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Benteng Zhang , Student Member, IEEE, Yingchi Mao , Member, IEEE, Xiaoming He , Member, IEEE,
Huawei Huang , Senior Member, IEEE, and Jie Wu , Fellow, IEEE

Abstract—Previous state-of-the-art studies have demonstrated
that adversaries can access sensitive user data by membership
inference attacks (MIAs) in Federated Learning (FL). Intro-
ducing differential privacy (DP) into the FL framework is an
effective way to enhance the privacy of FL. Nevertheless, in
differentially private federated learning (DP-FL), local gradients
become excessively sparse in certain training rounds. Especially
when training with low privacy budgets, there is a risk of
introducing excessive noise into clients’ gradients. This issue
can lead to a significant degradation in the accuracy of the
global model. Thus, how to balance the user’s privacy and
global model accuracy becomes a challenge in DP-FL. To this
end, we propose an approach, known as differential privacy
federated aggregation, based on significant gradient protection
(DP-FedASGP). DP-FedASGP can mitigate excessive noises by
protecting significant gradients and accelerate the convergence of
the global model by calculating dynamic aggregation weights for
gradients. Experimental results show that DP-FedASGP achieves
comparable privacy protection effects to DP-FedAvg and cpSGD
(communication-private SGD based on gradient quantization)
but outperforms DP-FedSNLC (sparse noise based on clipping
losses and privacy budget costs) and FedSMP (sparsified model
perturbation). Furthermore, the average global test accuracy of
DP-FedASGP across four datasets and three models is about
2.62%, 4.71%, 0.45%, and 0.19% higher than the above
methods, respectively. These improvements indicate that DP-
FedASGP is a promising approach for balancing the privacy
and accuracy of DP-FL.
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I. INTRODUCTION

FEDERATED Learning (FL) [1] has gained substantial at-
tention in the field of distributed machine learning frame-

works. FL can protect users’ privacy by enabling multiple
parties to train machine learning models without sharing raw
data. However, as illustrated in Challenge 1 in Fig. 1, Hu
et al. [2] demonstrated a persistent risk of privacy breaches
in training data, due to the fact that external adversaries can
infer sensitive user data characteristics by Membership Infer-
ence Attacks (MIAs). Differentially Private Federated Learning
(DP-FL) introduces controlled random noise into the gradient
before uploading to address this issue. Moreover, as depicted
in Challenge 2 in Fig. 1, in DP-FL, excessive noise added
to the gradient can lead to a significant degradation in the
global model accuracy. Additionally, in DP-FL, local gradients
become excessively sparse in certain training rounds. Especially
when training with low privacy budgets, gradient sparsification
can give rise to an abundance of noise in the uploaded gradients.
This will also lead to a decrease in global model accuracy [3].
Therefore, to the best of our knowledge, we found that the
crucial control over the addition of noise is still a gap that needs
to be filled.

Motivated by these aforementioned issues, we aim to im-
prove the model accuracy and availability while ensuring pri-
vacy protection by balancing privacy and accuracy of DP-FL.
Exploring a fine-grained balance between privacy and accuracy
has long been a critical topic of DP-FL [4], [5]. We find that
most researchers aim to balance privacy protection and model
accuracy in two primary ways.

1) Gradient Sparsification: During model training, spar-
sification can simplify the model complexity and reduce the
risk of privacy disclosure by zeroing certain parameters [6].
Typically, these parameters pertain to less sensitive informa-
tion, and setting them to zero has a minimal effect on the
model performance. Weng et al. [7] proposed an FL framework
that improved model accuracy by implementing sparse gradi-
ents and momentum gradient descent on both the server and
client sides. SDGM [8], a sparse differential Gaussian-masking
distributed SGD approach, combines sparsification techniques
with Gaussian perturbation to ensure privacy guarantees within
centralized stochastic gradient descent algorithms. However,
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Fig. 1. Privacy leakage by MIAs in federated learning.

when training with low privacy budgets, these methods may
introduce excessive noise into the uploaded gradients, leading
to a significant degradation in global model accuracy.

2) Protecting Significant Gradients: Significant gradients
typically contain highly sensitive information about model pa-
rameters. Choosing to protect significant gradients instead of
all model parameters can reduce privacy-related overhead and
the influence of noise on model accuracy. Previous work [9] de-
termined that most gradient values for client updates are small,
close to zero. Consequently, clients should only protect signifi-
cant gradients (values far from zero) to mitigate privacy budget
consumption. DP-FedSNLC [10] ascertains the significance of
a gradient by evaluating alterations in the loss function and
only introduces noise perturbations into significant gradients.
Nevertheless, DP-FedSNLC has strong privacy protection in the
early stages of global model training but slower model updates
and reduced privacy protection in the later stages. In conclusion,
finding a new way to precisely capture the balance between
privacy and accuracy by protecting significant gradients is a
challenge in DP-FL.

Given the state-of-the-art studies and the challenges
described above, we propose Differential Privacy Federated
Aggregation based on Significant Gradient Protection
(DP-FedASGP), by integrating the idea of gradient
sparsification and significant gradients protection (SGP).
DP-FedASGP can prevent excessive noise addition by only
protecting significant gradients and accelerate global model
convergence by calculating dynamic aggregation weights for
the gradients. Thus, DP-FedASGP can effectively balance the
privacy and model accuracy of DP-FL, particularly under low
privacy budgets.

