
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXXXX 201X 1

Distributed Online En-route Caching
Ammar Gharaibeh, Student Member, IEEE,Abdallah Khreishah, Member, IEEE, Issa

Khalil, Member, IEEE, and Jie Wu, Fellow, IEEE

Abstract—Content caching at intermediate nodes is an effective way to optimize the operations of Computer networks, so that future

requests can be served without going back to the origin of the content. Several caching techniques have been proposed in literature,

including techniques that require major changes to the Internet architecture. In this work, we present a low complexity, distributed, and

online caching algorithm based on content popularity. Our algorithm performs en-route caching using a simple cost-reward comparison.

Therefore, it can be integrated with the current TCP/IP model. We use the concept of competitive ratio to measure the performance

of any online caching algorithm, in terms of traffic savings, with respect to the performance of the optimal offline algorithm that has a

complete knowledge of the future. We show that under our settings, no online algorithm can achieve a better competitive ratio than

Ω(logn), where n is the number of nodes in the network. Furthermore, we show that under realistic scenarios, our algorithm has an

asymptotically optimal competitive ratio in terms of the number of nodes in the network. We also study several extensions to the basic

algorithm and show their effectiveness through extensive simulations.

Keywords—En-route caching, caching incentive, competitive ratio, asymptotic optimality, quality of service.

F

1 INTRODUCTION

Recently, content retrieval has dominated the Internet
traffic. Services like Video on Demand accounts for 53%
of the total Internet traffic, and it is expected to grow
even further to 69% by the end of 2018 [2]. Content De-
livery Network (CDN) uses content replication schemes
at dedicated servers to bring the content closer to the re-
questing customers. This has the effect of offloading the
traffic from the origin servers, reducing content delivery
time, and achieving better performance, scalability, and
energy efficiency [3], [4]. Akamai, for example, is one
of the largest CDNs deployed, delivering around 30%
of web traffic through globally-distributed platforms [5].
The problem with CDN is the necessity of dedicated
servers and that content replication is done offline.

Several techniques have emerged to overcome the
limitation of caching at dedicated servers. For example,
Content Centric Networking (CCN) [6] uses the content
name instead of the IP address of the source to locate the
content. This allows more flexible caching at intermedi-
ate nodes. In order to implement CCN, major changes
in the TCP/IP protocol needs to be performed. When a
client requests certain content, the client sends an Interest
Packet to all its neighbors, which in turn send the packet
to all of their neighbors except the one where the packet
came from. The process continues until a node caching

• Ammar Gharaibeh and Abdallah Khreishah are with the Department of
Electrical and Computer Engineering, New Jersey Institute of Technology,
Newark, NJ 07102 USA, Issa Khalil is with Qatar Computing Research
Institute, Hamad bin Khalifa University, 13th Floor, Tornado Tower,
Doha, Qatar, and Jie Wu is with the Department of Computer &
Information Sciences, Temple University, Philadelphia, PA.
E-mail: {amg54,abdallah}@njit.edu, ikhalil@qf.org.qa, and
jiewu@temple.edu.

This research was supported in part by NSF grants ECCS 1331018, CNS
1449860, CNS 1461932, CNS 1460971, CNS 1439672, CNS 1301774, and
ECCS 1231461. Part of this work was presented in IEEE MASS 2014 [1].

the desired content is found, which in turn replies with
a Data Packet containing the desired content.

Clearly, caching a content will reduce the traffic on the
upstream path, if the same content is being requested
another time by a different client. Given the limited
cache capacity, the questions to answer become ‘What
are the factors that affect achieving the maximum traffic
savings?’and ‘Which contents are to be cached in order
to achieve the same objective?’

Several studies try to answer the above questions. The
work in [7] investigates the dependence of the caching
benefit on content popularity, nodes’ caching capacities,
and the distance between nodes and the origin server.
The performance of CCN has been evaluated in [8]
under different topologies, by varying routing strategies,
caching decisions, and cache replacement policies. The
results also show the dependence of CCN performance
on content popularity.

This paper provides a provably-optimal online so-
lution for the first time under a setting that brings
incentives for the nodes to cache. In order to provide
incentives for the nodes to cache, nodes have to charge
content providers for caching their contents. Adopting
such charging policies forces the caching node to provide
quality of service guarantees for content providers by not
replacing their contents in the future, if the node decides
to cache their contents. Since the number of contents far
exceeds the nodes’ cache capacities, and assuming that
the charging price for every piece of content is the same,
then the node has no preference in caching one content
over the other, forcing the node to cooperate and apply
our policy that achieves asymptotic optimality.

Specifically, we make the following contributions:
(1) We design an online, low complexity, and dis-

tributed caching decision algorithm that provides in-
centives for the nodes to cache, and quality of service

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXXXX 201X 2

guarantees for content providers. (2) Our algorithm per-
forms en-route caching and thus can be implemented
without radical changes to the TCP/IP protocol stack.
(3) Under some realistic network settings, we show that
our algorithm is asymptotically (in terms of the number
of nodes in the network) optimal (in terms of traffic sav-
ings). (4) Through extensive simulations, we show that
our algorithm outperforms existing caching schemes. We
also show the efficiency of several extensions of our
algorithm with respect to the existing caching schemes.

The rest of the paper is organized as follows: We
perform a literature review in Section 2. Section 3 states
the definitions and settings of our algorithm. Section 4
describes the algorithm and practical issues. Optimality
analysis of the algorithm is presented in Section 5. Sec-
tion 6 describes the extensions of our algorithm. Section
7 provides simulation results. We conclude the paper in
Section 8.

2 RELATED WORK

Several techniques for content caching have been pro-
posed in the literature. The work in [6] presents Always
Cache, where a node caches every new piece of content
under the constraint of cache capacity. The authors in
[9] provide a push-pull model to optimize the joint
latency-traffic problem by deciding which contents to
push (cache) on intermediate nodes, and which contents
to pull (retrieve) from the origin server. Most Popular
Caching caches a content at neighboring nodes when
the number of requests exceeds some threshold [10].
ProbCache aims to reduce the cache redundancy by
caching contents at nodes that are close to the destination
[11]. A cooperative approach in [12] leads to a node’s
caching decision that depends on its estimate of what
neighboring nodes have in their cache. A collaborative
caching mechanism in [13] maximizes cache cooperation
through dynamic request routing. In [14], nodes try to
grasp an idea of other nodes’ caching policies through
requests coming from those nodes.

Few works targeted the caching decision problem
from the point of view of optimality, or providing incen-
tives for nodes to cache. The work in [15] presents an of-
fline solution through dynamic programming for content
placement for en-route caching. Authors in [16] char-
acterize the optimal content placement strategy under
offline settings, in which all future requests are known
to all nodes in the network. The works in [17], [18] study
the content allocation problem in the traditional IP-based
network and CCN from an offline point of view by
presenting a Mixed Integer Linear Program. The work
of [19] presents an online solution but with no efficiency
or optimality proofs. Other works such as [20] and [21]
consider incentives for nodes to cache. However, they
provide high level solutions that do not scale well with
large systems. The authors in [21] consider a special case
with only 3 ISPs. The work in [22] considers the joint
caching and routing problem in Data Center networks

from an offline point of view to minimize the total cost.
The work in [23] presents an optimization problem for
joint caching and routing to minimize the total energy
consumption. The work in [24] considers caching in
cellular network from an offline point of view, while the
work in [25] presents an online algorithm for caching
in cellular networks. Our work is different in that we
provide an online algorithm with provable performance
for en-route caching.

3 SETTINGS AND DEFINITIONS

In this Section, we provide the settings under which
our algorithm takes place, followed by some necessary
definitions. Lastly, we prove that En-route Caching is
NP-hard.

3.1 Settings

A network is represented by a graph G(V,E), where each
node i ∈ V has a caching capacity of Di. If the node does
not have caching capability, its caching capacity is set to
0. Weights can be assigned to each link e ∈ E, but we
consider all links to have the same weight. The input
consists of a sequence of contents β1, β2, ..., βm, the j-th
of which is represented by βj = (Sj , rj , Tj(τ)), where Sj

is the source for content βj , rj is the size of βj , and Tj(τ)
is the effective caching duration in which more requests
are expected for βj when a request appears at time slot
τ . For simplicity, we assume a slotted time system and
that Tj(τ) is an integer multiple of slots.

For each content, we define the following values:
(1) bi(j): Number of hops on the path from node i to

Sj for βj .
(2) Wi(τ, j): The expected number of requests for βj

to be served from the cache at node i at time slot τ , if
all of the caching nodes cache βj .

