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Abstract—Due to the additive property of most machine learning objective functions, the training can be distributed to multiple
machines. Distributed machine learning is an efficient way to deal with the rapid growth of data volume at the cost of extra
inter-machine communication. One common implementation is the parameter server system which contains two types of nodes: worker
nodes, which are used for calculating updates, and server nodes, which are used for maintaining parameters. We observe that
inefficient communication between workers and servers may slow down the system. Therefore, we propose a graph partition problem
to partition data among workers and parameters among servers such that the total training time is minimized. Our problem is
NP-Complete. We investigate a two-step heuristic approach that first partitions data, and then partitions parameters. We consider the
trade-off between partition time and the saving in training time. Besides, we adopt a multilevel graph partition approach to fit the
bipartite graph partitioning. We implement both approaches based on an open-source parameter server platform—PS-lite. Experiment
results on synthetic and real-world datasets show that both approaches could significantly improve the communication efficiency up to
14 times compared with the random partition.

Index Terms—Data communication, data sparsity, distributed machine learning, graph partition, parameter server framework
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1 INTRODUCTION

With the explosive growth of data volume, accelerating the
distributed machine learning has attracted more and more
attention. Machine learning algorithms usually iteratively
use data to update parameters. The training data usually
consists of texts, audios, or images. Parameters of machine
learning models usually represent the feature weights. For
example, in spam classification, word counts are usually
used as features. Parameters are used to adjust the influence
of different words. The volume of data and parameters in
real-world applications is too large to be processed by a
single machine. For example, ImageNet [1] contains more
than 1 million labeled images. Although the computational
demand increases rapidly, the improvement of the computa-
tional power of a CPU/GPU unit is almost stagnant. Driven
by this dilemma, researchers focus on developing distributed
machine learning frameworks [2], [3], [4], [5], [6] to efficiently
distribute training workloads among multiple machines.

We focus on the parameter server framework [4], [5] which
is an efficient deployment of distributed machine learn-
ing systems. It has been implemented or adopted in both
academia [7], [8] and industry [9], [10], [11]. A typical
parameter server contains server nodes (or simply servers)
that store globally shared parameters and worker nodes (or
simply workers) which are allocated with data. The division
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and allocation of parameters and data samples is done by
the scheduler. From the learning-application point of view,
the training of a large machine learning model can be split
into sub-problems which are assigned to workers. Before
training, the scheduler would assign a subset of data (model
parameters) to each worker (server). All data samples and
parameters would be allocated without duplication. The
data and parameter allocation is known by all machines
and would not change. During training, workers would
iteratively: 1) pull parameters from servers, 2) calculate pa-
rameter updates locally, and 3) push new parameter values
to servers. We denote these three steps as one round. Servers
would aggregate updates from workers and maintain the
globally shared parameters in either a synchronous or asyn-
chronous way. Note that servers and workers could be co-
located in the same machine, as shown in Fig. 1, to exploit the
fast inner-machine communication. Steps 1 and 3 involve
communication via either the memory bus (inner-machine)
or Ethernet (inter-machine). Step 2 needs computational
power from CPU/GPU.

We notice that the communication time between differ-
ent machines in the parameter server accounts for a large
proportion among the total training time. We aim to reduce
the communication delay between server nodes and worker
nodes.We consider the synchronous scheme for parameter
updating, since asynchronous updating may diverge some
machine learning algorithms [12]. Specifically, a machine
learning server usually contains multiple physical machines.
The computation units such as CPU cores are connected
with high-speed I/O buses. However, different machines
are usually connected via Ethernet cables, which are usually
much slower than I/O buses. The inter-machine commu-
nication and synchronization usually causes the bottleneck
of the parameter server system. Typical machine learning
algorithms could lead to massive network traffic because of
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Fig. 1. Training on the parameter server framework.

the large number of iterative parameter updates. The com-
munication volume could be 100 times larger than the data
size [13]. For example, in a text classification application, the
data size is 10.95 GB. If we randomly allocate the data sam-
ples to 16 machines, the network communication volume
is about 0.9 TB. Even if we use high-speed networks of 40
Gbps bandwidth, the communication time is not negligible.
These factors, especially inter-machine communication, lead
to the communication bottleneck. The negative impact of
the communication and synchronization has been shown in
[12], [14], [15], and reducing the cost is challenging.

To deal with the communication bottleneck, existing ap-
proaches include compressing the communication volume
[16], [17], investigating stale synchronous schemes [11], [12],
etc. However, these approaches do not consider the inherent
sparsity of data samples. The sparsity means that many data
samples contain zero attributes, such as d1 and d2 shown
in Fig. 1. Parameters related to these zero-valued attributes
do not need to be sent among workers and servers [5],
[18]. The data sparsity brings opportunities for reducing
the uneven communication volume by data partition, while
the balanced partition problem is usually NP-complete [19].
A good partition could migrate some of the inter-machine
communication to inner-machine communication. For ex-
ample, if we move the d2 in Fig. 1 from machine 2 to
machine 1, then there is no need to send p1 and p2 from
machine 1 to machine 2. In this way, the inter-machine
communication volume can be reduced.

Furthermore, in the synchronous scheme, data load bal-
ancing is critical and should also be considered in partition-
ing. When training a machine learning model, workers usu-
ally process data samples in batches. The number of rounds
that can be executed at each worker node is controlled by
the number of data samples allocated to it. Workers with
more data need more rounds of synchronous to terminate,
which also enlarges the overall training time.

An example in Fig. 1 shows the importance of the data
and parameter partitions. First, the data partition affects
the communication volume. We use a spam classification
example to show the relationship between the data samples
and model parameters. The data allocated to each worker
is a word vector. An element in the vector represents the
count of the corresponding word in a data sample. A zero-

count word provides no additional information to the spam
classification. As shown in Fig. 1, the last four elements in
data d1 are zero. It means that the last four words are not
included in the sample email. If a word does not appear
in a email, it makes no contribution to the model training.
Therefore, the corresponding parameter that indicates the
weight of the word would not be updated. If d1 is allocated
to worker w1, then w1 only needs to pull two parameters
from servers, one for each non-zero entry. In contrast, the
data allocated to w2 has fewer zero entries, especially in d3

and d4. Consequently, w2 needs to pull six parameters. This
leads to uneven communication loads of different workers.
Besides, the parameter partition impacts the inter-machine

communication volume, which is 3 in the example, i.e.,
transferring p1, p2 and p3 to the server in machine 1 and the
worker in machine 2. Moving p3 to the server on machine
2 could reduce the inter-machine communication volume to
2. Furthermore, the data partition also affects the computa-
tional load among workers. In this example, w1 is allocated
with one data sample while w2 has three data samples. As a
result, w1 needs one round to finish while the other worker
needs three rounds. This uneven computational load wastes
the computational resources. Above all, the worker w2 has a
heavier communication burden and may need more rounds
to finish. It becomes the bottleneck of the system.