The contributions of our paper are depicted as follows.
• Originality. We prove that introducing Laplace noise into

partial significant gradients can successfully satisfy the
definition of ε-DP. To mitigate excessive noise addition,
we propose a threshold calculation method to evaluate and
protect significant gradients.

• Methodology. To expedite the convergence of the global
model, we propose a dynamic gradient aggregation

method that can dynamically calculate gradient weights
and aggregate global gradients.

• Effectiveness. We prove the privacy guarantee and conver-
gence of DP-FedASGP. Experiment results demonstrate
that DP-FedASGP can effectively improve the accuracy
and availability of the global model while ensuring the
privacy protection of DP-FL.

The remainder of this paper is organized as follows. Sec-
tion II presents the related work. The proposed framework is
shown in Section III. The design details of DP-FedASGP are
discussed in Section IV. The experiments and analysis are given
in Section V. Finally, Section VI draws the conclusion.

II. RELATED WORK

A. Privacy-Preserving FL

SAFARI (sparsity-aware FL framework) [11] is designed to
improve communication efficiency and reduce biases. SAFARI
leverages the similarities among client models to correct and
compensate for biases caused by unreliable communication.
FedDST (federated dynamic sparse training) [12] focuses on
dynamically extracting and training sparse subnetworks from
the global network target. This approach allows each client
to efficiently train its unique sparse network, reducing the
need to transmit the complete model between devices and the
cloud. Dai et al. [13] utilized a decentralized point-to-point
communication protocol to propose Dis-PFL. Building upon
the premise of gradient sparsification, DP-SIGNSGD [14] is
proposed based on the concept of gradient sparsification to
tackle privacy concerns in the SIGNSGD (the sign of each coor-
dinate of the stochastic gradient vector) algorithm. To enhance
privacy guarantees, FedSMP (sparsified model perturbation)
[38] can sparse the local model on each client before adding
noise perturbation.

However, in DP-FL, local gradients become excessively
sparse in certain training rounds. When training with low pri-
vacy budgets, the aforementioned methods may introduce ex-
cessive noise into the gradient, leading to a decline in the
accuracy of the global model. If the noise is reduced too much,
it may not achieve the target level of privacy protection. There-
fore, how to reasonably adjust the gradient noise addition to
balance privacy protection and model accuracy has become an
important challenge in DP-FL.

B. Privacy-Accuracy Trade-Off

Hu et al. [31] proposed Adp-PPFL (adaptive privacy-
preserving FL), where the server allocates a privacy budget to
each client. Clients adjust the clipping threshold for gradient
clipping based on the allocated privacy budget and training
rounds. However, the privacy budget refers to users’ tolerance
for privacy leakage, and most users participating in FL have
their own privacy budgets. Adp-PPFL allocates privacy bud-
gets to users from the server, which may lead to discrepancies
between the allocated privacy budget and users’ actual situ-
ations, thereby the level of privacy protection may not meet
users’ expectations effectively. To share specific parameters
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Fig. 2. The overview of DP-FedASGP. ① Global model delivery. ② Cal-
culate the significance threshold. ③ Gradient aggregation. ④ Update global
model.

from local gradients selectively, Zhao et al. [15] introduced
Gaussian noise before sharing, required the determination of
the amount of noise, and controlled privacy leakage through
parallel training. By introducing a proxy mediation between
the client and the server, the server cannot distinguish which
client received the gradient. Wang et al. [16] illustrated that
alterations in gradients served as a pivotal metric for gauging the
susceptibility of training data to information leakage risks, and
they introduced a defense strategy accordingly. By introducing
gradient perturbations aligned with information leakage risks,
this approach can reduce defense expenditures while upholding
privacy protection. CEEP-FL (communication efficiency with
enhanced privacy FL) [17] applies a filtering mechanism. This
mechanism involves uploading only the significant gradients.
To elevate model accuracy and preserve the privacy of distinct
owner datasets, FDPBoost (federated differential privacy gra-
dient boosting decision tree) [18] is proposed. This approach
identifies sensitive features based on secure feature set indica-
tors and assigns significant weights to protect leaf node values
using the Laplace mechanism.

Nevertheless, the above methods require complex crypto-
graphic techniques or mathematical mechanisms, which may
lead to increased computational and communication costs. Be-
sides, cross-device communication between clients, servers,
and proxy devices not only increases system complexity and
latency but also introduces additional privacy and security risks.
Therefore, there is an urgent need to design a reasonable and
effective gradient significance evaluation method to protect par-
tial significant gradients, thus we can save privacy budgets and
improve model accuracy.