(3) t0(i, j): The time when a request for βj appears at
node i.

(4) Ei(τ, j): The total expected number of requests for
βj to be served from the cache at node i per time slot τ .
We assume that Ei(τ, j) is fixed ∀τ ∈ {t0, . . . , t0+Tj(t0)}.

(5) τ0(i, j): The time when βj is cached at node i. For
simplicity, we denote this value hereafter by τ0 since the
values of (i, j) can be inferred from the context.

(6) di(τ, j): Number of hops from node i to the first
node caching βj along the path to Sj at time τ . We
assume that if node i caches βj at time τ0, then di(τ, j) =
di(τ0, j), ∀τ ∈ {τ0, . . . , τ0 + Tj(τ0)}.

Figure 1 shows a simple network to illustrate the
aforementioned definitions. In this example, we have
two contents β1 and β2, originally stored on v1 and v2,
respectively. The triangles in the figure represent the
subnetworks containing the set of non-caching nodes
connected to the caching node. The values of Wi(τ, j)
represent the expected number of requests for βj coming
from the set of non-caching nodes in the subnetwork
connected to node i.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXXXX 201X 3

v1

v2

v3

v4

SubTree1

SubTree2

SubTree3
b3(1)=2, W3(τ, 1)=4
b3(2)=1, W3(τ, 2)=2

SubTree4
b4(1)=3, W4(τ, 1)=2
b4(2)=2, W4(τ, 2)=1

S1

S2

b1(2)=1, W1(τ, 2)=2

b2(1)=1, W2(τ, 1)=3

Fig. 1: Simple Caching
Network.

Fig. 2: A single node in
CCN.

Before any requests for βj appears at any node, each
node i will send its Wi(τ, j) to all nodes on the path from
node i to the source of βj , Sj . This process will lead to
the calculation of the initial values of Ei(τ, j).

For example, in Figure 1, before any request for β1

appears at any node, E3(τ, 1) = W3(τ, 1) +W4(τ, 1), to a
total value of 6. This is because, starting from the initial
configuration while investigating the caching of content
β1 on node v3, all the requests for β1 coming from the
subnetworks connected to v3 and v4 will be served from
the cache of v3, if we decide to cache β1 on v3. Similarly,
E2(τ, 1) = 9. Later on, if v4 decides to cache β1, then
W4(τ, 1) will be subtracted from all nodes along the path
to S1, until the first node caching β1 is reached. This is
because none of these nodes will serve the requests for
β1 coming from the subnetwork connected to v4 after
this point. In Sections 4 and 4.2.3, we provide details
for the dynamic calculation and initialization of Ei(τ, j),
respectively.

We define the total traffic savings of caching in the
time interval [0,t] as:

t∑

τ=0

n∑

i=1

m∑

j=1

Ei(τ0, j)di(τ0, j)I(ai(τ, j)), (1)

where I(.) is the indicator function and ai(τ, j) is the
event that βj exists at node i at time τ . For example,
referring to Figure 1, caching β1 on v3 alone for a single
time slot will yield a saving of E3(τ, 1)× d3(τ, 1) = (4 +
2)× 2 = 12.

We define the relative load on a caching node i at time
τ when βj arrives as

λi(τ, j) =
∑

k:k<j
k∈Cachei(τ)

rk
Di

,

where k < j refers to the indices of all βk that are in the
cache of node i at the time when considering βj to be
cached at node i. We use k ∈ Cachei(τ) to represent the
existence of βk in the cache of node i at time τ .

As we mentioned in Section 1, charging content
providers for caching their contents will provide the
nodes with the necessary incentives to cache. In return,
the nodes have to guarantee quality of service for con-
tent providers by keeping their content cached for the

required time period. We assume that content providers
are charged the same to prevent the node from preferring
contents with a higher prices. To this end, we consider
non-preemptive caching to represent our system model,
i.e., once βj is cached at node i, it will stay cached
∀τ ∈ {τ0, . . . , τ0 + Tj(τ0)} time slots. We elaborate more
on Tj(τ) in Section 4.2.4.

3.2 Definitions

Offline vs. Online Algorithms: The main difference be-
tween the offline and the online algorithms is that the of-
fline algorithm has complete knowledge of the future. In
our work, offline means that the algorithm knows when,
where, and how many times content will be requested.
This knowledge leads to the optimal content distribution
strategy that maximizes the performance in terms of
traffic savings. On the other hand, online algorithms do
not possess such knowledge. Online algorithms have to
make a caching decision for a content based on the avail-
able information at the time of the content arrival. Due
to this difference, the offline algorithm’s performance is
better than that of the online algorithm.

Under our settings, we assume that the node does not
know when a request for a content will come. However,
once a request for a content arrives at a caching node, the
node will know the content’s size, the effective caching
duration time, and the expected number of requests to be
served from the cache of the caching node. Furthermore,
all other caching nodes are informed about the arrival
time of the request. We elaborate more on this issue in
Section 4.2.4. For example, referring back to Figure 1,
node v3 does not know when a request for β1 will come.
Only when a request for β1 arrives at v3 at time t0, does
v3 know r1, T1(t0), E3(τ, 1), in addition to its own relative
load, λ3(τ, 1), ∀τ ∈ {t0, . . . , t0 + T1(t0)}. However, node
v3 does not know when the next request for the same
content will come.

To measure the performance in terms of traffic savings,
as defined in (1), of the online algorithm against the opti-
mal offline algorithm, we use the concept of Competitive
Ratio. Here, traffic savings refer to, but not limited, to
the total number of hops saved using en-route caching,
compared to the traditional no-caching case in which the
request for a content is served by the content’s source.
The traffic savings can be based on other metrics like
the actual distance or the energy consumption. Other
works have used the concept of competitive ratio, but
for different problems such as energy efficiency [26] or
online routing [27]. Competitive ratio is defined as the
performance achieved by the optimal offline algorithm
to the performance achieved by the online algorithm, i.e.,
if we denote the optimal offline performance as Poff and
the online performance as Pon, the competitive ratio is:

sup
t

sup
all input

sequences in [0,t]

Poff

Pon
.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXXXX 201X 4

As the ratio gets closer to 1, the online performance gets
closer to the optimal offline performance. In other words,
the smaller the competitive ratio, the better the online
algorithm’s performance.

We motivate the design of our online algorithm by the
following reasoning: knowing the contents’ popularities
alone does not guarantee an optimal solution. The order
in which the contents arrive makes a big difference. Due
to space limitations, the motivating example is provided
in the supplemental material.

3.3 Proof of NP-Hardness

Due to space limitations, this section is provided in the
supplemental material.

4 ALGORITHM

In this Section, we present the Cost-Reward Caching
(CRC) algorithm that achieves the optimal competitive
ratio, along with some practical issues. We introduce the
proof of optimality in the next Section.

4.1 CRC Algorithm

CRC takes advantage of en-route caching, i.e., a request
for a content is forwarded along the path to the content’s
source, up to the first node that has the content in its
cache. The content then will follow the same path back
to the requester.

In CCN, when an interest packet for a new content
arrives at a node on a certain interface, the node will
send the interest packet using all other interfaces. For
example, Figure 2 shows a single node in CCN, where
the numbers represent the interfaces of the node. When
a request for βj arrives at the node through interface
number 2, and a match is not found in neither the cache
nor the Pending Interest Table (PIT), the node will send
the request on all interfaces except interface number 2.
Our algorithm uses en-route caching, so the new interest
packet is only forwarded on the single interface along
the path to the content’s source.

When a request for a content βj appears at a node i
at time t0, node i sends a small control message up to
the first node caching βj along the path to the source
of the content. Let w be that first node, then node w
replies with a message containing rj and the ID of node
w. Every node u in the path from node w to node i stores
a copy of the message, computes du(t0, j), and forwards
the message to the next node along the path to node i.
When Node i receives the message, it makes a caching
decision according to Algorithm 2. If node i decides to
cache βj , it initializes a header field in the request packet
to the value of Ei(τ, j). If node i decides not to cache, it
initializes the header field to 0.

The request packet is then forwarded to the parent
node z. The parent first subtracts the value stored in
the header field from its own value of Ez(τ, j). Based
on the new value of Ez(τ, j), if node z decides to cache

βj , it adds its Ez(τ, j) to the value in the header field.
Otherwise, node z adds 0. The request packet is then
forwarded to node z’s parent, and the whole process is
repeated until the request reaches the first node that has
the content in its cache. The content then will follow the
same path back to the requester, and every node in the
path that decided to cache the content will store a copy
in its cache. We describe the operation of our algorithm
in Algorithm 1.