To make full use of the data sparsity, we propose to
efficiently partition data among workers and parameters
among servers such that the training time of machine learn-
ing modes is minimized. We investigate a two-step heuristic
that first partitions data and then partitions parameters.
In data partition, we study the trade-off between time
complexity and performance. Specifically, we use greedy
heuristics for data partition, and progressively allocate unas-
signed data samples to server nodes. In each iteration of
data allocation, one or more data samples can be considered.
If more data samples are considered, the number of possible
allocations becomes larger, while it is more likely to avoid
the local optima. In an extreme case, if all unassigned data
samples are investigated at the same iteration, the optimal
assignment could be found, while the time complexity
would be exponential. For example, considering two data
samples in each iteration can bring up to 10% improvement
compared with only adding one. Besides, we also adapt
a multilevel graph partition approach to directly partition
both data and parameters.

Our contributions are summarized as follows:

• We propose a data and parameter partition prob-
lem to reduce the inter-machine communication and
minimize the training time for the parameter server
framework under the synchronous parallel scheme.

• We investigate a two-step heuristic and the trade-
off between partitioning complexity and its perfor-
mance. We also analyze a theoretical bound for the
data partition step based on the submodularity.

• We further adapt a multilevel partition approach of
general graphs. Unlike the two-step heuristic, there
is no priority for data and parameter partitions.

• Experiments on an open-source parameter server
framework show algorithm performances on syn-
thetic and real-world datasets with different sparsity.

Authorized licensed use limited to: Temple University. Downloaded on April 21,2021 at 01:17:13 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. XX, NO. X, XXX XXXX 3

2 RELATED WORK

Based on classical distributed system design [20], there
are several salable frameworks for the distributed machine
learning [5], [9], [10], [11], [13], [21], [22], including pa-
rameter server [5], [9], [10], [11], [13] for machine learning
algorithms, and MXNet [22] for deep learning algorithms.
Our paper is based on the parameter server framework.
Open source parameter server frameworks include PS-lite
[5], Petuum [11], YahooLDA [9], etc. The parameter server
has also been widely implemented in industry by Google
[10], Microsoft, etc. The parameter server is first proposed
for specific applications, such as YahooLDA [9] and Dist-
Belief [10]. For example, YahooLDA is optimized for Latent
Dirichlet Allocation [23]. Petuum [11] takes the first step to
build a general platform. PS-lite [5] further optimizes the
communication and improves the system performance.

However, the communication cost still brings ineffi-
ciency to these systems. To improve system performance,
researchers have attempted several approaches to reduce the
communication cost. [16], [17] propose to compress the com-
munication volume. [11], [12] investigate stale synchronous
schemes. They focus on the trade-off between the model
convergence speed and synchronous time consumption.
However, these approaches did not make full use of the
data sparsity. [24] investigates the communication volume
optimization problem for geo-distributed machine learning
jobs in the parameter server architecture. The authors focus
on the online resource placement problem for multiple jobs.
In this paper, we consider reducing the communication time
cost for a job by wisely partitioning training data and model
parameters over workers and servers based on data sparsity.

The graph partition schemes have been studied in [18],
[19], [25], [26], [27]. These schemes can be grouped as two
categories: the vertex partition and the edge partition. The
vertex partition problem usually refers to equally partition-
ing a set of vertices into k parts such that the number
of edges spanning different partitions is minimized [19].
The edge partition is defined in an analogous way. [28]
introduces a Kernighan-Lin heuristic approach that has been
deployed in a widely used software called METIS [25].
These methods did not consider the possible aggregation of
the partition cost. The edge partition problem was originally
proposed in [27]. [19] further proposes an approximation
algorithm and considers the cost aggregation of each par-
tition. However, these methods did not focus on bipartite
graphs. The Parsa proposed in [18] considers the bipar-
tite graph partition. However, the optimization problem
formulated in the Parsa is not to directly minimize the
overall training time. In our paper, we model the training
time consumption. Besides, we investigate a direct graph
partition approach.

Besides machine learning systems deployed in data
centers, the distributed learning frameworks for wireless
networks attract more and more attentions because of the
quick development of wireless communication technolo-
gies. Chen et. al. proposed a distributed learning framework
which optimizes the computation offloading for resource
orchestration in multi-access edge computing [29]. More
generally, federated learning [30], [31] enables multiple
mobile devices to train a machine learning model locally
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Fig. 2. A training round in the parameter server framework.

without sharing data. One statistical challenge of federated
learning is that local data on mobile devices are non-IID.
Zhao et. al. [32] proposed to overcome the issue by sharing
a small set of global data between all devices. Wang et. al.
[33] proposed to intelligently select different mobile devices
to participate in each round of training with reinforcement
learning. Another challenge is the security concerns caused
by untrasted participants. Zhang et. al. [34] proposed a
commitment-based scheme to select specific data for the
assurance of the high confidence of participates. Besides,
resource-constrained devices restrict the scale of federated
learning models. To make large CNN training affordable, He
et. al. [35] investigated a group knowledge transfer training
approach that reduces local computation workload while
maintaining model accuracies.

3 MODEL

3.1 Distributed machine learning
Typical machine learning algorithms can be viewed as
minimizing an objective function. The additive property
of its objective function makes distributed machine learn-
ing possible. The objective function of supervised learning
usually corresponds to a measure of the prediction error,
such as the inaccuracy of classifying spam emails. Let
D = {d1, d2, . . . , dn} denote the set of data, and di be the i-
th data which is usually a m-dimensional vector containing
m feature values. Let P = {p1, p2, . . . , pm} denote the set of
parameters in the machine learning algorithms. These pa-
rameters form a weight vector W = [ω1, ω2 . . . , ωm] ∈ Rm,
which is used to adjust the weights of m features in data.
The prediction error of learning algorithms with parameter
W can be measured by a loss function l(di,W ), for example,
l1 loss - least absolute deviations, or l2 loss - least square
errors, etc. Learning algorithms iteratively update the pa-
rameter vector W and try to minimize the risk function:

Loss(W ) =
∑n

i=1
l(di,W ) + Ω(W ), (1)

where Ω(W ) is the regularization term. It is usually used
to penalize the learning model complexity and to avoid
overfitting. The risk function value is aggregated from the
losses of all data. The aggregation could be allocated to
multiple machines if the data is allocated correspondingly.

