulate
the characteristics of the visual pathway. Several unseen
features, such as the shape edges and color shades, are

favorable to decision-making in AR video configuration.
Diverse filters are adopted to mine potential knowledge
from different perspectives. The detailed design of tuned
filters for convolution and pooling are provided in our
implementation and evaluation.

To sum up, we combine the historical configuration
decisions, estimated bandwidth of the next slot, and the
average velocity of all objects in the past slot into the
state space.

4.2.2 Action Space
For a newly received state s, the DRL-agent selects an
action a based on the policy πθ(s, a), which is defined as
the probability distribution over the action space, and
then get an instant reward. The policy πθ(s, a) is the
output of policy network, whose parameter is set to θ.
To improve user’s QoE, we aim to make an efficient
decision on video configuration. Naturally, we consider
two key factors that affect the detecting performance, i.e.,
the number of frames per slot fpst and resolution rest
during slot t. We couple these two elements to form the
action space, i.e., at=(fpst, rest).

4.2.3 Reward
The DRL agent is likely to receive an instant reward rt
when applying at to state st. In practical AR applica-
tions, mobile users pursuit high detecting accuracy as
well as lower latency and fine fluency, thus we should
consider these three metrics in the reward. Suppose that
at = (fpst, rest) during slot t.
. Latency. As mentioned before, the latency includes

uploading delay dt1, detecting delay dt2, rendering delay
dt3 and downloading delay dt4, where dt1 and dt4 depend
solely upon the available bandwidth, and dt2, dt3 are up
to the computing power of edge servers. We make a
normalization and denote the total latency dt of handling
the frames at slot t by

dt =

fpst∑
f=1

dt1 + dt2 + dt3 + dt4
dκt fpst

, (3)

where, dκt is the latency of a single frame with the most
expensive resolution (e.g., 1080P in our experiment) at
slot t and dt ∈ [0, 1]. In practice, we calculate dκt as the
average latency of each frame using the most expensive
resolution.
. Detecting accuracy. We adopt F1 score, a harmonic

mean of precision and recall, to denote the accuracy. We
identify the true positives in the F1 score through a label-
based method, which checks if the bounding box has
the same label and adequate spatial overlap with the
ground truth box [23]. For a specific configuration, we
compute accuracy of a single frame by comparing the
detected objects with the objects detected by the most
expensive configuration. For the frames encoded with
configuration (fpst, rest) during slot t, the F1 score for
frame i is calculated as F1i = Si/S

g
i , where Si is the area

of the bounding box in the i-th frame with resolution rest,
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and Sgi is the area of the ground truth box in the i-th
frame with the most expensive resolution. We define the
detecting accuracy ct at slot t as the fraction of frames
whose F1 score ≥ δ, e.g.,

ct =
|{fi|F1i ≥ δ, 1 ≤ i ≤ fpst}|

fpst
. (4)

As Fig. 6a shows, we fix fps, and set diverse δ to see
the impact of resolution on accuracy. Through numerous
trials, we demonstrate that the accuracy and resolution
are positively correlated, which is consistent with our
observation. Besides, we find that a much smaller or
bigger δ is not likely to obtain a more significant accuracy
variation under diverse resolutions. Hence, we select an
empirical δ (e.g., 0.7 in Fig. 6a) to reflect this trend in our
evaluation.
. Fluency. User’s perceived fluency is defined as the

smooth level of video play. Without loss of generality,
configured with a higher fps, the video could gain a
better fluency, yet the improvement of fluency will not
be significant when the frame rate reaches a certain
threshold. As described in Section 2, we observed that
the demanded fps towards AR videos with diverse
velocities to meet the same fluency is different. For
instance in Fig. 2, videos similar to Fig. 2a are proposed
to be encoded with a higher fps to reach the same
perceived fluency for videos like Fig. 2b. Based on the
above observations, we give the formal definition of
user’s perceived fluency ut, i.e.,

ut =
vmax
vt

logm(fpst), (5)

where m is the optional maximum fps and vmax is
the maximum velocity (i.e., the diagonal distance of the
frame), vt ∈ [0, vmax], and 0 < fpst ≤ m. As illustrated
in Fig. 6b, to verify the correctness of Eq. (5) and further
explain the impact of fps and moving velocity on user’s
perceived fluency, we collect two main types of videos
from YouTube, including videos with low-speed objects
(e.g., pedestrians), and videos with high-speed objects
(e.g., cars). Then, we calculate the average moving ve-
locities and the corresponding fluency of these two types
of objects in every second based on Eq. (5). Every second
on the top half corresponds to a fps on the bottom half.
The empirical results also agree with the point we made
earlier.