III. PROPOSED FRAMEWORK

A. System Model

As shown in Fig. 2, the system model consists of a parameter
server and a set of clients K = {1, 2, . . . , i, . . . , k}. Client i
(∀i ∈ K) has its local privacy dataset Di and collectively trains
a global model with parameters W while ensuring its protection
with DP. Client i iterates locally for E times to update its

TABLE I
LIST OF MAIN SYMBOLIC PARAMETERS

Symbol Symbol Meaning
K Client Set
k Total number of clients
σ Noise standard deviation
ε Privacy budget
d Dimensions of global model
η Learning rate
ζ Noise level
q Scale parameter of noise distribution
ω Gradient selection coefficient
δ Relaxation term of noise
ni Local data size of client i
λt Perturbation threshold
gt Global gradient in t-th training round
N Noise
T Training rounds
E Local iterations
B Local batch size
C Fixed clipping threshold
W Global model parameters
Di Local privacy dataset of client i
Lt Global model training loss of clients
ΔS Global sensitivity
γt(i) Aggregation weight of client i
α, β Noise for evaluating query results
D,D′ Sibling datasets
Li(Wt) Loss function for client i

local model Mi and introduces noise N into the significant
gradients. Subsequently, client i uploads the processed gradient
gt(i), local model training loss Li(Wt) and local data size ni to
the server. The server computes the gradient aggregation weight
γt(i) and aggregates the global gradient gi by considering gt(i)
and γt(i). After that, the parameter server updates the global
model parameters Wt+1. These above steps are iterated until
the global model converges and attains the desired performance.
The main symbolic parameters are shown in Table I.

After T training rounds, the noise introduced into the gradi-
ents will be scaled to N . With low privacy budgets, it will lead
to higher noise level σ. In each training round, gradients ex-
ceeding the threshold λt will be perturbed, while the remaining
gradients retain their original values. The perturbation method
for the gradients and σ are given by

gt(i) =

{
g′t(i) +N if g′t(i) + α≥ λt + β

g′t(i) otherwise
, (1)

σ =
ΔS

ε

√
2 ln

(
1.25

ζ

)
, (2)

where gt(i) is the gradient uploaded by the client i in the
t-th training round, g′t(i) is the locally clipped gradient, ΔS
is global sensitivity, and ζ = e−ε is noise level. At the same
time, the weights for aggregating the gradients uploaded by
each client are often fixed. However, when the local data of
clients are equal and non-I.I.D. (non identical and independent
distribution), perturbing partial gradients and aggregating the
global gradients based on FedAvg [19] will slow down the
convergence of the global model. To expedite the parameter
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server in aggregating the global gradients, we propose a novel
method detailed as

gt =
k∑

i=1

γt(i)gt(i), (3)

where gt is the global aggregated gradient, γt(i) ∈ [0, 1] is the
weight of gt(i), and

∑
γt(i) = 1. Section IV-C will expose the

gt(i) perturbation method and the γt(i) calculation method.

B. Local ε-Differential Privacy

The definition of DP can be associated with a privacy budget
ε (a non-negative real number). A smaller ε indicates a higher
level of privacy protection that users require. The definition of
ε-DP [37] can ensure the privacy leakage caused by randomness
or noise in a single query will not exceed the threshold of
ε. Since our method only perturbs partial significant gradients
with noise, which changes the definition conditions of Laplace
noise for DP. Therefore, it is necessary to rigorously prove
whether DP-FedASGP satisfies ε-DP, i.e., to reevaluate its com-
pliance with the following definition

Pr[M(D) =O]≤ eε Pr[M(D′) =O], (4)

where M is the noise algorithm, e is the base of the
natural logarithm, Pr[·] is the probability, M(D) =
(x1, ..., xwd, ..., xd)

T , M(D′) = (x1 +Δx1, ..., xwd +
Δxwd, ..., xd)

T , and O is the output vector. For any query
result O, DP can guarantee that the probability ratio of
generating this result with the current privacy mechanism on
sibling datasets D and D′ will not exceed eε. Section IV-A
will give the privacy guarantee of DP-FedASGP.

C. Threat Model

Similar to the previous works [29], [30], we assume that all
clients participating in FL training are honest-but-curious and
the parameter server is honest and trustworthy. Our threat model
assumes that external adversaries attempt to infer whether each
sample in the given input dataset (target dataset) belongs to the
training set of the client model (target model). Therefore, we
choose MIAs to evaluate the privacy protection performance
of DP-FedASGP. Adversaries first access the client model in-
terface and submit a series of query requests. Subsequently,
adversaries collect the model’s responses to the query requests
and utilize the collected model responses to infer whether spe-
cific membership identities or data features are contained within
the response results through analysis methods and algorithms.
Adversaries aim to determine whether a query record belongs
to the training dataset of the target model. To ensure an equal
number of members and non-members, we use equal-sized sets
to maximize the uncertainty of the inference.

IV. GRADIENT PERTURBATION AND AGGREGATION

A. Privacy Analysis

To offer more rigorous and improved privacy protection and
to facilitate the combined use of various DP mechanisms, we

choose Laplace noise [20] as the perturbation source. The
Laplace noise can satisfy the ε-DP definition. Compared with
Gaussian noise [21], Laplace noise can provide more stringent
privacy safeguards at the expense of compromising information
accuracy. However, DP-FedASGP will change the definition
conditions of Laplace noise for DP. To provide security proof,
this section will start with the definition of ε-DP and discuss
how DP-FedASGP satisfies Laplace-based DP for partial gradi-
ents. We aim to prove that introducing Laplace noise into partial
gradients can satisfy the requirements of ε-DP definition. We
give Definitions 1 and 2.

Definition 1: The general definition of DP is: Given a pair
of sibling datasets D and D′, for a function Fmodel :D→ R

d

that represents the mapping relationship from dataset D to a
d-dimensional space, it has a sensitivity ΔS.

Definition 2: The probability density function of the Laplace
distribution for the random variable x is defined as

Lap(x | μ, b) = 1

2b
e−

|x−μ|
b , (5)

where μ is the location of the introduced noise, while the
variance is 2b2.