Algorithm 1 En-Route Caching

1: A request for βj appears at node i at time t0.
2: header = 0
3: if βj ∈ Cachei(t0) then
4: Reply back with βj

5: else
6: Send a control message to retrieve rj , di(t0, j)
7: w ← first node on the path to Sj , where βj ∈

Cachew(t0)
8: Node w replies with rj and ID
9: ∀u ∈ Path(w, i), store rj , du(t0, j)

10: for uk ∈ Path(i, w), k = 1 : Length(Path(i, w)) do
11: Euk

(t0, j) = Euk
(t0, j)− header

12: Run Cost-Reward Caching algorithm
13: if Caching Decision = TRUE then
14: header = header + Euk

(t0, j)
15: end if
16: end for
17: end if

For example, Figure 3 shows a simple network where
a content β1 is originally stored at S1. We removed the
triangles representing the set of non-caching nodes for
the sake of clarity. If a request for β1 appears at v0,
node v0 will send a control message up to the first node
caching β1, which is S1, and retrieves the values of r1 and
d0(t0, 1) = 1. Based on these values, if v0 decides to cache
β1, it will send the request for β1 to its parent, which
is S1, with the header field initialized to E0(t0, 1) = 14.
Node S1 will simply reply with a data packet containing
β1, and v0 will cache β1. Later on, if another request for
β1 appears at v5 while β1 is still cached at v0, node v5
will send a control message up to the first node caching
β1, which is v0. Node v0 sends a message containing the
values of r1 and its ID to node v2. Node v2 will store the
value of r1, sets d2(t0, j) = 1, and forwards the message
to v5. Node v5 in turn will store the value of r1 and set
d5(t0, j) = 2. Based on these values, if v5 decides to cache
β1 it will send the request for β1 to its parent, which is
v2, with a header field initialized to E5(τ, 1) = 2. When
the request reaches v2, it will first subtract the value in
the header field from its own E2(τ, 1), so the new value
of E2(τ, 1) is E2(τ, 1) = E2(τ, 1)− header = 4− 2 = 2. The
reason that node v2 has to subtract the header field from
its own E2(τ, 1) is because the requests for β1 coming
from the subnetwork connected to node v5 will not be
served from the cache of node v2 since v5 decided to

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXXXX 201X 5

cache β1. Based on these values, if v2 decides not to cache
β1, it will add 0 to the header field and forward the
request to its parent v0. Node v0 will simply reply with
a data packet containing β1, and only v5 will cache β1.

v0

v1 v2

v3 v4 v5 v6

S1

W6(τ, 1) = 1

W5(τ, 1) = 2W4(τ, 1) = 1

W3(τ, 1) = 3

W2(τ, 1) = 1W1(τ, 1) = 2

W0(τ, 1) = 4

E6(τ, 1) = 1

E5(τ, 1) = 2E4(τ, 1) = 1

E3(τ, 1) = 3

E2(τ, 1) = 4E1(τ, 1) = 6

E0(τ, 1) = 14

Fig. 3: Simple Caching Network 2.

The core idea of the Cost-Reward Caching algorithm
is to assign an exponential cost function for each node
in terms of the node’s relative load. If the cost of caching
a content is less than the traffic savings achieved by
caching the content, the algorithm decides to cache. The
choice of an exponential cost function guarantees that
the node’s capacity constraints are not violated. We show
that in the next Section.

We define the cost of caching at a node i at time τ as:

Ci(τ, j) = Di(µ
λi(τ,j) − 1),

where µ is a constant defined in Section 5. The algorithm
for Cost-Reward Caching is presented in Algorithm 2.

Algorithm 2 Cost-Reward Caching (CRC)

1: New request for βj arriving at node i at time t0
2: ∀τ ∈ {t0, . . . , t0 + Tj(t0)}, Compute λi(τ, j), Ci(τ, j)
3:

4: if
∑t0+Tj(t0)

τ=t0
Ei(τ, j)di(t0, j) ≥

∑t0+Tj(t0)
τ=t0

rj
Di

Ci(τ, j)
then

5:

6: Cache βj on node i
7: τ0(i, j) = t0(i, j)
8: ∀τ ∈ {t0, . . . , t0+Tj(t0)}, λi(τ, j+1) = λi(τ, j)+

rj
Di

9: else
10: Do not cache
11: end if

In the algorithm, when new content that is not cur-
rently cached by node i arrives at time t0, node i computes
the relative load (λi(τ, j)) and the cost (Ci(τ, j)) for every
τ ∈ {t0, . . . , t0 + Tj(τ)}. This is because a currently
cached content may be flushed before t0 + Tj(t0), thus
the relative load and the cost should be adjusted for each
time slot thereafter.

For example, Figure 4 shows the relative load at a
node for the next 10 time slots starting from t0, which
is the arrival time of a new content β4. The node has
three cached contents, β1, β2, and β3 that are going to
be flushed at times τ1 = t0+3, τ2 = t0+9, and τ3 = t0+7,
respectively. When a β4 arrives at this node at τ = t0 with

T4(t0) = 10, the cost calculation should include three
cached contents for 3 time slots, two cached contents for
4 time slots, one cached content for 2 time slots, and 0
cached content for 1 time slot. If the total savings for
caching β4 is greater than the aggregated cost, then β4

will be cached on node i, and the relative load is updated
to include the effect of β4.

λi(τ, j)

τ

1

t0+1 t0+2 t0+3 t0+4 t0+5 t0+6 t0+7 t0+8 t0+9 t0+10

Flushing Time of β1

Flushing Time of β3

Flushing Time of β2

Fig. 4: Relative Load Calculation Example. The figure
shows the state of the cache in one node when it
considers a new content β4 for caching at time t0 and
T4(t0) = 10. We have three contents, β1, β2, and β3, that
are to be flushed at times τ1 = t0 + 3, τ2 = t0 + 9, and
τ3 = t0 + 7, respectively.

4.2 Practical Issues

So far, we developed a fully distributed algorithm that
achieves asymptotic optimality in terms of traffic savings
under some realistic assumptions. Before providing the
optimality proof, we discuss in this section the practi-
cal issues that make the algorithm easy to implement.
The major issues in our algorithm include providing
incentives for the caching nodes and QoS guarantees for
the content providers, the adoption of en-route caching,
calculating the popularity expectation of each content,
and updating the effective caching duration.

4.2.1 Providing Incentives and QoS Guarantees

In this work, the QoS measure is to guarantee the
existence of the content in the cache for a certain period
of time, so the content will be delivered quickly. In other
words, once a caching node decides to cache a certain
content, the content will not be replaced during the
effective caching time of the content. Providing such a
guarantee along with adopting an equal pay charging
policy for all contents will provide the caching nodes
with the necessary incentive to cache. Figure 5 shows the
interaction between the ISP and the content provider.

Fig. 5: Interaction between ISP and Content Provider.

We assume that the caching nodes should adopt charg-
ing policies, where every content provider is charged the
same. This will prevent the caching node from preferring

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXXXX 201X 6

one content over the other. Moreover, such charging
policies will enforce the caching nodes to cooperate and
apply our CRC algorithm

4.2.2 En-Route Caching

In en-route caching, a request for βj will be sent to the
parent along the traditional path to the content’s source,
until the request reaches the first node caching the
content or the content’s source. The adoption of this en-
route caching reduces the amount of broadcasted Interest
packets as opposed to the currently deployed schemes
in CCN, where the interest packets are broadcasted to
all neighbors. Moreover, using en-route caching prevents
the reception of multiple copies of the requested content
as opposed to CCN. Furthermore, our algorithm can be
easily implemented in the current Internet architecture.

4.2.3 Calculating the Initial Content Expectation Values

For each content, we start by building a caching tree
rooted at the source of the content. The caching tree is
the union of the traditional paths from the source of
the content to all other nodes. We calculate the initial
expectation value at a caching node for a certain content,
when only node Sj holds the j-th content, based on the
content’s popularity and the number of end nodes in the
subnetwork connected to that node. For example, in Fig-
ure 1, W3(τ, j) at node v3 for content βj is proportional
to the content’s popularity and the number of end nodes
in the subnetwork connected to node v3.

Algorithm 3 shows how to calculate Ei(τ, j) for each
content at each caching node before the appearance of
any request at any node. The expectations are calculated
in a distributed way, where each node only needs to
know the expectation values of its children in the caching
tree. In the simulation, we investigate the effect of having
error margins in the expectation calculation.