As users may have different preferences on which of
the three components is more important, we define the
reward rt of video configuration at slot t by a weighted
sum of the aforementioned components, e.g.,

rt = −α1(dt − d̄) + α2(ct − c̄) + α3(ut − ū), (6)

where α1, α2 and α3 are the weight factors to bal-
ance the preference to delay, accuracy and fluency, and∑
i αi = 1. This definition of reward is quite general

as it allows us to model varying user preferences on
different contributing factors. In practice, to mitigate the
diverse fluctuations of these metrics, we set d̄, c̄ and ū
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Fig. 6. Accuracy and fluency. (a) Impact of resolution on
accuracy under varying δ. (b) Impact of fps on perceived
fluency under diverse velocities.

to the average values of delay, detecting accuracy and
perceived fluency respectively, all of which are measured
by substantial empirical video traces.

4.3 DRL Model Training Methodology
The configuration space is bounded, but the sophisti-
cated state space seems infinite, thus there are endless
(st, at) pairs. Instead of storing the value of each (st, at)
pair in tabular form, e.g. Q-table, we adopt the state-
of-the-art A3C algorithm, which uses a neural network
[9] to represent a policy π, and the adjustable param-
eter of the neural network is referred to as the policy
parameter θ. Therefore, we can present the policy as
π (at|st; θ) → [0, 1], indicating the probability of taking
action at at state st. The objective of DRL is to find a
best policy π mapping a state to an action that maxi-
mizes the expected accumulative discounted reward as
J(θ)=E

[∑t0+|T |
t=t0

γtrt

]
, where t0 is the current time and

γ∈(0, 1] is a factor to discount the future reward.

4.3.1 Policy Gradient Training
The actor-critic network used by Cuttlefish is trained
with policy gradient method, whose key idea is to estimate
the gradient of the expected total reward by observing
the trajectories of executions obtained by following the
policy. We highlight the key steps of the algorithm,
focusing on the intuition. The policy gradient of J(θ)
with respect to θ, to be used for Policy Network update
for slot t, can be calculated as follows [24]:

∇θJ(θ) = Eπθ

[∑
t∈T
∇θ log (πθ (st, at))A

πθ (st, at)

]
, (7)

where Aπθ (st, at) is the advantage function that indi-
cates the gap between the expected accumulative reward
when we deterministically select at at state st following
πθ and the expected reward for actions drawn from
policy πθ. Indeed, the advantage function reflects how
much better a current specific action is compared to the
“average action” taken based on the policy. Intuitively,
we reinforce the actions with positive advantage value
Aπθ (s, a), but degrade the actions with negative advan-
tage value Aπθ (s, a).
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Fig. 7. Parallel training of A3C. A3C adopts multi-thread
technology to train the actor-critic network. Each thread,
which can be viewed as a RL-agent, trains its own net-
work independently, and interacts with the main network
through pull-push mechanism.

In particular, the RL-agent extracts a trajectory of con-
figuration decisions and views the empirically computed
advantage A(st, at) as an unbiased estimated Aπθ (st, at).
The update rule of actor network parameter θ follows the
policy gradient,

θ ← θ + α
∑
t∈T
∇θ log πθ (st, at)A (st, at) , (8)

where α is the learning rate. The marrow behind this
update law is summarized as follows: the gradient direc-
tion ∇θ log πθ (st, at) indicates how to change parameter
θ to improve πθ (st, at) (i.e., the probability of action at at
state st ). Eq. (8) goes a step along the gradient descent
direction. The specific step size is up to the advantage
value Aπθ (st, at). Hence, the goal of each update is to
reinforce actions that empirically have better feedbacks.
To compute the advantage value A(st, at) for a given
sample, we need to get the estimated value function
vπθ (s), i.e., the total expected reward starting at state s
following the policy πθ. As Fig. 5 shows, the role of critic
network is to learn an estimated vπθ (s) from observed
rewards. We update the critic network parameters θv
based on the Temporal Difference [25] method,

θv←θv−α′
∑
t

∇θv (rt+γV
πθ (st+1; θv)−V πθ (st; θv))

2
, (9)

where V πθ (st; θv) is the estimated vπθ (st) that produced
by the critic network, and α′ is the learning rate. To have
a further understanding, we take a specific experience
(st, at, rt, st+1)2 as an example, we estimate the advan-
tage value A(st, at) as rt + γV πθ (st+1; θv)− V πθ (st; θv).
Note that the critic network does nothing to train the
actor network other than evaluate the policy of actor
network. In actual AR scenarios, only the actor network
is involved in making configuration decision.