Suppose that Laplace-distributed noise Laplaced(
ΔS
ε ) can

satisfy the ε-DP definition. For any domain function Fmodel

with input X , the formal representation after introducing noise
is given by

Fmodel(X) + Laplaced

(
ΔS

ε

)
, (6)

where ΔS
ε is the scale parameter of the Laplace distribution.

In order to simplify the proof process without affecting the
generalization of the results, we give Assumptions 1 and 2.

Assumption 1: For any domain function Fmodel with input
dataset D, Fmodel is given by

Fmodel(D) = (x1, x2, ..., xd)
T . (7)

Assumption 2: For any random variable xi in dataset D,
xi = 0.

Using these conditions, we can make our proof without losing
generality. We give Theorem 1.

Theorem 1 (Privacy Guarantee of DP-FedASGP): If (6) is
feasible and Assumptions 1, 2 hold, then introducing Laplace
noise into partial significant gradients can satisfy the definition
of ε-DP and ensure the privacy of gradients.

Proof: Please refer to Appendix A.
According to Theorem 1, it can be concluded that introducing

Laplace noise into partial significant gradients can ensure the
privacy of the gradients. Therefore, DP-FedASGP does not
affect the convergence of the global model.

B. Gradient Perturbation Mechanism

We aim to provide stricter and more robust privacy protection
while facilitating the joint use of multiple DP mechanisms.
As shown in Fig. 3, for client i, after computing the local
λt, α, and β, noise is introduced into the query results that
exceed λt in d queries. We combine DP with Laplace noise,
referred to as (ε, δ)-DP. When the relaxation term δ = 0, the
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Fig. 3. Gradient perturbation of each client.

random algorithm M can satisfy the ε-DP definition. We give
Definitions 3 and 4.

Definition 3: Given a random algorithmM and input datasets
D, D′, the formal definition of ε-DP is defined as

Pr [M(D) ∈ S]≤ eεPr [M(D′) ∈ S] + δ, (8)

where S ⊆ Range(M) and δ = 0.
Definition 4: Given sequentially executed random algorithms

M1 and M2 satisfy ε1-DP and ε2-DP, respectively. M1, M2

satisfy (ε1 + ε2)-DP, which is defined as

Pr[M(D)]≤ eε1+ε2 Pr[M(D′)]. (9)

The precise query result of input x on dataset D is repre-
sented as R(x,D), and N is the noise that follows a Laplace
distribution. The query result Q with Laplace noise introduced
to satisfy ε-DP is given by

Q=R(x,D) +N. (10)

Then, let Lap(ΔS/ε) denote the Laplace noise N that sat-
isfies the ε-DP definition, which is given by

Pr(N) =
ε

2ΔS
e−

ε
ΔS |N|. (11)

According to the composition theorem of DP mechanisms
that satisfy the Laplace distribution in FL, the simultaneous
execution of multiple queries will result in a linear increase in
the consumed privacy budget. Let d denote the dimension of
the FL model and x is the input parameters of the d queries,
the update of d parameters by a single client is equivalent to
answering d queries concurrently. The accurate query result of
input x on dataset D is denoted as R(x,D) ∈ R

d, and the query
result with Laplace noise satisfying ε-DP is denoted as Q(x, ε),
which is given by

Q(x, ε) =R(x,D) +N(ε). (12)

To reduce the privacy budget consumption of simultaneously
executing multiple queries, we introduce the idea of sparse
vectors [22]. Laplace noise is only introduced when the queried
content is deemed significant. Otherwise, no operation is per-
formed. Specifically, in a certain training round, if d queries are
requested, Laplace noise is introduced only when Rd(x,D) +
α≥ λ+ β, then we have

Ad =Rd(x,D) +Nd, (13)

where Ad is the query result after applying Laplace noise per-
turbation for query d, λ is the threshold for determining the
importance of the queried content, and q is the scale parameter
of Laplacian noise distribution. α and β are additional noise that
evaluate the importance of the query result, which follow the
Laplace noise distributions Lap(qΔS/ε1) and Lap(qΔS/ε2),
respectively. Nd is the noise used to perturb the query result,
which follows the Laplace noise distribution Lap(qΔS/ε3).

However, the premise of using the above gradient pertur-
bation method is that the total privacy budget ε satisfies ε=
ε1 + ε2 + ε3. Therefore, we need to prove Theorem 2.

Theorem 2: If (13) is feasible, then the proposed DP-
FedASGP can introduce Laplace noise into partial significant
gradients, and the total privacy budget ε= ε1 + ε2 + ε3.

Proof: Please refer to Appendix B.
Due to ε3 can affect the perturbed gradient values returned

to the server, so ε3 � ε1 + ε2. If ε3 is too small, it will sig-
nificantly reduce the model accuracy in FL. Conversely, even
if ε1 + ε2 is very small, perturbation will only occur when
selecting valid gradients. When ε1 + ε2 is a fixed value, the pri-
vacy budget ratio ε1 : ε2 =

3
√

q2 : 1. Meanwhile, the threshold
λ is used to determine the importance of the queried content.
We incorporate the idea of the Top-k [23] method into the
selection of λ. We set different thresholds λ for different train-
ing rounds. In the early training rounds, when the parameters
change dramatically and there is more gradient information, a
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larger threshold λ is set to accelerate the model convergence. In
the later training rounds, when the parameters tend to stabilize
and there is less gradient information, a smaller threshold λ is
set to save the privacy budget. The calculation of the threshold
λt is given by

λt =min

(
sort(g′)

[⌈
t|W |
T

⌉]
, sort(g′)

[⌈
9|W |
10

⌉])
, (14)

where |W | is the total number of model parameters, sort(·) is
the sorting result in ascending order, and g′ is the locally clipped
gradient.