Algorithm 3 Initial Content Popularity Expectation Cal-
culation

for each content βj = {Sj, rj , Tj(τ)} do
CachingT ree(j) ← build the traditional path tree
rooted at Sj

for each caching node i ∈ CachingT ree(j) do
Calculate Wi(τ, j)
Initialize Ei(τ, j)←Wi(τ, j)

end for
for each node z ∈ Ancestor(i) in CachingT ree(j)
do
Ez(τ, j) = Ez(τ, j) +Wi(τ, j)

end for
end for

For example, referring back to Figure 3, and before a
request for β1 appears at any node, the values of Ei(τ, j)
are calculated as described in Algorithm 3. Take node
v2 for example, then E2(τ, 1) = W2(τ, 1) + W5(τ, 1) +

W6(τ, 1) = 4. The final expectation values for the rest
of the nodes are shown in the figure.

4.2.4 Effective Caching Duration

The effective caching duration of a content depends
on its arrival time. For example, most people read the
newspaper in a period of two hours, so the caching
duration should be two hours beginning at the arrival
of the first request. However, if a new request for the
newspaper arrives at a node in the middle of the range
and was cached by the algorithm, then the caching
duration should be one hour. This requires the broadcast
of the first arrival time to all other nodes in the network.
The additional overhead incurred by such broadcasting
is negligible compared to the reduction of the Interest
packet broadcasting we achieve through the adoption of
en-route caching.

4.2.5 Imperfect Knowledge of the Input Parameters for

CRC

Our CRC algorithm achieves asymptotic optimality un-
der the assumption of having exact knowledge of the
values of the content popularity expectation, Ei(τ, j), and
the effective caching duration time, Tj(τ). Nevertheless,
we show the resiliency of our algorithm with respect
to errors in the values of Ei(τ, j) and Tj(τ) through
simulations.

4.2.6 Scalability

Now we analyze the complexity of executing the algo-
rithm. Since the execution of the CRC algorithm (Al-
gorithm 2) constitutes of simple cost calculation and
cost-reward comparison, the complexity of executing the
algorithm is O(1) in terms of the number of contents,
the content size, the number of nodes, and the number
of users. As for the complexity of executing the En-
route Caching algorithm (Algorithm 1), the complexity
arises from executing the CRC algorithm at all nodes
along the path up to the content’s source (or up to the
first node that is already caching the content), which is
independent from the number of contents, the content
size, and the number of users. We recognize that the
complexity of Algorithm 1 might be O(n) only if the
network is a line. However, in general networks, the
number of nodes along the path up to the content’s
source is much less than the total number of nodes in
the network (the average hop count is estimated to be
around 15 hops according to [28], and as the contents
are cached at different nodes, the average hop count will
decrease).

5 PERFORMANCE ANALYSIS

In this Section, we show that any online algorithm has
a competitive ratio that is lower bounded by Ω(log(n)),
then we show that our algorithm does not violate the ca-
pacity constraints, and achieves a competitive ratio that
is upper bounded by O(log(n)) under realistic settings.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXXXX 201X 7

Proposition 1. Any online algorithm has a competitive ratio
which is lower bounded by Ω(log(n)).

Proof: We show this proposition by giving an exam-
ple network, such that the best online algorithm com-
petitive ratio is lower bounded by Ω(log(n)). Consider
a network which consists of n + 2 nodes, as shown in
Figure 6. All contents are originally placed at node S,
and node C is the only node with caching capability
with a unit cache capacity. All other nodes can request
the contents. We consider a 2-time slots system where all
contents are to be requested at the beginning of each time
slot, though sequentially. Sequentially means that the
algorithm has to make a caching decision for a content
before considering the next one.

v0 v1 vn

S

C

Fig. 6: Network for Lower Bound Proof.

Consider a log(n) + 1 phases of contents. For each
phase 0 ≤ i ≤ log(n), we have 1/α identical contents,
each with size α≪ 1 and a caching time equal to 2 time
slots. Contents in the same phase are destined for the
same 2i nodes. The reason behind considering a 2-time
slots system is that when a node caches a content, the
traffic saving is considered for future requests.

Let xi be the fraction of contents stored from phase
i and Gi be the traffic saving of the online algorithm
gained from phase i, then

Gi = xi2
i

Consider the first k phases, then the online traffic saving
of these k phases, denoted by G(k), is

G(k) =
∑

Gi =

k∑

i=0

xi2
i

The offline algorithm will cache the contents from phase
k only, gaining a traffic saving of 2k.

Now consider the ratio of the online traffic saving to
the offline traffic saving:

log(n)∑

k=0

G(k)

2k
=

log(n)∑

k=0

k∑

i=0

xi2
i

2k
=

log(n)∑

i=0

log(n)∑

k=i

xi2
i−k

=

log(n)∑

i=0

xi

log(n)∑

k=i

2i−k ≤ 1 ∗ 2 ≤ 2

Hence, there exist some k such that G(k)
2k
≤ 2

log(n) . This
means that the saving of the offline algorithm is at least
within a logn factor of the savings achieved by any
online algorithm.

Before we start the proof of satisfying the capacity
constraints and the upper bound, we need to state the
following two assumptions:

1 ≤
1

n
.
Ei(τ, j)bi(j)

rjTj(τ)
≤ F ∀j, ∀i 6= Sj , ∀τ, (2)

and

rj ≤
minDi

log(µ)
∀j, (3)

where F is any constant large enough to satisfy the
assumption in (2), µ = 2(nTF + 1), n is the number of
caching nodes, and T = max(Tj), ∀j. The assumption in
(2) states that the amount of traffic savings for a content
scales with the content’s size and caching duration. The
assumption in (3) requires that the caching capacity of
any node should be greater than the size of any content,
which is a practical condition to assume.

We start by proving that the CRC algorithm does not
violate the capacity constraints. After that, we show that
CRC achieves a O(log(n)) competitive ratio. In all of the
subsequent proofs, τ ∈ {t0(i, j), . . . , t0(i, j)+Tj(t0(i, j))},
where t0(i, j) is the arrival time of βj at node i.

Proposition 2. The CRC algorithm does not violate the
capacity constraints.

Proof: Let βj be the first content that caused the
relative load at node i to exceed 1. By the definition of
the relative load, we have

λi(τ, j) > 1−
rj
Di

using the assumption in (3) and the definition of the cost
function, we get

Ci(τ, j)

Di
= µλi(τ,j) − 1 ≥ µ

1−
rj
Di − 1

≥ µ1− 1
log(µ) − 1 ≥

µ

2
− 1 ≥ nTF

Multiplying both sides by rj and using the assumption
in (2), we get

rj
Di

Ci(τ, j) ≥ nTFrj ≥ Ei(τ, j)bi(j) ≥ Ei(τ, j)di(t0, j)

From the definition of our algorithm, βj should not be
cached at node i. Therefore, the CRC algorithm does not
violate the capacity constraints.

The next lemma shows that the traffic saving gained
by our algorithm is lower bounded by the sum of the
caching costs.

Lemma 1. Let A be the set of indices of contents cached by
the CRC algorithm, and k be the last index, then

2 log(µ)
∑

i,j∈A,τ

[Ei(τ, j)di(t0, j)] ≥
∑

i,τ

Ci(τ, k + 1) (4)

Proof: By induction on k. When k = 0, the cache
is empty and the right hand side of the inequality is 0.
When βj is not cached by the online algorithm, neither

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXXXX 201X 8

side of the inequality is changed. Then it is enough to
show, for a cached content βj , that:

2 log(µ)
∑

i,τ

[Ei(τ, j)di(t0, j)]

≥
∑

i,τ

[Ci(τ, j + 1)− Ci(τ, j)]

since summing both sides over all j ∈ A will yield (4).
Consider a node i, the additional cost incurred by

caching βj is given by:

Ci(τ, j + 1)− Ci(τ, j) = Di[µ
λi(τ,j+1) − µλi(τ,j)]

= Diµ
λi(τ,j)[µ

rj
Di − 1]

= Diµ
λi(τ,j)[2

logµ
rj
Di − 1]

Since 2x − 1 ≤ x for 0 ≤ x ≤ 1 and using the
assumption in (3)

Ci(τ, j + 1)− Ci(τ, j) ≤ Diµ
λi(τ,j)[

rj
Di

logµ]

≤ rj log µ[
Ci(τ, j)

Di
+ 1]

≤ logµ[
rj
Di

Ci(τ, j) + rj]

Summing over τ , i, and the fact that βj is cached, we get
∑

i

∑

τ

[Ci(τ, j + 1)− Ci(τ, j)]

≤ logµ
∑

i

∑

τ

[
rj
Di

Ci(τ, j) + rj]

≤ logµ[
∑

i

Ei(τ, j)di(t0, j) +
∑

i

∑

τ

rj]

≤ 2 logµ
∑

i

Ei(τ, j)di(t0, j)

In the next lemma, di(τ, j) is defined for the online
algorithm.