To realize an adequate exploration for RL agent during
training to discover better policies, thereby reducing
the risk of falling into suboptimal, we add an entropy
regularization [15] term to encourage exploration. This

2. The RL-agent takes action at for state st in the beginning of slot
t, then obtains instant reward rt, and transits to next state st+1.

practice is significant to help the agent converge to a
fine policy. Correspondingly, we modify Eq. (8) to be

θ←θ+α
∑
t

∇θlogπθ(st, at)A (st, at)+β∇θH(πθ (·|st)), (10)

where β is entropy weight, which set to a large value
and decrease over time to allow Cuttlefish to have more
opportunity on improving rewards, and H(·) is the
policy entropy to encourage exploration by pushing θ
in the direction with higher entropy at each time slot.

4.3.2 Parallel Training
To further enhance exploration and speed up training.
As shown in Fig. 7, we use a parallel approach to
obtain abundant training samples quickly. We start n
threads (i.e. agents) at the same time, and adopt diverse
environment settings (e.g., diverse network traces and
AR videos). Different agents are likely to experience
different states and transitions, thus avoiding the cor-
relation. Specifically, each agent continuously collects its
samples (i.e., tuple {st, at, rt, st+1}), and uses the actor-
critic algorithm to compute a gradient and perform a
gradient descent step as shown in Eq. (9) and Eq. (10), in-
dependently. Then, each agent pushes its actor parame-
ters to the central agent, which integrates the parameters,
and generates a global actor network. Finally, each agent
pulls the global model from central agent, and starts
next training episode until the global actor network is
convergent. Since the actor-critic network has been well
trained, we can take a fast and accurate action based on
the action probability distribution for each encoding slot.

5 IMPLEMENTATION AND EVALUATION

We have implemented Cuttlefish as an intelligent en-
coder that achieves adaptive configuration for video
analysis in AR applications. We first describe the band-
width simulation in a trace-driven manner. Next, we
present Cuttlefish’s training settings on the neural net-
work architecture. Finally, we experimentally evaluate
Cuttlefish with numerous real live AR videos. Our re-
sults answer the following questions:
Question #1: How to verify the convergence of Cuttlefish
during training? We track Cuttlefish’s policy entropy and
accumulative reward across over 2000 training episodes,
and find that the former (resp. later) metric gradually
decreases (resp. increases) and finally converges to a
non-zero value.
Question #2: How does Cuttlefish perform compared to
several carefully-tuned heuristics in term of QoE? We
discover that Cuttlefish rivals or outperforms several
state-of-the-art schemes, with the average QoE improve-
ments of being 18.4%-25.8%.
Question #3: Can Cuttlefish’s learning generalize to
other types of bandwidth traces (e.g., more volatile)
or AR videos (e.g., objects move faster)? We find that
Cuttlefish is able to maintain a good performance in the
face of new network conditions and new videos.
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TABLE 1
Actor-Critic network design of Cuttlefish