C. Gradient Aggregation Mechanism

The most commonly referenced algorithm in FL is the Fe-
dAvg algorithm, in which the weights of the gradients are
typically fixed and determined based on the size of local training
data. After T training rounds, the global model objective is

min

k∑
i=1

ni

n
Li(W ), (15)

where Li(W ) is the loss function used to train the local model
of client i, n=

∑k
i=1 ni is the total data size, and ni is the

local data size of client i. The impact of local loss on the
global objective depends entirely on the local data size. We hope
that the global loss function can truly reflect the aggregated
global model by gradient aggregation weights on the server-
side. However, the accuracy of the gradients decreases after
noise is introduced, especially when partial gradients are per-
turbed. The information contained in the gradients uploaded
by each client may be completely different from the previous
values.

As shown in Fig. 2, based on the effectiveness of local train-
ing, we dynamically calculate the gradient aggregation weight
γ in each training round. Let Li(Wt) denote the local model
training loss for client i in the t-th training round, the total

model training loss for client i is Lt =
∑k

i=1 Li(Wt). Con-
sidering the influence of the local loss contained in the global
objective function, which depends entirely on the size of the
local data, the gradient aggregation weight γt(i) for client i is
given by

γt(i) =
niLt + nLi(Wt)

2nLt
, (16)

where
∑k

i=1
ni

n = 1
⋂ ∑k

i=1
Li(Wt)

Lt
= 1 always holds, and the

gradient aggregation weight |γt|=
∑k

i=1 γt(i) = 1 for each
client in each training round is always true.

D. Convergence Analysis

In this section, we prove the convergence of the DP-
FedASGP within the FL framework. We give Assumptions 3,
4 and Definition 5.

Assumption 3 (Lipschitz Smoothness): We assume that
the loss function L(·) is differentiable, and each client’s lo-
cal loss function ∇L(·) is l-Lipschitz continuous, i.e., ∀i ∈
{1, 2, . . . , k}

‖∇Li(W)−∇Li(W
′)‖ ≤ l‖W −W′‖. (17)

Assumption 4 (Bounded Gradient): By the nature of gradient
descent, we assume that each client’s local gradient is bounded.
Therefore, there is a constant Mi such that for any training
round t and client i, we have

‖∇Li(Wt)‖ ≤Mi. (18)

According to the gradient descent method, the global gradient
gt can be expressed as the gradient of the global loss function
L(·), which is given by

gt =∇L(Wt) =
1

k

k∑
i=1

∇Li(Wt)γt(i). (19)

Definition 5: The update rule of the global model parameter
W after the training round t is defined as

Wt+1 ←Wt − ηgt, (20)

where η is the learning rate and gt is the global gradient of
training round t.

In DP-FedASGP, a certain degree of Laplacian noise is added
to each client’s gradient gt(i) to protect the true gradient and
satisfy the ε-DP. At the same time, to prevent the instability of
the global model parameter update caused by too large gradi-
ents, the gradient clipping function can limit the gradient to a
certain range. To prove the convergence of DP-FedASGP, we
need to prove Theorem 3.

Theorem 3 (Convergence Guarantee of DP-FedASGP): If
(19) is feasible and Assumptions 3, 4 hold, then the global
gradient gt after gradient clipping in each training round is
bounded and the global model parameters Wt can converge to
a finite value.

Proof: Please refer to Appendix C.

E. Algorithm Design

The gradient perturbation and aggregation process of DP-
FedASGP can be divided into three key stages:

1) Construct A Gradient Perturbation Method Based on
Sparse Vectors: Not every gradient from clients holds equal
significance. In each training round, we begin by computing
the threshold λt to evaluate gradient significance. Subsequently,
employing decision criteria Rd(x,D) + α≥ λt + β, we only
introduce noise into significant gradients gt(i). The total pri-
vacy budget essential for global model training, denoted as
ε= ε1 + ε2 + ε3, determines the gradient information that each
client ultimately needs to upload.

2) Build Dynamic Aggregation Weights Calculation Method:
In each training round, each client possesses a local model train-
ing loss function Li(Wt). Therefore, we can calculate the total
model training loss Lt for all clients. The gradient aggregation
weight γt(i) in the current training round is determined based
on the data distribution.