Lemma 2. Let Q be the set of indices of contents cached by
the offline algorithm, but not the CRC algorithm. Let l =
argmaxj∈Q(Ci(τ, j)). Then

∑

i

∑

j∈Q

∑

τ

[Ei(τ, j)di(t0, j)] ≤
∑

i

∑

τ

Ci(τ, l)

Proof: Since βj was not cached by the online algo-
rithm, we have:

∑

τ

Ei(τ, j)di(t0, j) ≤
∑

τ

rj
Di

Ci(τ, j)

≤
∑

τ

rj
Di

Ci(τ, l)

∑

i

∑

τ

Ei(τ, j)di(t0, j) ≤
∑

i

∑

τ

rj
Di

Ci(τ, l)

Summing over all j ∈ Q
∑

i

∑

j∈Q

∑

τ

Ei(τ, j)di(t0, j) ≤
∑

i

∑

τ

Ci(τ, l)
∑

j∈Q

rj
Di

≤
∑

i

∑

τ

Ci(τ, l)

Since any offline algorithm cannot exceed a unit rela-
tive load,

∑
j∈Q

rj
Di
≤ 1.

Combining Lemma 1 and Lemma 2, we have the
following lemma.

Lemma 3. Let A∗ be the set of indices of the contents cached
by the offline algorithm, and let k be the last index. Then:

∑

i,j∈A∗,τ

Ei(τ, j)di(t0, j)

≤ 2 log(2µ)
∑

i,j∈A,τ

Ei(τ, j)di(t0, j)

Proof: The traffic savings of the offline algorithm is
given by:

∑

i,j∈A∗,τ

Ei(τ, j)di(t0, j)

=
∑

i,j∈Q,τ

Ei(τ, j)di(t0, j) +

∑

i,j∈A∗/Q,τ

Ei(τ, j)di(t0, j)

≤
∑

i,j∈Q,τ

Ei(τ, j)di(t0, j) +
∑

i,j∈A,τ

Ei(τ, j)di(t0, j)

≤
∑

i,τ

Ci(τ, l) +
∑

i,j∈A,τ

Ei(τ, j)di(t0, j)

≤
∑

i,τ

Ci(τ, k + 1) +
∑

i,j∈A,τ

Ei(τ, j)di(t0, j)

≤ (2 logµ+ 1)
∑

i,j∈A,τ

Ei(τ, j)di(t0, j)

≤ 2 log(2µ)
∑

i,j∈A,τ

Ei(τ, j)di(t0, j)

Note that di(τ, j) in the previous lemmas is defined by
the online algorithm. In order to achieve optimality us-
ing this proof technique, di(τ, j) of the online algorithm
should be equal to di(τ, j) of the offline algorithm. In
the next two corollaries, we show cases where di(τ, j)
of the online algorithm is equal to di(τ, j) of the offline
algorithm.

Corollary 1. When there is only one caching node in every
path (e.g. at the Point of Presence (POP) of an ISP or at the
base stations of a cellular network), then di(τ, j) of the online
algorithm is equal to di(τ, j) of the offline algorithm, and our
algorithm achieves asymptotic optimality.

Corollary 2. When every node in the path shares the same
caching decision (i.e., the content is cached either by all nodes
in the path or none of the nodes1), then di(τ, j) of the online

1. This can be realized by adding a single bit to the request’s header
to indicate if any node decided not to cache the content.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXXXX 201X 9

algorithm is equal to di(τ, j) of the offline algorithm, and our
algorithm achieves asymptotic optimality.

Note that the term asymptotic optimality means that our
algorithm achieves the optimal competitive ratio as the
number of caching nodes (n) in the network increases.
Specifically speaking, the optimal competitive ratio is
Ω(log(n)) as shown in Proposition 1, while the compet-
itive ratio of our algorithm is O(log(µ)) = O(log(nTF))
as shown in Lemma 3. Therefore, as n increases and
becomes the dominant factor, the competitive ratio of
the proposed algorithm becomes closer to the optimal
competitive ratio.

6 EXTENSIONS TO CRC ALGORITHM

In this section, we provide some extensions to the CRC
algorithm. We show the efficiency of these extensions
with respect to currently deployed caching schemes
through extensive simulations.

6.1 Energy-CRC

The basic CRC algorithm measures the traffic savings
for caching a content based on the number of hops. In
this section, we provide an extension for the basic CRC
algorithm where the savings are measured based on the
energy saved on the upstream path from the caching
node up to the first node that already has the content in
its cache.

The settings for the Energy-CRC algorithm are the
same for the basic CRC algorithm except for the defi-
nitions of bi(j) and di(τ, j), where we define bi(j) as the
energy consumption from Sj to node i, and di(τ, j) as
the energy consumption on the path from the first node
that is currently caching βj to node i along the path to
Sj at time τ .

Specifically, let α(u,v) denote the energy consumption
to transfer a unit-size content from node u to node v via
a direct link, then the energy consumption to transfer βj

at time τ from node w to node i, where w is the first
node along the path from node i to Sj that is currently
caching βj , is given by:

di(τ, j) =
∑

(u,v):
(u,v)∈Path(w,i)

(rjα(u,v)).

Based on the values of di(τ, j), we apply the basic CRC
algorithm.

In the case where renewable energy is used to power
the caching nodes, the objective will be to reduce the
amount of the consumed non-renewable energy. There-
fore, the definition of di(τ, j) changes to reflect the new
objective. We measure the traffic savings based on how
much non-renewable (brown) energy is saved.

Specifically, let gru(τ) denotes the amount of available
renewable energy at node u at time τ , then:

di(τ, j) =
∑

(u,v)
(u,v)∈Path(w,i)

(max {rjα(u,v) − gru(τ), 0}).

We assume that every caching node has a prior estima-
tion of how much renewable energy will be available in
the near future.

6.2 Replacement-CRC

The basic CRC algorithm provides quality of service
guarantees for content providers by not replacing their
contents once they are cached. Content providers, in
return, are charged to provide incentives for the caching
nodes based on the caching policy discussed in section
4.2.1. In this section, we present an extension for the basic
CRC algorithm that allows content replacement.

The settings for Replacement-CRC are the same as for
the basic CRC algorithm. However, there is no restriction
on keeping a content βj in the cache of node i for the
whole effective caching duration time Tj(τ), as βj may
be replaced by another content.

We present the details of the Replacement-CRC algo-
rithm in algorithm 4.

Algorithm 4 Replacement-CRC

A new request for βj appears at node i at time t0
∀τ ∈ {t0, . . . , t0 + Tj(t0)}, Compute λi(τ, j), Ci(τ, j)
if

∑
τ Ei(t0, j)di(t0, j) ≥

∑
τ

rj
Di

Ci(τ, j) then
Cache βj at node i
τ0(i, j) = t0(i, j)
∀τ ∈ {t0, . . . , t0 + Tj(t0)}, λi(τ, j + 1) = λi(τ, j) +

rj
Di

else
∀βk ∈ Cachei(t0) ∪ βj , ∀τ ∈ {t0, . . . , t0 + Tk(t0)},
Compute
λk
i (τ, j) = λi(τ, j) +

rj
Di
− rk

Di

Ck
i (τ, j) = Di[µ

λk
i (τ,j)−1]

if λk
i (τ, j) ≤ 1 then

Diff(k) =
∑

τ Ei(τ0, k)di(τ0, k)−
∑

τ
rj
Di

Ck
i (τ, j)

end if
l = argmink(Diff)
if l 6= j then

Replace βl with βj

∀τ ∈ {t0, . . . , t0 + Tj(t0)}, λi(τ, j + 1) = λl
i(τ, j)

end if
end if

Algorithm 4 states that if the traffic savings gained by
caching a new content βj is greater than the caching cost
at node i, then the algorithm decides to cache. Otherwise,
we compare the difference between the traffic savings
and the caching costs for every βk ∈ Cachei(τ), if it is
replaced by βj without violating the capacity constraints.
We then choose the content with the minimum difference
to replace with βj .