To minimize the risk function, one common optimiza-
tion algorithm is the gradient descent. For example, when
training a logistic regression model, the gradient descent
algorithm is used to minimize the cross-entropy loss. In gra-
dient descent, we need to iteratively calculate the gradient
of the loss function w.r.t. model parameters and update the
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parameters based on the gradient. Formally, let ∇Loss(Wt)
denote the gradient of the loss function at iteration t.
Then, we need to update parameters for iteration t + 1 as
Wt+1 = Wt − η∇Loss(Wt), where η is the training rate.
Because of the additive property of the loss function shown
in Eq. (1), the calculation of the gradient ∇Loss(Wt) can be
distributed to multiple workers. Specifically, ∇Loss(Wt) =
[∂Loss/∂w1, ∂Loss/∂w2, . . . , ∂Loss/∂wm], where wi is the
i-th element of vector Wt. The calculation of ∂Loss/∂wi
can be reorganized such that multiple workers can run in
parallel:

∂Loss

∂wi
=
∂
[∑n

j=1 l(dj ,W ) + Ω(W )
]

∂wi

=
∑n

j=1

∂l(dj ,W )

∂wi
+
∂Ω(W )

∂wi

=
∂
[∑n1

j=1l(dj ,W )
]

∂wi
+
∂
[∑n2

j=n1+1l(dj ,W )
]

∂wi
+· · ·

+
∂
[∑n

j=nk−1+1 l(dj ,W ) + Ω(W )
]

∂wi
, (2)

where n1, n2, . . . nk−1 are the indexes that partition the
data samples. The calculation of partial derivatives of
∂[
∑n1

j=1l(dj ,W )]
∂wi

,
∂[
∑n2

j=n1+1l(dj ,W )]
∂wi

, · · · ,
∂
[∑n

j=nk−1+1l(dj ,W )+Ω(W )
]

∂wi

can be assigned to worker w1, w2, . . . , wk, respectively.
Similarly, the calculation of other gradient elements can be
reorganized for multiple workers. In this way, the training
process is distributed to different machines.

3.2 Parameter server framework

We integrate the idea of data and parameter partition to
the parameter server framework [4]. The parameter server
framework consists of servers, workers, and a scheduler.
Servers are in charge of maintaining globally shared param-
eters of machine learning models. Workers use subsets of
data to solve sub-problems and update parameters. Each
actual machine contains a server and a worker. All data
samples and parameters of the learning model would be
divided without duplication into workers and servers, re-
spectively. The assignment is done by the scheduler before
the actual training starts and it is known to all machines.
Besides, the assignment is fixed during the training process.

The communication is usually the bottleneck of the pa-
rameter server. Let k denote the number of machines. LetDi

and Pi denote the data allocated to the worker and server in
the i-th machine, respectively. Before training, the scheduler
allocates data and parameters among available machines.
Procedures of a training round are illustrated in Fig. 2.
Workers would fetch their data, pull the globally shared
parameters from servers (solid lines), calculate the update
of parameters, and push the updated parameters back to
servers (dashed lines). The allocation of data samples and
parameters assigned by the scheduler is fixed during train-
ing. The worker and server located in the same machine
communicate via memory buses, which is the inner-machine
communication. Workers and servers in different machines
communicate via network infrastructures, such as Ethernet,
which is the inter-machine communication. Compared with

TABLE 1
Table of Notations

Notations Description
D, P the data set and the parameter set
G(V,E) the correlation graph G, V = D ∪ P ,E ⊆ D × P
N(D′) the neighbor set of data set D′ ⊆ D
| · | the cardinality of a set
f(D′) the cardinality of neighbor set of D′

k the number of machines
n, m the number of training samples and attributes

the inter-machine communication, the time cost of inner-
machine communication is usually negligible. Therefore,
we focus on the inter-machine communication volume in
further analysis.

3.3 Data sparsity in inference problems
Inference problems benefit from data sparsity when they are
solved in a distributed manner. Specifically, when updating
parameter values with data di, only non-zero attributes in
the data change the parameter value [18], since zero ele-
ments bring no information for the interface. For example,
in spam prediction, if a word does not exist in a spam
e-mail, we cannot determine whether this word is more
frequent in spam or non-spam e-mails, and cannot update
the prediction model accordingly. If a worker finds that
some attributes of its di are zero, then there is no need to pull
parameters corresponding to these attributes from servers.
The communication volume of this worker is reduced cor-
respondingly. Therefore, if major attributes in input data
samples are zero, the communication volume of training
inference learning models could be significantly reduced. In
practice, the parameter server framework supports to push
or pull part of the parameters during training [5]. Workers
can skip parameters that correspond to zero data attributes
during training. The allocation of data samples and param-
eters is critical for balancing the communication volume
among machines, and significantly affects the training time.

3.4 Network model
We construct a bipartite graph G(V,E) to model the com-
munication correlation. V = D ∪ P is the vertex set and
E ⊆ D × P is the edge set. The scheduler in the parameter
server framework would build the graph by scanning the
non-zero entries of data d ∈ D. Specifically, we can use
a hash map to store the graph. Each key represents a
data sample and the corresponding value stores a list of
correlated parameters. During data prepossessing, we scan
and count the non-zero entries of each data vector and use
indices of those entries to update the hash map. Using the
hash map, we can finish the scan in linear time, and the
scanning time is a part of the completion time. The sched-
uler also needs to decide which portion of data/parameters
should be stored in each machine. The partition would be
broadcast to all workers, and workers would know where to
pull/push parameters during training. We aim to optimize
the partition such that the training time of the model is
minimized. Fig. 3 shows the correlation graph G. There is
an edge between di and pj only if the j-th entry of di is
non-zero. Let N : 2D → 2P denote the neighbor set function
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Fig. 3. The correlation between data and parameters.

which is used to find the set of parameters that are co-related
with data. Formally, N(D′) = {p ∈ P |(d, p) ∈ E, d ∈ D′},
where D′ ⊆ D. For example, N({d1}) = {p1, p2} and
N({d1, d2}) = {p1, p2, p3}. Let f : 2D → N denote the
neighbor set cardinality, i.e. f(D′) = |N(D′)|.

The inter-machine communication volume contains two
parts: the worker communication volume and the server com-
munication volume. The worker communication volume of
the i-th machine is |N(Di) \ Pi|. It represents the volume
of parameters pulled/pushed by the worker at machine i.
Specifically, N(Di) is the set of parameters needed by the
worker. Among them, some may be stored in the server
on the i-th machine. The difference set of N(Di) and
Pi is the set of parameters that are transmitted between
machines. The server communication volume of the i-th
machine is

∑
j 6=i |Pi ∩ N(Dj)|. It means the volume of

parameters pulled/pushed by workers in other machines.
Specifically, the worker in the j-th machine needs to access
the value of parameters in N(Dj), and parameters in set
Pi ∩ N(Dj) are stored in the i-th machine. Therefore, the
communication volume between Pi and Dj is |Pi ∩N(Dj)|.
Accumulating over all machines other than i, we have the
inter-machine server communication volume. Above all, the
inter-machine communication volume of the i-th machine is
|N(Di) \ Pi|+

∑
j 6=i |Pi ∩N(Dj)|.

3.5 Problem formulation
In this paper, we propose to minimize the training time on
the parameter server by taking advantage of data sparsity.
We consider that the parameter update is synchronous
among all machines, given that some learning algorithms
may diverge in the asynchronous way [12].