3) Formulate The Global Model Gradient Aggregation
Method: For the parameter server, based on the perturbed gradi-
ents uploaded by each client obtained in stage 1 and the gradient
aggregation weights obtained in stage 2, the final global model
aggregation is accomplished.
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Algorithm 1: DP-FedASGP
Input: k clients, Di, B, E, T , C, ΔS, ε1, ε2, η, σ
Output: Global model parameters W

1 Initialize W , Wt

2 for each training round t ∈ T do
3 for each client i in parallel do
4 W ←Wt

5 gi, Li, ni ← clientTrain(W,Di, T, t)
6 end
7 L←

∑
Li, n←

∑
ni

8 γi ← niL+nLi

2nL
9 g ←

∑
γigi

10 Wt+1 ←Wt − ηg
11 end
12 function clientTrain(W,Di, T, t)
13 begin
14 n←D
15 for each local epoch in E do
16 ge ←∇L(W )
17 W ←W − ηge
18 end
19 g ←

∑
ge, L=

∑
ΔM(W )e

20 g′ ← g

max(1,
‖g‖2
C )

21 α← Lap(ΔS
ε1

), β ← Lap(ΔS
ε2

)

22 λt =min(sort(g′)[
⌈
t|W |
T

⌉
], sort(g′)[

⌈
9|W |
10

⌉
])

23 if g′ + α≥ λ+ β then
24 g ← g′ +N
25 else
26 g ← g′

27 end
28 return g, L, n
29 end

The details are shown in Algorithm 1. DP-FedASGP com-
prises the following steps: a) Initialize the server and client
models (line 1). b) In each communication round, client i it-
erates local batch model training on their local privacy data,
computing gradients, and local loss (lines 15-18). c) Client i
computes the sparse inequality noise levels α and β (lines 19-
21). d) Client i calculates the noise perturbation threshold λ and
introduces noise into significant gradients based on the sparse
inequality (lines 22-28). e) Each client uploads the perturbed
gradients g, local loss L, and local data size n (line 5). f )
The server calculates the total training loss and total data size
and computes each gradient aggregation weight γi (lines 7-8).
g) The server aggregates the perturbed gradients uploaded by
clients based on the gradient aggregation weights (line 9). h)
The parameter server updates a new global model and sends
the new model to each client (line 10).

F. Complexity Analysis

In DP-FedASGP, each client performs local training and
updates its local model for E times, resulting in an algo-
rithmic complexity denoted as O(

∑E
e=1 |∇|e) =O(E). In the

FL framework with k clients participating in training, the al-
gorithmic complexity for computing local gradients is O(k).
As the clients are training models in parallel, the algorithmic
complexity is transformed into O(1). Assuming the parameter
server performs T training rounds, the overall complexity of
DP-FedASGP is expressed as O(ET ). Since E is much smaller
than T , i.e.,E � T , the overall complexity of the DP-FedASGP
algorithm is O(n).

V. PERFORMANCE EVALUATION

A. Experimental Settings

Experimental Environment. The experiments are con-
ducted with a parameter server and a group of clients partic-
ipating in FL training. PyTorch is used as the deep learning
framework, and the Python version employed is 3.6. The com-
puting nodes run on the 64-bit Ubuntu 20.04 LTS operating
system, with a CUDA driver version of 11.0. The CPU used
is an Intel(R) Xeon(R) Gold 6326 @2.90GHz, equipped with
256GB of RAM, 4TB of hard disk, and an NVIDIA A100 GPU
with 80GB of GPU memory.

Datasets and Target Models. We employ 3 image datasets,
1 text dataset, and 3 target models. We use the Dirichlet function
Dir(ϕ= 1) [39] to divide the datasets for clients to generate
non-independent and identically distributed (non-IID) training
datasets. Note that the higher the ϕ value, the more similar the
distribution of the training dataset is allocated among clients.
Res50 represents ResNet-50 in Tables III, IV, and V.

• MNIST [34] dataset consists of 60, 000 labeled training im-
ages and 10, 000 labeled test images. The data comprises
hand-written digit images representing all digits from 0
to 9, with a fixed size of 28× 28 pixels in grayscale.
We use a convolutional neural network (CNN) model and
a Residual Network (ResNet-50) for image classification
tasks. CNN consists of 2 convolutional layers (5× 5 and
ReLU activation, each followed by 2× 2 max pooling), 2
fully connected layers, and Softmax normalizes the final
output. ResNet-50 uses the same default settings as the 50-
layer architecture in [36].

• CIFAR-10 [35] and CIFAR-100 [35] datasets both consist
of 50, 000 labeled training images and 10, 000 labeled test
images. These images belong to 10 and 100 categories
respectively, with each category representing one of them.
The images are fixed-sized color images of 32× 32 pixels.
We also use CNN and ResNet-50 for image classification
tasks. CNN consists of 2 convolutional layers (5× 5 and
ReLU activation, each followed by 2× 2 max pooling), 3
fully connected layers, and Softmax normalizes the final
output. ResNet-50 is set up the same way as MNIST.

• Shakespeare [19] dataset is built from The Complete
Works of William Shakespeare. Similar to [33], each client
has one or more lines for training or testing. We train a
recurrent neural network (RNN) model for predicting the
next character. RNN takes a sequence of 80 characters as
input and consists of an embedding layer (80× 8), two
LSTM layers (80× 256), and a dense layer (80× 90).

Baselines. We consider the following comparative methods.
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TABLE II
DATASETS DETAILS AND HYPERPARAMETER SETTINGS

Datasets MNIST CIFAR-10 CIFAR-100 Shakespeare
Type Image Image Image Text

Models
CNN CNN CNN

RNN
Resnet50 Resnet50 Resnet50

Clients 100 100 100 715
Train Size 60,000 50,000 50,000 16,068
Test Size 10,000 10,000 10,000 2,356

Batch Size 128 128 128 4
Training Round 200 500 500 1,000
Learning Rate 0.1 0.05 0.05 1

• DP-FedAvg [24] was once the state-of-the-art DP variant
of the FedAvg algorithm. It implements client-level DP,
where each client uses a clipping threshold C for gradient
clipping, followed by adding noise N .