6.3 Energy-CRC with Replacement

This extension combines Energy-CRC with Replacement-
CRC, where the traffic savings are measured based
on the brown energy savings, and where content re-
placement is allowed. We show the efficiency of this

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXXXX 201X 10

extension against currently deployed caching schemes
such as Least Recently Used (LRU) through extensive
simulations.

7 SIMULATION RESULTS

In this Section, we compare our CRC algorithm to some
of the existing caching schemes.

7.1 Settings

We simulate the following caching schemes:
(1) CRC: This scheme represents our basic algorithm.
(2) CRC Version 2: This is similar to the CRC scheme,

Version 1, except that we retrieve the content from
the closest node that has the content in its cache, not
necessarily along the path to the content’s source.

(3) All Cache: This is a modified version of [6]. This
scheme caches every new content arriving at a caching
node, as long as there is enough residual capacity to
cache the new content. The content is kept in the cache
for the whole effective cache duration.

(4) Random Caching Version 1: This is a modified
version of [11]. In this scheme, when a request for a
content arrives at node i, the caching probability of the
content depends on the content’s popularity at node i.
The popularity of a content βj at node i denoted by
Popj , is defined as the ratio of the number of requests
for βj coming from the subnetwork connected to node i
denoted by N j

i , to the total number of non-caching nodes
in the subnetwork connected to node i denoted by Ni.
Mathematically speaking, Popj = N j

i /Ni. If we choose a
uniform random number x between [0,1], and x ≤ Popj ,
then the content βj is cached if there is enough room for
it in the cache. Otherwise, the content is not cached.

(5) Random Caching Version 2: This is similar to
Random Caching Version 1, except that the caching prob-
ability of the content depends on the content’s popularity
at node i, scaled by the fraction of the available residual
capacity to the total capacity in the cache of node i
denoted by fi, i.e., if we choose a uniform random
number x between [0,1], and x ≤ fi × Popj , then the
content βj is cached if there is enough room for it in the
cache. Otherwise, the content is not cached.

For every caching node i in the network, we assign a
cache capacity Di that is uniformly chosen in the range
of [750,1000] GB. The number of the non-caching nodes
connected to the caching node i is chosen uniformly at
random in the range of 10 to 90 nodes. The values of
Wi(τ, j) are calculated by multiplying the popularity of
the j-th content by the number of non-caching nodes
connected to node i. The popularity of each content
at node i is chosen independently from other nodes
according to a Zipf distribution [29] with parameter
ζ = 0.8.

For every content, we randomly chose one of the
nodes to act as the source. Each content has a size chosen
randomly in the range of [100,150] MB. The starting
effective time of the content is chosen randomly. The end

time is also chosen randomly within a fixed interval from
the starting time. If the end time exceeds the end time
of the simulation, it is adjusted to be equal to the end
time of the simulation. The simulation interval is chosen
to be 1000 time slots.

7.2 Results on Random topologies

We start our evaluation on random backbone topologies,
in which the caching nodes are generated as a random
topology.

We simulate the effect of the number of caching nodes
n in the network for three cases, n = 30, n = 50, and n =
100 nodes. For each case, we use 10 random topologies,
and report the average performance. We fix the effective
caching duration to 150 slots and the number of contents
to 10000 contents to solely show the effect of increasing
the number of nodes on the performance of the CRC
algorithm. The results are shown in Figure 7(a).

As can be seen from the figure, increasing the number
of the caching nodes will result in better performance in
all schemes since more contents can be cached. Another
observation from the figure is that the performance
of CRC schemes increases at a higher rate than other
schemes as we increase the number of the nodes in the
network. This shows that our scheme greatly benefits
from adding more caching nodes to the network. It is
also aligned with the property of asymptotic optimality
of our scheme. On the other hand, not much improve-
ment can be seen from the other schemes when the
number of nodes is increased in the network.

We simulate the effect of changing the number of
contents from 2000 to 10000. The results are averaged
over 10 runs and are shown in Figure 7(b). The reason
that the performance of the Cache All, Random 1, and
Random 2 schemes increases, and then decreases, is that
there is a saturation point after which the caches of the
network cannot handle the requests. On the other hand,
our scheme reserves the cache capacity for contents with
higher traffic savings, and achieves an improvement of
2 to 3-fold in terms of traffic savings.

Figure 7(c) shows the effect of the maximum effective
caching duration for three cases, 50, 100, and 150 time
slots. In this scenario, the difference between the start
and end times for each content is drawn randomly from
{1, . . . ,max .caching duration}. The reason that the traf-
fic savings decrease as the maximum effective caching
duration increases after a certain point is that contents
are cached for a longer period, so future contents are
less likely to find enough residual capacity at the caching
node.

In all of the results in Figure 7, the performance of
CRC Version 2 is always less than the performance of
CRC Version 1. This is because CRC Version 2 deviates
from the settings under which we achieve optimality.

So far, our performance measure was the traffic saving.
In Figure 8, we measure the cost in terms of total
number of hops to satisfy all of the requests. The re-
sults in Figure 8 are for a random topology with 100

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXXXX 201X 11

30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3
x 10

6

Number of Nodes
 (a)

T
ra

ff
ic

 S
av

in
g
s

CRC1

CRC2

Cache All

Random 1

Random 2

2000 4000 6000 8000 10000
0

1

2

3

4

5

6

7

8

9
x 10

5

Number of Contents
 (b)

CRC1

CRC2

Cache All

Random 1

Random 2

50 100 150
0

2

4

6

8

10

12

14
x 10

5

Maximum Effective Caching Time
 (c)

CRC1

CRC2

Cache All

Random 1

Random 2

Fig. 7: The Effects of Different Factors on the Performance of the Random Topologies.

1
0

1

2

3

4

5

6

7

8

9
x 10

5

T
ra

ff
ic

 C
o

st

CRC1

CRC2

Cache All

Random1

Random2

Fig. 8: Traffic cost.

caching nodes, the number of contents is 10000, and the
maximum effective caching duration is 150 slots. The
results in the figure show that even when we measure
the performance in terms of the total cost, our scheme
reduces the cost by the range of 30% to 50%.

In Figure 9, we measure the per topology improve-
ment for all schemes with respect to Random Caching
Version 2 scheme. Here, we measure the performance of
all schemes for 100 different random topologies. For each
topology, we normalize the performance of all schemes
with respect to the performance of Random Caching
Version 2. Denote the performance of the CRC scheme
and Random Caching Version 2 scheme for topology
s as PCRC(tops) and PRandom2(tops), respectively. We
compute the normalized performance of CRC scheme
with respect to Random Caching Version 2 scheme for
topology s as RCRC(tops) = PCRC(tops)/PRandom2(tops).
After that, the empirical CDF of the vector RCRC =
[RCRC(top1), RCRC(top2), . . . , RCRC(top100)] for the 100
random topologies is plotted. We do the same process
for the other two schemes. The results in the figure
show that our scheme experiences about 4 times the
improvements as that by Random Caching Version 2.

7.3 Results on a Small-word generated topology

In [30] it is shown that the Internet topology exhibits a
small-world structure defined in [31]. In this Section we
perform simulations based on the small world-structure.

Figure 10 is similar to Figure 7, but for the small-
world topologies. The results follow the same trend as

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

per Topology Improvement

F
(x

)

CRC1

CRC2

Cache All

Random1

Fig. 9: The empirical CDF of the per topology improve-
ment for random topologies with respect to Random
Caching Version 2.

the results for the random topologies except for two dif-
ferences. The first difference is that is that CRC Version
1 achieves better performance than CRC Version 2 as we
increase the number of nodes. The second difference is
that all of the schemes’ performances increase along with
increasing the effective caching time. One of the reasons
is due to the sparsity of the small-world topologies,
which results in the fact that the requests are distributed
over multiple domains inside the topology.

7.4 Results for Replacement-CRC

We compare the performance of Replacement-CRC
against the following schemes:

(1) Least Recently Used (LRU): In this scheme, when a
request for a content βj appears at node i, Least Recently
Used replacement is performed at all nodes along the
path from node i to the source of the content βj .

(2) Random Replacement: In this scheme, when a
request for a content βj appears at node i, every node
along the path from node i to the source of the content
βj will randomly choose a cached content to be replaced
with βj , as long as the capacity constraints are satisfied.