Types Actor network Critic network
Input layer 2×1D-CNN+VGG16+3 2×1D-CNN+VGG16+3

Hidden layer 256× 256× 256 256× 256× 256

Output layer |action space| 1

5.1 Trace-driven Bandwidth and Video Collection

With the aid of local area networks (LANs), the AR
devices upload live video to the edge cloud deployed
at base stations (BS). However, given the privacy protec-
tion, it is impractical to operate the real BSs. Hence, we
would like to simulate the LAN that faithfully matches
the real scenario. We establish a corpus of network
traces by integrating several public datasets or network
emulation tool: a broadband dataset provided by the
FCC [26] and the tool Mahimahi [21]. The FCC data
set consists of over 1 million throughout traces, each of
which logs the average throughput over 2100 seconds at
a 5 second granularity. We pick 100 traces for our corpus,
each with a duration of 200 seconds, by concatenating
randomly sampled traces from “Web browsing” category
in the February 2016 collection. The Mahimahi tool
generates traces that represent the time-varying capacity
of U.S. cellular networks as experienced by a mobile
user. Each trace gives a timestamp in milliseconds (from
the beginning of the trace) and records the maximum
number of 1500-byte packets it transits at each millisec-
ond. We reformat the throughout trace to match the FCC
dataset. Similarly, we generate 100 traces to our corpus,
each of which is compatible to the item of FCC traces.
During training, unless otherwise noted, we view a trace
randomly picked from the corpus as the link bandwidth.

The empirical training datasets of videos, sampled
and sifted from the popularized YouTube in an offline
method, have the version with the most expensive con-
figuration (i.e., 1080P and 30fps for Cuttlefish). To gain
adequate and representative samples, several typical
videos, including pedestrians and vehicles, are collected
in a large scale across 10 hours, and shares the same
length with the bandwidth traces in our corpus. After
completing the sampling, we leverage OpenCV [27] to
make some preprocessing for the selected videos. We
convert the origin video into multiple versions, each of
which owns a different resolution. Considering that we
make a decision at each time slot, we divide the AR
video into multiple chunks of equal length, which is the
same as the time slot. Hence, these crafted samples can
be adopted to train Cuttlefish’s actor-critic network.

5.2 Training Setup

We employ YOLOv3 algorithm for detecting in an
edge server (PowerEdge R740, which is configured with
NVIDIA GeForce RTX 2080 Ti GPUs). The Actor-Critic
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Fig. 8. Policy entropy and accumulative reward over the
training episodes.

networks of Cuttlefish as Fig. 5 shows, implemented
using libraries on Pytorch [28] and trained with the A3C
algorithm, share the same parameters of the input layer
and hidden layer, and output the action distribution
and the Q-value. The detailed design of the network
architecture is listed in Tab. 1. We make parallel training
of Cuttlefish with multiple workers, each of which gains
traces of diverse videos, calculates gradients locally and
independently, then pushes the gradient to the central
work synchronously, and pulls the aggregated global
parameters. We adopt the Adam optimizer to perform
gradient descent, with a fixed learning rate of 0.0001,
mini-batch size of 32 samples per worker, reward dis-
count factor γ = 0.9, and entropy weight β = 0.01.
We first verify Cuttlefish’s convergence. As illustrated in
Fig. 8, a larger policy entropy is set to encourage a deeper
exploration in the beginning. While with the increase of
training episodes, the policy entropy gradually tends to
a smaller value, i.e., the policy network is nearly conver-
gent, and Cuttlefish lays emphasis on utilization toward
actions. Note that in the time-varying scenario, to be
compatible with the newly generated states, the entropy
is not likely to be 0. Concurrent with this increase has
been a spiral rise in the accumulative reward. In the
initial episodes, as the result of the random policy shows,
Cuttlefish performs badly in terms of numerical size
and stability. However, through a further exploration,
Cuttlefish gains a larger and more steady accumulative
reward that fluctuates around the maximum.

Without loss of generality, the available selection range
for fpst and rest are set to F = (16, 30) and R =
{480P, 720P, 900P, 1080P}, respectively. If only integers
are adopted for fpst and rest, the total numbers of action
can be calculated as |F |×|R|. The bounded action space
can greatly lessen the training time. Note that, Cuttlefish
can be slightly modified to other ranges of F and R.

5.3 Techniques and Baselines

We utilize several techniques to improve Cuttlefish’s
utility, including: (1) We adopt sparse optical flow [29]
to track the detected objects in the first and last frame
of the same slot, considering that there may be multiple
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Fig. 9. Performance comparisons. We compare Cuttlefish to other baselines in terms of accumulative reward and
negative action rate using two testing types of videos (i.e., for capturing pedestrians and cars, respectively), whose
experimental results are presented as (a)&(b) and (c)&(d), respectively.

objects of the same class; (2) We extract the feature map
of the last frame in each slot through the advanced
VGG16 [30] directly, rather than a retrained model; (3)
We obtain numerous experiences (st, at, rt, st+1) in an
offline method, which accelerates the training speed sig-
nificantly. To further evaluate Cuttlefish’s performance,
we compare it to the following four schemes:

• None-Adaptation. For each slot, the encoder ran-
domly selects a configuration (i.e., resolution and
fps) without consideration on the available band-
width or velocity.