• cpSGD [25] combines gradient quantization and DP.
• DP-FedSNLC [10] introduces sparse noise into gradients

based on clipping losses and privacy budget costs.
• FedSMP-topk [38] is currently the state-of-the-art client-

level DP method for balancing accuracy and privacy
through sparsification. DP-FedSMP simplifies the local
model updates of clients by retaining only important coor-
dinate subsets and then adds noise to perturb the retained
coordinate values.

Hyperparameter Settings. SGD algorithm is used for local
gradient computation. The clipping threshold C = 1 and the
privacy budgets ε= {0.1, 0.2, 0.5, 1, 2, 4}. We randomly select
10% of the clients in each training round to participate in the
FL training. The details are shown in Table II.

Attack models. We consider the following threat models.
• Basic-MIA [32]: Threshold-based MIA. Adversaries com-

pute the prediction confidence of the target model on a
shadow dataset, then select a confidence threshold that
achieves the highest attack accuracy on the shadow dataset.
If the confidence of a queried record exceeds this thresh-
old, adversaries will infer the member record.

• ML-Leaks (Adversary 1) [27]: Adversaries divide the
shadow dataset Dshadow into training datasets Dtrain

shadow

and testing datasets Dtest
shadow, and then train a shadow

model Mshadow based on the data from Dtrain
shadow. For

each record in Dshadow, adversaries select the three largest
posterior values from the output of Mshadow and label
them as 1 or 0 to train the attack model. Finally, adversaries
feed the three largest posterior values into the attack model
to obtain predictions about membership.

• White-box [28]: Adversaries train attack models on both
the training and testing datasets to learn the differences in
member inference. Adversaries process multiple observed
target model inputs simultaneously, capturing the correla-
tions between parameters in each training round.

• CS-MIA [26]: The state-of-the-art MIA. Adversaries first
divide the dataset into training datasets Dtrain and test-
ing datasets Dtest, and incorporate Dtrain into FL. Then,
adversaries compute the confidence series of the shadow
model on Dtrain and Dtest, constructing a labeled confi-
dence series set used for training the attack model. In the

inference phase, for a given target record dtarget, adver-
saries compute the confidence series of the target model on
dtarget as the input to the pre-trained attack model, finally
determining the membership of dtarget.

Metrics. Various metrics of the experiments provide an in-
tuitive description of the model’s training performance.

• Privacy Protection: The experiments are designed to
assess the privacy protection performance of the five meth-
ods. A lower accuracy of inference attacks in the experi-
mental results indicates better privacy protection.

• Global Model Availability: The experimental results indi-
cate that higher global test accuracy corresponds to higher
model training accuracy and availability. When training
with low privacy budgets, we should pay special attention
to the changes in the average global test accuracy during
model training.

• Applicability of DP-FedASGP: The experiments compare
the global test accuracy of the trained model to evaluate
the applicability of DP-FedASGP under higher privacy
budgets. Note that a higher average accuracy in the ex-
perimental results indicates better applicability.

B. Privacy Protection

The most direct and intuitive way to evaluate the perfor-
mance of privacy protection is by incorporating inference
attack methods during the model training. Since the pri-
vacy budget affects the overall accuracy of inference attacks,
our experiments choose the MNIST, CIFAR-10/100 datasets
and ε= {0.1, 0.2, 0.5}, using Basic-MIA, ML-Leaks, White-
box, and CS-MIA as attack methods for comparative exper-
iments. We will analyze the privacy protection performance
of DP-FedASGP and other methods. Note that a lower ac-
curacy of inference attacks in the experimental results in-
dicates better privacy protection. The results are shown in
Table III.

1) Training with Different Privacy Budgets and Differ-
ent Model Training Methods: The Basic-MIA attacks perform
the worst, while the CS-MIA attacks perform the best. Given
that Basic-MIA is much simpler than the other inference at-
tack methods, the attack accuracy of Basic-MIA is the lowest
across all five training methods. Since CS-MIA attacks can
access more information on training and testing data, the ef-
fectiveness of CS-MIA is better than that of ML-Leaks and
White-box.

2) Training with Different Privacy Budgets and Different
Inference Attack Methods: As shown in Table III, cpSGD has
the lowest attack accuracy, so cpSGD has the best privacy pro-
tection performance. This is because cpSGD combines gradient
quantization and DP, which can ensure privacy protection defi-
nitions. However, quantization does not scale the amount of gra-
dients. Instead, quantization adds some privacy protections and
makes inference attacks more challenging. Therefore, cpSGD
offers better privacy protection compared to DP-FedASGP. DP-
FedAvg has lower attack accuracy than DP-FedSNLC, FedSMP,
and DP-FedASGP. This is because DP-FedAvg only prevents
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TABLE III
ATTACK ACCURACY OF DIFFERENT ATTACK METHODS WITH DIFFERENT TRAINING METHODS

Privacy
Model

Method MNIST CIFAR-10 CIFAR-100
Budget (DP-) Basic-MIA ML-Leaks White-box CS-MIA Basic-MIA ML-Leaks White-box CS-MIA Basic-MIA ML-Leaks White-box CS-MIA