We quantify the training time based on the number
of rounds of synchronization and the inter-machine com-
munication volume. Our formulation does not contain the
computational time in each round since it is hardly changed
by data partitions. We assume the time consumption of each
round is proportional to the largest communication volume
among machines. As for the number of rounds, typical
machine learning algorithms would terminate when the loss
function is sufficiently small, i.e. less than a given threshold,
or when all the training data is used. For the worst case
analysis, we assume that each worker terminates when all of
the data assigned to it is used. Then, the number of rounds
is determined by the worker who has the largest amount
of data samples. Formally, it is maxi |Di|. An unbalanced
data partition would slow down the training process. Solely
optimizing inter-machine communication or the number of
rounds cannot guarantee the minimal training time. For
example, if all data samples and parameters are assigned
to the same machine, there is no inter-machine communi-
cation. However, it is obviously not optimal since all other

machines are idle. Therefore, our objective function can be
formulated as maxi |Di| · maxi(|N(Di) \ Pi| +

∑
j 6=i |Pi ∩

N(Dj)|). The first term maxi |Di| shows the upper bound
of the number of iterations. The other term is the upper
bound of the communication volume in an iteration. Their
product represents the upper bound of the training time in
the worst case.

Admittedly, the time consumption of computing the
parameter updates in each round also contributed to the
total training time. However, for each training round, the
computation time of a machine learning algorithm is mainly
determined by the input batch size. The training batch
size is usually a hyper-parameter determined by users.
Once the batch size is given, it will be consistently applied
to all worker machines. Therefore, the partition policy of
data samples and model parameters can hardly affect the
computation time in a training round. Therefore, we assume
the computation time is a constant value related to training
algorithms, and omit the term in the problem formulation.

The problem can be formulated as follows:

min max
i
|Di|max

i
(|N(Di)\Pi|+

∑
j 6=i
|Pi∩N(Dj)|), (3)

s.t.|N(Di)| ≤ θ,∀1 ≤ i ≤ k, |
⋃
i

Di| = n, |
⋃
i

Pi| = m. (4)

The objective is to minimize the upper bound of the
overall training time. It is modeled by the upper bounds of
iteration amounts and the communication volume in an it-
eration. |N(Di)| ≤ θ is the RAM memory constraint for each
machine. We assume that the problem is feasible, i.e. the to-
tal RAM memory among machines is large enough to store
the machine learning model used in training. |

⋃
iDi|=n and

|
⋃
iPi|=m represent the allocation constraints meaning that

all data and parameters should be allocated.

4 TWO-STEP HEURISTIC PARTITION

The objective function of our problem is a function of both
set Di and Pi. Optimizing the function is NP-complete even
when assuming that the sets of Pi are given [26]. Therefore,
we optimize the original problem via a two-step heuristic. In
the first step, we partition the data set D. In the second step,
we partition the parameter set P . Besides, the submodular
property of function f could help the first step optimization.
In this section, we first explain the submodular property,
and then introduce the two steps of optimization.

4.1 Submodular property
Before presenting our solution to minimize the training
time, we first show the submodular property of the neighbor
set cardinality function, which is useful for introducing our
algorithms.
Theorem 1. The neighbor set cardinality f(·) over the data

set D is non-negative, monotone, and submodular.

Proof: It is proved by definition. The set function f is
defined as the cardinality of a neighbor set. By definition,
the function is non-negative. For all D′ ⊆ D′′ ⊆ D,
we have N(D′) =

⋃
d∈D′ N({d}) ⊆

⋃
d∈D′ N({d}) ∪⋃

d∈D′\D′′ N({d}) = N(D′′). Therefore, we have f(D′) =
|N(D′)| ≤ |N(D′′)| = f(D′′) implying that the function f
is monotone.

Authorized licensed use limited to: Temple University. Downloaded on April 21,2021 at 01:17:13 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. XX, NO. X, XXX XXXX 6

Algorithm 1 Data partition
Input: Bipartite graph G(D,P,E), number of machines

k, subset size limitation α, subset size weight β
Output: Data partition Di, i = 1, 2, . . . , k

1: initialize Di ← ∅ for all i = 1, 2, . . . , k
2: Unassigned data set D′ ← D
3: while D′ is not empty do
4: find the data partition Di ← arg mini |Di|
5: S ← arg minS⊆D′,|S|≤α f(Di ∪ S)− β · |Di ∪ S|.
6: if |Di ∪ S| > dn/ke then
7: S ← arg mind∈S f(Di ∪ d)
8: assign all d ∈ S to partition Di

9: D′ ← D′ \ S
10: N(Di)← N(Di) ∪N(S)
11: return Di, i = 1, 2, . . . , k as the data partition

To prove the submodularity, by definition, we need to
show f(D′∪{d})−f(D′) ≥ f(D′′∪{d})−f(D′′) for every
D′ ⊆ D′′ ⊆ D. It is also called the property of diminishing
returns. Let g(D, d) , f(D ∪ {d}) − f(D). Then, we are
going to show that g(D′, d) ≥ g(D′′, d).

By definition of N(·), we have f(D′ ∪ {d}) = |N(D′ ∪
{d})| = |

⋃
d′∈D′ N(d′)∪N(d)| = |N(D′)∪N({d})|. Accord-

ing to the inclusion-exclusion principle, we further have that
|N(D′)∪N({d})| = |N(D′)|+|N({d})|−|N(D′)∩N({d})|.
Then, we have
g(D′, d) = |N(D′) ∪N({d})| − |N(D′)|

= |N(D′)|+|N({d})|−|N(D′)∩N({d})|−|N(D′)|
= |N({d})| − |N(D′) ∩N({d})|.

Similarly, g(D′′, d) = |N({d})| − |N(D′′) ∩N({d})|.
To show that g(D′, d) ≥ g(D′′, d), we now prove that

|N(D′)∩N({d})| ≤ |N(D′′)∩N({d})|. For all d′ ∈ N(D′)∩
N({d}), we know that d′ ∈ N(D′) and d′ ∈ N({d}). We
have shown that N(D′) ⊆ N(D′′). Therefore, d′ ∈ N(D′′).
Hence, d′ ∈ N(D′′) ∩N({d}). It means that any element in
setN(D′)∩N({d}) is also an element of setN(D′′)∩N({d}).
Therefore, |N(D′)∩N({d})| ≤ |N(D′′)∩N({d})|. Conse-
quently, g(D′, d)≥g(D′′, d) holds, and f is submodular. �

Although the submodular property of the objective func-
tion is useful for optimization, optimizing the objective
function directly is complex. To minimize the training time,
we propose to first partition dataset which is already NP-
complete [18] and then partition the model parameters.