• Bandwidth Based Adaptation [31]. For each ob-
served state st, the encoder first finds out all
possible combination of fps and resolution that
roughly match the estimated bandwidth Btest, i.e.,
{(res, fps)|res×fps≈Btest}. Then, for each config-
uration, we calculate its reward using Eq. (6). We
choose the optimal one with the maximum reward
as the configuration.

• Velocity Based Adaptation. We first set the min-
imum threshold that the fluency must be satis-
fied. Then, given the vmax and vt, we can calcu-
late the minimum fpsmin to meet the threshold
according to Eq. (2), i.e., the feasible options are
{(res, fps)|fps ≥ fpsmin}, and we pick the configu-
ration with the maximum reward.

• Velocity Bandwidth Joint Adaptation [32]. The

tuned decision is ought to conform to the estimated
bandwidth, and meets the fluency threshold. We use
{(res, fps)|res×fps≈Btest, fps ≥ fpsmin} to record
the set of possible configurations. Analogously, we
select the most valuable configuration.

To simplify the description in the analysis and drawing,
we refer to these baselines as NA, BBA, VBA, VBJA,
respectively.

5.4 Experimental Results and Analyses
Two typical types of live videos, collected by street fixed
cameras for monitoring high-speed cars and on-board
mobile cameras for capturing low-speed pedestrians,
respectively, are adopted as testing samples to compare
Cuttlefish to other baselines. For every type of video
we set 200 episodes, each of which contains 200 slots
(seconds), i.e., a total of 40 thousand seconds.

In practice, the accumulative reward of a whole
episode is the most important metric to evaluate the
performance of the proposed model. We first analyze
the accumulative reward of Cuttlefish on the videos
that mainly consist of pedestrians. As Fig. 9a shows,
BBA and VBA take either bandwidth or velocity into
consideration, and VBJA emphasizes the instant tempo-
rary reward. What’s more, to meet the desired fluency,
VBA may select a very high fps, which increases the
transmission delay, and then decreases the accumulative
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reward. Hence, their accumulative rewards are inferior
to Cuttlefish. Cuttlefish gains a more steady performance
enhancement over 40% compared to other baselines. We
next test Cuttlefish using the car videos, the results of
which are shown in Fig. 9c. Compared to the state-of-the-
art heuristic VBJA, Cuttlefish still has a significant im-
provement in the average accumulative reward, which
is 18.4%. The proposed Cuttlefish, taking network and
velocity into consideration, outperforms the bandwidth-
based BBA by roughly 25.8%. These inspiring results in-
dicate that Cuttlefish is also capable of processing videos
with high-speed targets. It is worth mentioning that Cut-
tlefish performs better on videos with pedestrians than
those with cars. The reason behind this phenomenon is
that the videos with high-speed targets lead to a larger
state space, which increases the training difficulty and
finally translates into the reward loss.

We are also interested in evaluating how these algo-
rithms perform with respect to latency, accuracy, and
fluency, respectively. For latency, we define NAR (short
for negative action rate) as the fraction of slots in which
the latency (including the uploading, detecting, render-
ing, and downloading latencies) of a frame is larger than
the length of a time slot. For accuracy, the NAR is the
fraction of slots in which the accuracy is lower than the
threshold (i.e., 0.7). For fluency, the NAR is the fraction
of slots in which the perceived fluency is worse than the
given value (i.e., 0.7). In our experiments, we simulate
the bandwidth with more than 1000 traces, and calculate
the NARs across 500 episodes. As Fig. 9b shows, VBA
uses a high fps to pursue a good fluency, which leads to a
terrible NAR on latency. Similarly, BBA has a large NAR
on accuracy. The proposed Cuttlefish, which has the
lowest NARs on both latency and accuracy, rivals other
baselines, indicating that Cuttlefish can well mitigate the
latency-accuracy-fluency tradeoff. When applied to the
videos with cars, as shown in Fig. 9d, Cuttlefish still
works well, which verifies its generalization ability.

6 LIMITATIONS

In this section, we discuss several potential limitations
and future research directions.