(3) CCN: This scheme represents the Content Centric
Network as described in [6], where a request for a
content is broadcasted until the closest node with a copy
of the content in its cache is found. The content then
follows the path from the closest node to the requester,
and all nodes along that path caches the content as

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXXXX 201X 12

30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8
x 10

6

Number of Nodes
 (a)

T
ra

ff
ic

 S
av

in
g
s

CRC1

CRC2

Cache All

Random 1

Random 2

2000 4000 6000 8000 10000
0

1

2

3

4

5

6

7

8

9
x 10

5

Number of Contents
 (b)

CRC1

CRC2

Cache All

Random 1

Random 2

50 100 150
0

2

4

6

8

10

12

14
x 10

5

Maximum Effective Caching Time
 (c)

CRC1

CRC2

Cache All

Random 1

Random 2

Fig. 10: The Effects of Different Factors on the Performance of the Small-world Topologies.

long as the capacity constraints are satisfied, or performs
replacement using LRU if content replacement is needed.

We use the same settings as described in Section 7.1,
and we simulate the effect of increasing the number of
caching nodes in the network, the effect of increasing the
number of contents, and the effect of increasing the cache
capacity of the caching nodes. The results are shown in
Figure 11.

Figure 11(a) shows the performance of all schemes
as we increase the number of the caching nodes in
the network. From the figure, the performance of all
schemes increases with increasing the number of caching
nodes. This is because adding more caching nodes will
increase the overall caching capacity of the network,
which results in more cached contents. Moreover, as the
topology grows with adding more nodes, the average
distance between the nodes in the network increases.
The figure shows that Replacement-CRC outperforms
the existing replacement schemes by 30% to 60%.

Figure 11(b) shows the performance of all schemes
as we increase the number of contents. As we increase
the number of contents, the performance of all schemes
increases since more contents are available for caching.
Replacement-CRC achieves better performance than the
other schemes, since it is able to identify the contents
with higher traffic savings and the replacement is done
less frequently than the other schemes.

In Figure 11(c), we investigate the effect of increasing
the caching size of the caching nodes on the performance
of all schemes. We increased the caching size of each
node until we reach a saturation point, where all of
the nodes are able to cache all of the contents with-
out the need for replacement. At this saturation point,
all schemes achieves the same traffic savings. Another
observation from the figure is that the performance of
Replacement-CRC at 500GB is similar to the perfor-
mance of the other schemes at 1500GB. This means that
Replacement-CRC can achieve the same performance of
the other schemes with only 30% of the cache capacity.

7.5 Energy-CRC with Replacement vs. Cache Size

We investigate the effect of varying the cache size on the
performance of Energy-CRC with replacement algorithm

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Average Cache Size (GB)

B
ro

w
n
 E

n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

k
W

)

CRC

LRU

Random

Fig. 12: Performance of CRC algorithm vs. Cache Size.

as well as currently deployed caching schemes. The
simulation was run on a world-wide topology consisting
of 41 nodes spanning 41 different cities around the world
as reported in [32]. The distances between the nodes
were taken from [33] and the energy consumption for
transferring data was taken from [34]. The amount of
renewable energy available at each node was taken from
[35]. Figure 12 shows the brown energy consumption
for the Energy-CRC with replacement, Least Recently
Used (LRU), and Random replacement vs. the average
cache size. As we increase the average cache size of
the caching nodes, the caching nodes can cache more
contents and achieve lower brown energy consumption,
until we reach a point where every caching nodes can
cache all the contents and reach the lowest brown energy
consumption. From the figure, we see that our algorithm
achieves a maximum gain of 60% over other schemes
when the average cache size is 500 GB. This is because
our algorithm reserves the cache space for contents with
high brown energy consumption. This means that our
algorithm can lower the brown energy consumption
without the necessity of excessive increment in the cache
size.

7.6 CRC vs. Error Margins in Input Parameters

We investigate the effect of having error margins in esti-
mating the expectation values and in estimating the max-
imum effective caching time on the performance of the
basic CRC algorithm. Although data mining techniques
or stochastic process modeling based on the history [36]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXXXX 201X 13

30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

Number of Nodes
(a)

N
u
m

b
er

 o
f

H
o
p
s

CRC

LRU

Random

CCN

2000 4000 6000 8000 10000
0

1

2

3

4

5

6

7

8

9
x 10

4

Number of Contents
(b)

CRC

LRU

Random

CCN

0 500 1000 1500 2000
0

2

4

6

8

10

12
x 10

4

Average Cache Size (GB)
(c)

CRC

LRU

Random

CCN

Fig. 11: The Effects of Different Factors on the Performance of Different Replacement Schemes.

0 20 40 60 80 100
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Error Margin

N
o

rm
al

iz
ed

 S
av

in
g

s

Fig. 13: Performance of
CRC algorithm vs. Errors
in Expectation Values.

0 20 40 60 80 100
0.7

0.75

0.8

0.85

0.9

0.95

1

Error Margin

N
o

rm
al

iz
ed

 S
av

in
g

s

Fig. 14: Performance of
CRC algorithm vs. Er-
rors in Effective Caching
Time.

can be used to provide good expectation values, we run
the simulation as the error margin is changed from 0% to
100%. Denote the error margin by ǫ, then the new values
of the expectation Êi(τ, j) is chosen randomly from a
uniform distribution in the range [(1−ǫ)×Ei(τ, j), (1+ǫ)×
Ei(τ, j)], and the new values of the effective caching time
T̂j(τ) is chosen randomly from a uniform distribution
in the range [(1 − ǫ) × Tj(τ), (1 + ǫ) × Tj(τ)]. Since
the basic CRC algorithm achieves asymptotic optimality
when having perfect knowledge of the expectation and
effective caching time values, introducing errors in these
values will cause the performance of the CRC algorithm
to decrease.

Figure 13 shows the performance of the CRC algo-
rithm versus error margins in estimating the expectation
values, while Figure 14 shows the performance of the
CRC algorithm versus error margins in estimating the
effective caching time. From the figures, we see that
our algorithm is more sensitive to error margins in
estimating the effective caching time. We believe this
is due to the adaptability of our algorithm to error
margins in estimating the expectation values, that even
with such errors, the actual number of requests will
still be served. However, error margins in estimating
the effective caching time have greater effect on the
performance of the basic CRC algorithm, since once a
content is cached, the content has to stay in the cache
for the whole effective caching duration time.

8 CONCLUSION

Caching at intermediate nodes has the advantage of
bringing the contents closer to the users, which results
in traffic offloading from the origin servers and lower
delays. To achieve this, caching schemes such as en-
route caching and CCN have been investigated. Unlike
CCN, the use of en-route caching does not require major
changes to the TCP/IP model. Previous works have
studied en-route caching under offline settings to achieve
the optimal content placement strategy. In this work, we
study the framework of en-route caching under online
settings.

Under this framework, we characterize the fundamen-
tal limit for the ratio of the performance of the optimal
offline scheme to that of any online scheme. The offline
scheme has complete knowledge of all of the future
requests, while the online scheme does not possess such
knowledge. We also design an efficient online scheme
and prove that the developed online scheme achieves op-
timality as the number of nodes in the network becomes
large. Moreover, we introduce some extensions to the
algorithm. Our simulation results affirm the efficiency of
our scheme and its extensions. Our future work includes
the investigation of network coding [37], [38] under our
settings.

REFERENCES

[1] A. Gharaibeh, A. Khreishah, I. Khalil, and J. Wu, “Asymptotically-
Optimal Incentive-Based En-Route Caching Scheme,” IEEE MASS
2014, 2014.

[2] V. Cisco, “Cisco Visual Networking Index: Global Mobile Data
Traffic Forecast Update, 2013–2018,” Cisco Public Information, 2014.

[3] A. Vakali and G. Pallis, “Content Delivery Networks: Status and
Trends,” Internet Computing, vol. 7, no. 6, pp. 68–74, 2003.

[4] A.-M. K. Pathan and R. Buyya, “A Taxonomy and Survey of Con-
tent Delivery Networks,” Grid Computing and Distributed Systems
Laboratory, University of Melbourne, Technical Report, 2007.

[5] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai Network:
A Platform for High-Performance Internet Applications,” ACM
SIGOPS Operating Systems Review, vol. 44, no. 3, pp. 2–19, 2010.

[6] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H.
Briggs, and R. L. Braynard, “Networking Named Content,” in
Proceedings of the 5th international conference on Emerging networking
experiments and technologies. ACM, 2009, pp. 1–12.

[7] I. Psaras, R. Clegg, R. Landa, W. Chai, and G. Pavlou, “Modelling
and Evaluation of CCN-caching Trees,” NETWORKING, pp. 78–
91, 2011.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXXXX 201X 14

[8] D. Rossi and G. Rossini, “Caching performance of content centric
networks under multi-path routing (and more),” Relatório técnico,
Telecom ParisTech, 2011.