4.2 Data partition
In the data partition, we focus on minimizing the max-
imum neighbor set size in different machines. Formally,
our objective of data partition is min maxi |N(Di)|. The
insight is that we hope to balance the number of parameters
needed by each worker without considering the difference
between inner-machine and inter-machine communication.
Also, we need to balance the dataset size allocated to each
machine. This is because the overall training time is related
with the maxi |Di| as illustrated in Eq. (1). Since

∑
i |Di|

is a constant, maxi |Di| could be minimized when the data
samples are evenly allocated to all workers. Therefore, when
balancing the neighbor set N(Di) among all machines,
we don’t want to break the balance among sizes of data
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Fig. 4. Illustration of the two-step heuristic.

sets Di. To ensure the balance of Di, we set a constraint
that |Di| ≤ dn/ke, i = 1, 2, . . . , k for the data partition.
The min-max submodular partition is NP-complete [36].
The submodular approximation algorithm [37] shows an
O(

√
n/ log n)-approximation for the problem. Their algo-

rithm initializes all data as unassigned. Then, they itera-
tively choose the worker with the smallest partition, and
the worker is assigned to the subset of unassigned data that
introduces the smallest increase on its neighbor size. The
subset of data is searched by sampling from all unassigned
data. Different from their approach, we consider limiting the
size of the set of data added in each iteration. We investigate
the trade-off between the algorithm’s time complexity and
its performance. In addition, we show a theoretical bound
for our algorithm from a different aspect as [37].

The procedure of our algorithm is illustrated in Alg. 1.
First we initialize each data partition as an empty set in
line 1, i.e. every d ∈ D is unassigned. Let D′ store the
set of unassigned data, and it is initialized as D in line 2.
Then, we iteratively assign data to the machine with the
smallest partition until all data is assigned. Specifically, in
each iteration, the algorithm chooses the machine i with
the smallest |Di| as shown in line 4. In line 5, a subset of
unassigned data is found such that the data assignment cost
f(Di ∪ S) − β|Di ∪ S| is minimized. In the cost function,
β ∈ R+ is used to adjust the weight of data size. If β is
large, then the algorithm prefers to choose a large subset. For
subsets with the same size, the term f(Di∪S) decides which
is chosen. It is the one that induces the smallest increase to
f , i.e. the neighbor set size. To control the time complexity
of finding such a subset, the size of S is limited by α.
α = 1, 2, . . . , dn/ke. For example, if α = 2 then, the size
of S is limited to 2. Note that the size of S could be 1 when
α = 2. If we strictly fix |S| = α, then we cannot guarantee
that |Di| ≤ dn/ke. The value of α can be used to adjust the
time complexity and performance of the partition algorithm.
Specifically, with a large α, more possible combinations will
be investigated in each iteration. Hence, the algorithm is less
likely to be trapped in a local optimum point. However, the
time complexity increases exponentially with α. If the α is
too large, the partition algorithm is no longer feasible for a
large input graph. In the experiment, we compare the α = 1
case with the α = 2 case. Eventually, we hope the data
samples could be evenly allocated among all machines, i.e.
each machine should have dn/ke number of data samples.
In an effort to achieve the even allocation, if adding the
chosen subset of data to Di would exceed the number
dn/ke, then we greedily choose one data sample d ∈ S
which induces the smallest increase on f and set S = {d} in
line 7. Then, the data in S would be added to Di and N(Di)
would be updated correspondingly in lines 8-10.
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TABLE 2
The cost of adding data in each iteration

d1,d2 d1,d3 d1,d4 d2,d3 d2,d4 d3,d4
Iteration 1 (D1 = ∅) 3 6 6 6 6 4
Iteration 2 (D2 = ∅) - - - - - 4

We could use random sampling to reduce the running
time of the Alg. 1. Considering that finding the best subset
from all unassigned data is time consuming, we could
sample a subset of unassigned data T ⊆ D′, and find S
from T . The sample rate, i.e. the possibility of each element
being picked up, is set to n/(k|D′|) to guarantee that there
are enough samples.

The submodular property brings a bound to the perfor-
mance of the data partition. In most real-world applications,
k � n, i.e. the number of machines used for distributed
machine learning is far less than the number of data.
Therefore, compared with n, k can be treated as constant.
Besides, the approximate ratio provided in [37] is based on
the assumption that k = Θ(n/ log n). We propose to provide
an approximation analysis with respect to k.
Theorem 2. For number of machines k = Θ(

√
n/ log n),

the data partition result of Alg. 1 could guarantee
that maxi f(Di) ≤ Θ(

√
n/ log n)OPT , where OPT is

maxi f(D∗i ), i.e. the worst cost in the optimal partition.

Proof: Let Di denote the data partition found by our algo-
rithm. We have shown that the set function f is monotone.
This property remains for α = 1, 2, . . . , dn/ke, β ∈ R+.
Hence, after data partition with Alg. 1, Di ⊆ D for
i = 1, . . . , k . Consequently, we have that f(D) ≥ f(Di)
for i = 1, . . . , k. Therefore, f(D) ≥ maxi f(Di).

From Theorem 1, we know that the set function f is sub-
modular. By definition, we have that for any D′, D′′ ⊆ D,
f(D′) + f(D′′) ≥ f(D′ ∪D′′) + f(D′ ∩D′′). Assume there
exists a data partition D∗i , i = 1, . . . , k, such that the data
is equally partitioned and maxi f(D∗i ) is minimized among
all possible partitions. For any D∗i , D

∗
j ⊆ D, we have that

D∗i ∩ D∗j = ∅. By definition, f(∅) = 0. Therefore, we have
that f(D∗i ) + f(D∗j ) ≥ f(D∗i ∪ D∗j ) + f(∅) = f(D∗i ∪ D∗j ).
Based on this inequation, we have∑k

i=1
f(D∗i ) = f(D∗1) + f(D∗2) + · · ·+ f(D∗k)

≥ f(D∗1 ∪D∗2 ∪ · · · ∪D∗k) = f(D). (5)

Combining it with f(D) ≥ maxi f(Di), we have that∑k

i=1
f(D∗i ) ≥ max

i
f(Di). (6)

Furthermore, we have that maxi f(D∗i ) ≥ f(D∗i ),∀i =
1, . . . , k. Correspondingly, k · maxi f(D∗i ) ≥

∑k
i=1 f(D∗i ).

Combining it with the inequality shown above, we have
that maxi f(Di) ≤ k · maxi f(D∗i ). If k = Θ(

√
n/ log n),

then we have maxi f(Di) ≤ Θ(
√
n/ log n)OPT . �

We use an example in Fig. 4(a) to show the data partition
with α = 2. We allocate at most two data samples to a
machine in each iteration. For simplicity, we assume the
sample rate is 1, meaning that all data are considered. In
addition, the value of β is large enough, say β = n, that
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Fig. 5. Adding one vertex leads to a worse performance.