More representative state space. Cuttlefish combines
k previous configurations, the estimated bandwidth of
the next time slot, and the average velocity of all objects
in a slot into the state space. Although Cuttlefish per-
forms well in extensive evaluations, it could generate
better configurations if we design specific state spaces
for different applications scenarios. For example, the
number of previous configurations used in Cuttlefish
should depend on specific applications.

Deploying Cuttlefish in practice. In our current im-
plementation, Cuttlefish runs on the client-side of AR
applications. This approach offers several advantages
over deployment in edge servers. First, AR clients do not
need to send observations to edge servers, which avoids
unnecessary information exchange and latency. Second,

there is no need to modify edge servers; in other words,
this adaptive configuration selection can be transparent
to edge servers. Therefore, client-side Cuttlefish can be
seen as an overlay on the existing AR applications;
whenever there is failure in Cuttlefish, we could disable
the configuration selection service and fall back to the
default one. This fault recovery mechanism could be
invaluable.

7 RELATED WORK

Existing studies on ABR algorithms can be roughly
grouped into two classes, i.e., rate-based and buffer-
based. Rate-based algorithms [31], [33] first estimate
the available network bandwidth based on past several
chunk downloads, and then request video chunks at the
highest bitrate that matches the bandwidth estimation.
For example, Festive [33] predicts throughput in a har-
monic mean of the experienced throughput for the past
5 chunk downloads. Apart from the efficient bandwidth
utilization and streaming transmission, compared to the
traditional ABR problem, our proposed AR adaptive
video streaming achieve an efficient object detection.

AR provides helpful information for those things we
don’t notice or understand, while it’s costly in terms
of time and computing resources, thus it has to offload
the detecting computation to cloud. Existing researches
focused on tradeoff between delay and accuracy through
intelligent offloading or adaptive configuration. Liu et
al. [34] observed that RoI changes in the user’s view,
decoupled the rendering pipeline from the offloading
pipeline, and used a fast objecting tracking method lo-
cally. Liu et al. [35] designed an edge network orchestra-
tor consisting of server assignment and frame resolution
selection to mitigate the latency-accuracy trade-off. Jiang
et al. [36] presented Chameleon to dynamically pick the
best configuration for existing NN-based video analytics
pipelines. Zhang et al. [37] presented AWStream to auto-
matically learns an optimal profile that models accuracy
and bandwidth tradeoff. Other mobile AR researches
[38], [39] showed their useful insights. In comparison,
we explore an adaptive configuration through learning
methods from past experiences.

Recently, DRL has achieved promising results in many
different domains. Mao et al. [18], [19], [40] adopted
DRL to adjust streaming rates to cope with unstable
network, scheduled Spark jobs with efficient resources
usage, and presented Park for researchers to experi-
ment with Reinforcement Learning (RL) for computer
systems. Mirhoseini et al. [41] used DRL to optimize
the operator placement of a TensorFlow computation
graph in a single machine. In [42], Xu et al. applied DRL
for routing path selection in traffic. In [43], [44], [45],
[46], the authors considered a multi-user MEC system,
and proposed A3C based optimization framework to
tackle resource allocation for MEC. Zhang et al. [47]
proposed ReLeS for Multipath TCP, which supports a
real-time packet scheduling. To our best knowledge,
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Cuttlefish is the first to apply DRL to realize adaptive
video configuration.

8 CONCLUSION

This paper presents Cuttlefish, a deep learning-based
system that obtains guaranteed detecting accuracy as
well as latency through adaptive configuration. We ob-
served the variability of bandwidth, time-shifted mov-
ing velocity of target objects, and similarity among
adjacent frames, and all these factors affect the final
encoded configuration. Thus, we combine them and
propose Cuttlefish with a policy network, which takes
the estimated bandwidth, captured velocity and other
historical information as input, and output the config-
uration distribution. We leverage advanced YOLOv3 as
the detecting algorithm, and adopt the state-of-the-art
A3C model to train Cuttlefish with numerous real traces
from YouTube. We compared Cuttlefish to several state-
of-the-art bandwidth-based and velocity-based methods.
The results shows that Cuttlefish can achieve 18.4%-
25.8% higher QoE. In the follow-up work, we focus on
improving Cuttlefish by evaluating more types of videos,
and finally implement it in real AR systems.
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