[9] X. Guan and B.-Y. Choi, “Push or pull? toward optimal content
delivery using cloud storage,” Journal of Network and Computer
Applications, 2013.

[10] C. Bernardini, T. Silverston, and O. Festor, “MPC: Popularity-
Based Caching Strategy for Content Centric Networks,” in Com-
munications (ICC). IEEE, 2013, pp. 3619–3623.

[11] I. Psaras, W. K. Chai, and G. Pavlou, “Probabilistic In-Network
Caching for Information-Centric Networks,” in Proceedings of the
second edition of the ICN workshop on Information-centric networking.
ACM, 2012, pp. 55–60.

[12] M. Fiore, F. Mininni, C. Casetti, and C. Chiasserini, “To Cache or
Not To Cache?” in INFOCOM. IEEE, 2009, pp. 235–243.

[13] J. Dai, Z. Hu, B. Li, J. Liu, and B. Li, “Collaborative Hierarchical
Caching with Dynamic Request Routing for Massive Content
Distribution,” in INFOCOM. IEEE, 2012, pp. 2444–2452.

[14] N. Laoutaris, G. Zervas, A. Bestavros, and G. Kollios, “The Cache
Inference Problem and its Application to Content and Request
Routing,” in INFOCOM. IEEE, 2007, pp. 848–856.

[15] A. Jiang and J. Bruck, “Optimal Content Placement For En-Route
Web Caching,” in Network Computing and Applications (NCA).
IEEE, 2003, pp. 9–16.

[16] J. Llorca, A. M. Tulino, K. Guan, J. Esteban, M. Varvello, N. Choi,
and D. C. Kilper, “Dynamic In-Network Caching for Energy
Efficient Content Delivery,” in INFOCOM. IEEE, 2013, pp. 245–
249.

[17] Y. Kim and I. Yeom, “Performance analysis of in-network caching
for content-centric networking,” Computer Networks, vol. 57,
no. 13, pp. 2465–2482, 2013.

[18] M. Mangili, F. Martignon, and A. Capone, “A comparative study
of content-centric and content-distribution networks: Performance
and bounds,” in GLOBECOM. IEEE, 2013, pp. 1403–1409.

[19] E. J. Rosensweig and J. Kurose, “Breadcrumbs: efficient, best-effort
content location in cache networks,” in INFOCOM. IEEE, 2009,
pp. 2631–2635.

[20] J. Rajahalme, M. Särelä, P. Nikander, and S. Tarkoma, “Incentive-
Compatible Caching and Peering in Data-Oriented Networks,”
in Proceedings of the 2008 ACM CoNEXT Conference. ACM, 2008,
p. 62.

[21] T.-M. Pham, S. Fdida, and P. Antoniadis, “Pricing in Information-
Centric Network Interconnection,” in IFIP Networking Conference.
IEEE, 2013, pp. 1–9.

[22] A. Khreishah, J. Chakareski, A. Gharaibeh, I. Khalil, and Y. Jarar-
weh, “Joint data placement and flow control for cost-efficient data
center networks,” in ICICS. IEEE, 2015, pp. 274–279.

[23] A. Khreishah, I. Khalil, A. Gharaibeh, H. B. Salameh, and
R. Alasem, “Joint caching and routing for greening computer
networks with renewable energy sources,” in FiCloud. IEEE, 2014,
pp. 101–106.

[24] P. Ostovari, A. Khreishah, and J. Wu, “Cache content placement
using triangular network coding,” in WCNC. IEEE, 2013, pp.
1375–1380.

[25] A. Gharaibeh, A. Khreishah, B. Ji, and M. Ayyash, “A prov-
ably efficient online collaborative caching algorithm for multicell-
coordinated systems,” 2015.

[26] S. Albers and H. Fujiwara, “Energy-Efficient Algorithms for Flow
Time Minimization,” ACM Transactions on Algorithms (TALG),
vol. 3, no. 4, p. 49, 2007.

[27] P. Jaillet and M. R. Wagner, “Generalized Online Routing: New
Competitive Ratios, Resource Augmentation, and Asymptotic
Analyses,” Operations research, vol. 56, no. 3, pp. 745–757, 2008.

[28] A. Fei, G. Pei, R. Liu, and L. Zhang, “Measurements on delay and
hop-count of the internet,” in IEEE GLOBECOM, vol. 98, 1998.

[29] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
caching and zipf-like distributions: Evidence and implications,”
in INFOCOM, vol. 1. IEEE, 1999, pp. 126–134.

[30] T. Bu and D. Towsley, “On Distinguishing between Internet Power
Law Topology Generators,” in INFOCOM, vol. 2. IEEE, 2002, pp.
638–647.

[31] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-
world networks,” nature, vol. 393, no. 6684, pp. 440–442, 1998.

[32] “Air miles calculator.” [Online]. Available:
http://www.airmilescalculator.com/

[33] “Mapping the unmappable: Visual representations of
the internet as social constructions.” [Online]. Available:
https://scholarworks.iu.edu/dspace/bitstream/handle/2022
/171/wp00-05B.html

[34] V. Sivaraman, A. Vishwanath, Z. Zhao, and C. Russell, “Profiling
per-packet and per-byte energy consumption in the netfpga gi-
gabit router,” in Computer Communications Workshops (INFOCOM
WKSHPS). IEEE, 2011, pp. 331–336.

[35] “Soda: Solar radiation data.” [Online]. Available:
http://www.soda-pro.com/web-services/radiation/helioclim-4

[36] P. Blasco and D. Gunduz, “Learning-based optimization of cache
content in a small cell base station,” arXiv preprint arXiv:1402.3247,
2014.

[37] P. Ostovari, J. Wu, and A. Khreishah, “Network coding techniques
for wireless and sensor networks,” in The Art of Wireless Sensor
Networks. Springer, 2014, pp. 129–162.

[38] A. Khreishah, I. Khalil, and J. Wu, “Distributed network coding-
based opportunistic routing for multicast,” in Proceedings of the
thirteenth ACM international symposium on Mobile Ad Hoc Network-
ing and Computing. ACM, 2012, pp. 115–124.

Ammar Gharaibeh is a PhD student at the
ECE department of New Jersey Institute of Tech-
nology. He received his M.S. degrees in Com-
puter Engineering from Texas A& M University in
2009. Prior to that, he received his B.S. degree
with honors from Jordan University of Science
& Technology in 2006. His research interests
spans the areas of wireless networks and net-
work analysis and design.

Abdallah Khreishah received his Ph.D and
M.S. degrees in Electrical and Computer En-
gineering from Purdue University in 2010 and
2006, respectively. Prior to that, he received his
B.S. degree with honors from Jordan University
of Science & Technology in 2004. In Fall 2012,
he joined the ECE department of New Jersey
Institute of Technology as an Assistant Profes-
sor. His research spans the areas of network
coding, wireless networks, congestion control,
cloud computing, and network security.

Issa Khalil received his B.Sc. and M.S. de-
grees from Jordan University of Science and
Technology in 1994 and 1996, and received his
PhD degree from Purdue University, USA, in
2006, all in Computer Engineering. He joined
the Faculty of Information Technology (FIT) of
the United Arab Emirates University (UAEU) in
August 2007, where he was promoted to an
associate professor in September 2011. In Au-
gust 2012, he was appointed as the chair of
the Information Security department at UAEU. In

June 2013, he joined the Qatar Computing Research Institute (QCRI) as
a senior scientist in the cyber security group. Khalil’s research interests
span the areas of wireless and wireline communication networks. He is
especially interested in security, routing, and performance of wireless
Sensor, Ad Hoc, and Mesh networks.

Jie Wu is the chair and Laura H. Carnell pro-
fessor in the Department of Computer and In-
formation Sciences, Temple University. Prior to
joining Temple University, he was a program
director at the National Science Foundation and
was a distinguished professor at Florida Atlantic
University.

His research interests include wireless net-
works and mobile computing, routing proto-
cols, fault-tolerant computing, and interconnec-
tion networks. He has published more than 600

papers in various journals, conference proceedings, and books. He
serves on the editorial board of the IEEE Transactions on Computers
and the Journal of Parallel and Distributed Computing. He has served as
an IEEE computer society distinguished visitor. Currently, he is the chair
of the IEEE Technical Committee on Distributed Processing (TCDP) and
ACM distinguished speaker. Dr. Wu is a Fellow of the IEEE.