TABLE 3
The cost of adding data in each iteration

d1 d2 d3 d4
Iteration 1 (D1 = ∅) 2 3 4 4
Iteration 2 (D2 = ∅) - 3 4 4
Iteration 3 (D1 = {d1}) - - 6 6
Iteration 4 (D2 = {d2}) - - - 6

adding two data in each iteration always has lower cost
than adding one data. Therefore, we always add two data
in each iteration unless the number of data samples on the
machine exceeds dn/ke = 2. The cost of adding data could
be simply evaluated by the neighbor set size f . Table 2
shows the cost of adding data in each iteration. Initially,
all data are unassigned. In each iteration, a machine with
the smallest data size is chosen and the pair of data that
induces the smallest increase on neighbor set size, or simply
the cost, is chosen. In the first iteration, both |D1| and |D2|
are zero. The tie is broken by machine labels, and machine
1 is chosen. Then adding data d1, d2 to D1 has the smallest
cost. Therefore, they are assigned to machine 1. Then in the
second iteration, machine 2 is chosen since |D2| = 0. Then
d3 and d4 are chosen and assigned to machine 2. In this
assignment, maxi |N(Di)| = 4.

The effectiveness of setting multiple data can be shown
by using the following example. Adding only one vertex in
each iteration reduces the algorithm time complexity, but
may also reduce its performance. An example is shown in
Fig. 5(a). We set α = 1 and only one data can be added
in each iteration, which is equivalent to a data partition
implementation in [18]. In the first iteration, machine 1 is
chosen for |D1| = 0. Following the cost given in Table 3
(We only need to consider f(Di ∪ S) since |Di ∪ S| could
be constant.), d1 is chosen and added to D1. In the second
iteration, machine 2 is chosen and d2 is assigned to it. In
the third iteration, |D1| = |D2| = 1. Again, machine 1 is
chosen for the smaller label. The cost of adding d3 and d4

are the same. We still break the tie by the index, and d3

is added. In the final round, d4 is added to machine 2. In
this assignment, maxi |N(Di)| = 6, which is worse than the
previous assignment.

4.3 Parameter partition
After the partition of D is determined, we partition P
among servers. The objective is to minimize the inter-
machine communication volume since the value of maxi |Pi|
has been determined, or formally, min maxi(|N(Di)\Pi|+∑
j 6=i |Pi∩N(Dj)|) Besides, the memory constraint could

be removed for the parameter partition. It should have
been satisfied in the data partition whose objective is
mini |N(Di)|. Otherwise, the input scenario as infeasible.
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Algorithm 2 Parameter partition
Input: Computation graph G(D,P,E), number of ma-

chines k, and the data partition Di

Output: Parameter partition Pi, i = 1, 2, . . . , k
1: Pi ← ∅ for all i = 1, 2, . . . , k
2: P ′ ← P
3: for i = 1, 2, . . . , k do
4: initialize the partition cost, cost(Pi)← |N(Di)|
5: while P ′ is not empty do
6: choose the partition Pi with the smallest cost
7: p∗ ← arg minp∈N(Di) cost(Pi ∪ p∗)− cost(Pi)
8: assign p∗ to partition Pi.
9: remove p∗ from P ′

10: return Pi, i = 1, 2, . . . , k as the data partition

Also, the parameter partition would not change the value of
|N(Di)|. Therefore, the memory constraint can be omitted.

We solve the parameter partition with a greedy ap-
proach. Initially, servers are given empty parameter sets.
Then, in each iteration, we choose the server on the machine
that has the smallest cost which is the inter-machine com-
munication volume |N(Di) \ Pi|+

∑
j 6=i |Pi ∩N(Dj)|, and

then give it an unassigned parameter that would induce the
smallest increase on the cost. The intuition is to balance the
inter-machine communication while keeping the increase
as low as possible. The procedures are shown in Alg. 2.
Specifically, lines 1-4 initialize the parameter partition and
the cost. P ′ stores unassigned parameters. The initial cost
is |N(Di)| since Pi ∩ N(Di) = ∅, i.e. all communication is
inter-machine. In line 6, the algorithm chooses the machine
with the smallest cost. In line 7, an unassigned parameter p∗

is greedily chosen. To reduce search space, we only consider
p ∈ N(Di), i.e., parameters that have correlation with data
in the machine. Lines 8-9 update Pi, cost(Pi), and P ′. The
allocation repeats until all parameters are assigned.

Different data partitions would impact the parameter
partition. Fig. 4(b) and Fig. 5(b) illustrate the parameter par-
tition results based on the different data partitions. Clearly,
the example in Fig. 4(b) has less inter-machine communica-
tion, which is only one parameter p3 transferring between
two machines. In contrast, all six parameters need to be
pulled/pushed between two machines.
Theorem 3. The worst-case time complexity of the parameter

partition is O(m(n+m)), where n = |D| and m = |P |.

Proof: The initialization in lines 1-2 takes linear time. For the
while loop, we first analyze the time cost in each iteration.
Choosing Pi costs at most O(k). Choosing p∗ in line 7
costs at most O(n + km). Specifically, calculating set Di

costs at most O(n) and the cardinality of Di is O(m). The
increase on cost function could be calculated by querying
the correlation Di ∩ p for i = 1, . . . , k. Therefore, it costs
O(km) time to find p∗ from O(m) candidates. In lines 8-
9, assigning and removing can be finished in O(1) time.
The while loop hasO(m) iterations. Consequently, the while
loop costsO(m(k+n+km+1)) = O(m(n+m)). The worst case
time complexity of the parameter partition is O(m(n+m)).
�

In real-world applications, the graph is usually sparse
and the worst case is not likely to occur. The complexity
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Fig. 6. Illustration of the multilevel approach.

analysis for data partition is analogous, except the time of
finding the best subset S depends on α.

5 DIRECTLY PARTITION THE GRAPH

Besides the two-step heuristic, we also adapt a multilevel
approach [38] to directly partition the graph, i.e., partition
both data and parameters at the same time. The multilevel
approach is designed to partition general graphs and we
adapt the algorithm for bipartite graph partition.

The multilevel approach contains three stages: coarsen-
ing, partitioning and refinement. An illustration is shown
in Fig. 6. Unlike the two-step heuristic approach, there is
no priority for data partition or parameter partition. In the
coarsening stage, the graph nodes are iteratively merged
and a coarse graph that has a small number of nodes is
generated. In the partitioning stage, the coarse graph is
partitioned. In the refinement stage, the algorithm would
refine the partition and recover the coarse graph to the
original graph.

In the coarsening stage, unlike the multilevel approach
for general graph, we merge data set D and parameter set
P respectively. The merging procedure for D is explained
as follows. 1) Mark all d ∈ D as available. 2) Randomly
choose an available di ∈ D; if there is no available di, then
the coarse is finished. 3) Find an available dj ∈ D such that
dj and di have at least one same neighbor. Formally, there
exists a p ∈ P such that p ∈ N({di}) and p ∈ N({dj}).
If there is no such a dj , then di is marked as unavailable.
4) Merge di and dj , and label both as unavailable. Then
repeat steps 2-4 until there are no more available nodes. The
merging procedure for P is similar. Finally, the coarse graph
with a small number of vertices is generated.

On the coarse graph, any partition method can be ap-
plied. However, since the coarse graph has a small number
of vertices, we use a random partition method to save
partition time. Then the refinement stage starts. Our refine-
ment algorithm is based on the FM-algorithm [39] whose
main idea is local search. The FM-algorithm is designed
for bisection partition in general graphs. We adapt the
algorithm to k-way partition for bipartite graphs. The idea
is to sweep over data and parameters and record the gain
of moving each to other machines. The gain refers to the
decrease in the inter-machine communication volume. We
move data/parameter to the machine that brings the largest
gain, , as long as the moving would not break the memory
constraint in Eq. (2). The data or parameter node with
larger gain has higher priority for moving, i.e. would be
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TABLE 4
Dataset Statistic

Dataset #Samples #Attributes Mean Degree
news20 1.5× 104 6.2× 104 18

rcv1.binary 2.0× 104 4.7× 104 30
CTRa 1.0× 106 4.0× 106 48

soc-liveJournal 4.8× 106 4.8× 106 14
synthetic-sparse 1.0× 104 1.0× 104 10

synthetic-medium 1.0× 104 1.0× 104 30
synthetic-dense 1.0× 104 1.0× 104 50
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Fig. 7. The node degree distribution (real-world datasets).

moved first. The gain is updated after each movement.
Each data/parameter is moved at most once to reduce time
complexity. The algorithm stops when either there is no
improvement or each data and parameter node have been
moved once.
Theorem 4. The worst-case time complexity of the refine-

ment algorithm is O((m+ n)|E|).

Proof: To calculate the gain of moving data d ∈ Di to Dj , we
need to go through its neighbor set N(d) and find out the
value of |N(d) \Pi| − |N(d) \Pj |. Consequently, calculating
gains for all d ∈ D needs to go through all edges in the
graph for finding neighbor sets of all d ∈ D, and costs
O(|E|). It is similar for gain calculation of parameter nodes.
Therefore, finding the max gain of moving the d among k
machines needs O(k|E|) time. Moving a data or parameter
node costs O(1) times. Hence, moving nodes and updating
gains costs at most O(|E|). The moving would repeat for
at most (m + n) rounds. Therefore, the worst case time
complexity is O((m+ n)|E|). �

6 EXPERIMENT

6.1 Dataset
The dataset we use is summarized in Table 4. The first
four are real-world datasets. Specifically, The news20 and
rcv1.binary are text datasets. The CTRa is a click-through
dataset from anonymous Internet companies. These datasets
are stored in libsvm format [40]. The number of data corre-
sponds to the size of set D in our model and the number
of features corresponds to the size of P . The soc-liveJournal
is a social network dataset. The social network dataset is a
general graphG′ = (V ′, E′) instead of a bipartite graph, but
it can be easily converted. Specifically, we treat the nodes
in the dataset as both set D and P , i.e. D = P = V ′. If
there is an edge between two nodes in G′, we connect the
corresponding nodes in D and P . In this way, the original
graph could be converted to a bipartite graph.

TABLE 5
The performance improvement with 8 partitions

Dataset Improvement over random partition (%)
TSH-1 TSH-2 MBP PaToH

news20 184 193 175 106
rcv1.binary 109 111 103 42

CTRa 906 951 1371 607
soc-liveJournal 175 183 82 193

Besides the real-world dataset, we also build three sets
of synthetic data with different data sparsity. Specifically,
the number of correlations between data and parameters is
represented by a matrix in the synthetic dataset, where rows
represent data and columns represent parameters. The value
of each element in the matrix could be either 0 or 1, showing
whether there is a correlation between the corresponding
data and parameter. The sparsity is controlled by a sparsity
coefficient γ, which is defined as the percentage of zero
elements in the matrix. The sparsities of sparse, medium,
and dense synthetic datasets are 0.999, 0.995 and 0.991,
respectively. The synthetic dataset may have no meaning
from the machine learning point of view. It is because
the data does not contain any real-world meanings. The
purpose the of synthetic dataset is used to test the partition
algorithm. During experiments, we ignore the result of the
machine learning algorithms. Instead, we set a threshold on
the the maximum number of iterations of training models,
and want to compare the time used for training under
different data or parameter partitions.

In both real-world and synthetic datasets, the sched-
uler of the parameter server would build the dependency
graph by one round of traversal over data samples. The
dependency graph represents the correlation between data
and parameters. It starts from a bipartite graph with no
edges. Two sets of vertices in the bipartite graph represent
sets of data samples and parameters. During traversal, for
each data sample, if there is a non-zero attribute, it adds
one corresponding edge to the bipartite graph. After the
traversal, the graph partition algorithms is called. After the
partition, the scheduler would allocate the parameters and
data samples to servers and workers, respectively, based
on the partition result. The dependency graph and the
partition result would be stored in a lookup table. In this
way, the partition is also known to all workers. In each
training round, workers can quickly acquire the graph and
the partition. Therefore, they know where to pull/push the
parameters of the learning model.

6.2 Experiment setup
In our experiment, we implement the graph partition on a
local machine and then the learning algorithms on a cluster
which is deployed in Amazon EC2. Our local machine has a
6-core i7-8700 CPU running at 3.2GHz with 32 GB RAM. The
cluster on EC2 contains 16 t2.large instances. Each t2.large
instance contains 8GB RAM and runs on Ubuntu 18.04. The
parallel computing environment is set up in all instances.
Specifically, each instance is installed with the OpenMPI
library and its dependent packages. We deploy PS-lite, an
open-source parameter server framework that is available
at https://github.com/dmlc/ps-lite, on the cluster as the
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Fig. 8. Varying data sparsity on synthetic dataset.
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Fig. 9. Varying the number of data and parameters.

platform to train machine learning algorithms. The instance
where the partition algorithm is deployed is labeled as the
scheduler. Each instance contains server and worker nodes.

On the local machine, we compare the performance
of graph partition. The baseline is the random partition
scheme. In this scheme, data and parameters are uniformly
and randomly allocated to each machine. We implement the
two-step heuristic and investigate the trade-off between its
time complexity and performance. Specifically, in the data
partition, we compare the difference between adding one
vertex to a machine in each iteration (denoted as TSH-1)
and adding two vertices (denoted as TSH-2). The multilevel
bipartite partition approach is denoted as MBP. We also test
a popular graph partition algorithm, PaToH [41], which is a
well-optimized hypergraph partitioner and supports taking
a bipartite graph as the input.

The inter-machine communication volume and the train-
ing time are impacted by the partition algorithm and the
number of partitions. To clearly show the improvement
caused by graph partition algorithms under different num-
bers of partitions, we use relative improvement over the
random partition as the metrics to evaluate the performance
of different algorithms. This metric helps cancel out the
effect of the number of partitions. The relative improve-
ment is defined as (Crandom−Ccomparison)/Ccomparison×100%,
where Crandom represents the cost of random partition and
Ccomparison represents the cost of partition found by compar-
ison algorithms. The cost represents the inter-machine com-
munication volume when we compare the performance of
different partition algorithms in Figs. 8, 9, and 10. When we
comparing the training time in Fig. 11, the cost represents
the overall time consumption of both the graph partition
phase and the model training phase. The partition result on
the local machine is stored in recordio format.

6.3 Experiment results

Table 5 shows the performance of algorithms over real-
world datasets. The performance is evaluated by the im-
provement on the inter-machine communication volume
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Fig. 10. Improvement in communication volume over random partition.
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Fig. 11. Comparisons in training and partition time on CTRa dataset.

over random partitioning. The number of partitions is 8,
i.e. k = 8. From the table, we can find that the improvement
of TSH-2 is 1.83% – 4.97% higher than that of TSH-1. MBP
outperforms TSH on the CTRa dataset, but underperforms
TSH on the rcv1.binary and soc-liveJournal datasets. This is
due to the different data and parameter degree distribution
of these datasets. Moreover, we analyze the training time
distribution on the rcv1.binary dataset. If we randomly
assign data samples and parameters to 8 workers and using
ε = 0.0001 as the stopping criteria, the training time of
rcv1.binary dataset is 181.1s. Among them, communication
takes 170.5s. Using TSH-1, we can reduce the training time
to 18.0s, which includes 1.2s of prepossessing and partition
time. The model accuracy is not changed when using dif-
ferent graph partition algorithms. Accuracies on rcv1.binary
and new20 datasets are 97.6% and 86.0%, respectively. In the
following experiments, we investigate different factors that
may impact these algorithms’ performance.

We first test the impact of data sparsity based on our
synthetic datasets. The experiment results are shown in
Fig. 8. In the synthetic-dense dataset whose γ = 0.991,
the improvement of TSH-2 compared with TSH-1 is not
obvious, no matter what the number of partitions is. The
reason for this is that |N(Di)| easily becomes large when
the total number of edges in G is large. In an extreme case,
if γ = 0, i.e. the bipartite graph is fully connected, there is
no way to achieve any improvement by graph partition. The
improvement of TSH-1 compared with the random partition
is in the range of 13.0% – 90.6%, and it increases if the
number of partitions k increases. In the synthetic-sparse
dataset with γ = 0.999, the performance gap between TSH-
2 and TSH-1 is obvious. When k = 4, TSH-2 outperforms
TSH-1 by 85.4%. It shows that TSH-2 could make better use
of the data sparsity than TSH-1. However, when the number
of partitions becomes larger than 4, the performance of TSH-
1 and TSH-2 decreases. This is because each machine would
only be assigned very few data and parameters. The differ-
ence between partition algorithms becomes smaller. In the
extreme case when k = n, each machine only contains one
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data and there is no difference between partition algorithms.
In addition, we investigate whether the ratio between the

number of data and parameters impacts the performance of
partition algorithms in terms of the inter-machine commu-
nication volume. We extract a part of data from the synthetic
datasets. The number of extracted data varies from 50% to
200% of the parameter amount. Fig. 9 shows the simulation
results in communication volume. With larger n/m ratio, the
algorithms’ performances decrease. But the decrease rate is
smaller when the ratio of n/m increases. It shows that when
the number of data is smaller, the partition algorithm plays
a more important role. This is because the |N(Di)| is smaller
when the number of data is smaller. A good partition could
avoid the overlap between N(Di) for i = 1, . . . , k. Their
performance seems to become stable when the ratio n/m
is larger than 2, and they still could achieve about 100%
improvement on synthetic-medium dataset and about 700%
improvement on synthetic-sparse dataset compared with
the random partition.

Then we evaluate the impact of k on real-world datasets.
We choose to use the CTRa and the soc-LiveJournal datasets.
Note that the soc-LiveJournal is originally a general graph.
Experiment results are shown in Fig. 10. We find that these
algorithms have better performance on the CTRa dataset.
The reason for this is that the social network inherently
contains many small densely connected clusters. When the
number of partitions becomes larger, the performance of the
MBP and the PaToH drops. The impact of k is stronger
to the PaToH, whose performance begins to drop when
k > 4. This shows the weakness of the PaToH’s recursive
approach that uses the bisection partition multiple times
to achieve the k-way partition. Small errors in bisection
partitions accumulate when k is large. The performance of
TSH-1 and TSH-2 is more stable on both datasets and there
is no obvious performance drop.

Besides the communication volume, we also compare
the training and partition time. Fig. 11(a) shows the im-
provement on training time. The variation of training time
is similar to that of communication volume. This is because
the communication is the bottleneck and takes more time
than computation. When the inter-machine communication
volume is reduced, the training time is also reduced. The im-
provement achieved by MBP, TSH-1, and TSH-2 is between
about 135% – 170% on the CTRa dataset compared with the
random partition. Fig. 11(b) shows the time consumption
of partition algorithms. The time consumption of TSH-1 or
TSH-2 is less than 100s even for 64 partitions. The MBP or
PaToH takes a longer time. Especially, MBP takes 653s to
generate 64 partitions. Nevertheless, the training usually
takes hours in our setting. Running our TSH algorithms
with small overhead (in minutes) could significantly reduce
the training time. It is worthy to run our graph partition
algorithms before training.

7 CONCLUSION

In this paper, we investigate the potential speed-up of
parameter server frameworks brought by the data spar-
sity, especially when training inference models. By parti-
tioning the data among workers and parameters among
servers, the inter-machine communication volume could be

reduced. We formulate a graph partition problem based
on this observation. The partition problem is modeled by
a bipartite graph. We investigate two approaches to solve
the problem. In the two-step heuristic approach, we first
solve the data partition by using the submodular property
of the neighbor set cardinality function, and then partition
the parameters among machines. In addition, we adapt the
multilevel graph partition approach for general graphs to fit
the optimization over the bipartite graph. Both approaches
are tested with synthetic and real-world datasets. Exper-
iment results show that the two-step heuristic approach
provides a trade-off between computational complexity and
algorithm performance, which helps the algorithm adapt
to different datasets. The multilevel partition approach has
better performance except in a social network dataset.

Our scheme cannot be applied to all machine learning
models. For deep learning models with millions or billions
of parameters, the data-parameter correlation is complex.
Build the correlation graph is not feasible. Instead, using
hashing techniques to compress those models might be a
better approach. For reinforcement learning models, data
samples may not be available in advance. Reinforcement
learning can explore the solution space during training and
learns from the experience. For this case, our data partition
scheme cannot partition the model parameters before train-
ing. It is an interesting topic to discuss the model placement
problems to optimize the training time for reinforcement
learning models. Additionally, our partition scheme can be
extended by integrating some ideas from federated learn-
ing. For example, we can discuss the trade-off between
communication latencies and learning accuracy level as
indicated in [42]. Moreover, the asynchronous update can
be investigated in future work.
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