0.1

CNN

FedAvg [24] 50.01% 50.02% 50.02% 51.09% 50.86% 51.42% 53.61% 65.46% 51.45% 53.42% 55.01% 65.72%
cpSGD [25] 50.01% 50.01% 50.02% 51.09% 50.73% 51.31% 53.57% 65.31% 51.24% 53.31% 54.96% 65.67%

FedSNLC [10] 50.09% 50.21% 50.24% 51.15% 51.38% 58.84% 62.59% 67.19% 54.77% 60.26% 65.86% 67.25%
FedSMP [38] 50.06% 50.15% 50.20% 51.17% 51.04% 51.87% 54.76% 65.85% 51.95% 54.23% 55.93% 66.10%

FedASGP 50.04% 50.09% 50.11% 51.15% 50.89% 51.80% 54.38% 65.49% 51.92% 54.18% 55.84% 65.91%

Res50

FedAvg 50.01% 50.01% 50.01% 51.03% 50.47% 51.17% 53.07% 64.80% 51.07% 52.31% 54.26% 65.21%
cpSGD 50.01% 50.01% 50.01% 51.02% 50.45% 51.08% 53.06% 64.67% 51.05% 52.18% 54.15% 65.19%

FedSNLC 50.03% 50.17% 50.20% 51.11% 50.84% 57.93% 60.82% 66.59% 53.17% 59.30% 62.68% 67.04%
FedSMP 50.03% 50.10% 50.15% 51.08% 50.63% 51.49% 53.95% 64.97% 51.46% 52.90% 55.15% 65.66%

FedASGP 50.01% 50.05% 50.07% 51.06% 50.52% 51.32% 53.67% 64.82% 51.20% 52.92% 54.27% 65.27%

0.2

CNN

FedAvg 50.04% 50.18% 50.35% 51.28% 53.07% 55.12% 60.47% 70.91% 55.63% 58.03% 61.76% 71.21%
cpSGD 50.03% 50.16% 50.23% 51.22% 52.99% 55.06% 60.42% 70.85% 55.49% 57.65% 61.64% 71.06%

FedSNLC 50.15% 50.27% 50.55% 51.35% 55.56% 60.69% 67.19% 73.21% 58.46% 65.88% 69.49% 73.85%
FedSMP 50.13% 50.25% 50.43% 51.31% 53.63% 55.39% 60.75% 71.54% 55.87% 58.98% 62.21% 71.73%

FedASGP 50.09% 50.21% 50.36% 51.30% 53.58% 55.33% 60.70% 71.35% 55.84% 58.91% 62.07% 71.57%

Res50

FedAvg 50.02% 50.11% 50.24% 51.19% 52.26% 54.57% 59.65% 66.94% 54.42% 55.23% 60.11% 67.26%
cpSGD 50.02% 50.08% 50.16% 51.18% 52.21% 54.41% 59.59% 66.88% 54.34% 55.11% 60.01% 67.18%

FedSNLC 50.07% 50.20% 50.41% 51.27% 52.55% 58.33% 65.88% 69.10% 56.11% 59.45% 67.82% 69.84%
FedSMP 50.05% 50.18% 50.37% 51.24% 52.46% 54.68% 60.12% 67.06% 54.65% 55.40% 60.57% 67.75%

FedASGP 50.03% 50.14% 50.28% 51.22% 52.41% 54.61% 59.92% 67.04% 54.54% 55.28% 60.45% 67.34%

0.5

CNN

FedAvg 50.13% 50.39% 50.83% 51.46% 55.24% 59.32% 65.23% 73.85% 60.29% 63.22% 68.10% 74.49%
cpSGD 50.10% 50.36% 50.81% 51.40% 55.08% 59.25% 65.17% 73.67% 60.02% 63.07% 67.70% 74.33%

FedSNLC 50.26% 50.52% 50.91% 51.55% 58.91% 62.84% 70.36% 78.72% 64.41% 70.15% 73.63% 78.97%
FedSMP 50.19% 50.49% 50.88% 51.52% 55.49% 59.52% 65.68% 74.39% 60.73% 64.10% 68.41% 74.89%

FedASGP 50.17% 50.44% 50.86% 51.48% 55.45% 59.47% 65.60% 74.11% 60.74% 64.06% 68.34% 74.65%

Res50

FedAvg 50.06% 50.26% 50.54% 51.35% 54.15% 58.46% 63.91% 71.98% 58.52% 60.66% 65.51% 72.59%
cpSGD 50.05% 50.21% 50.53% 51.32% 54.12% 58.22% 63.85% 71.57% 58.46% 60.49% 65.36% 72.51%

FedSNLC 50.19% 50.44% 50.65% 51.49% 58.08% 61.51% 66.72% 75.62% 61.43% 64.33% 70.15% 75.22%
FedSMP 50.14% 50.33% 50.59% 51.41% 54.80% 58.50% 64.10% 72.45% 58.60% 60.75% 65.97% 72.98%

FedASGP 50.11% 50.30% 50.58% 51.34% 54.64% 58.45% 64.05% 72.42% 58.57% 60.70% 65.85% 72.86%

Fig. 4. Average attack accuracy with different models and privacy budgets across CNN and ResNet-50.

the addition of larger noise and utilizes a fixed clipping thresh-
old for gradient clipping. This leads to more noise being intro-
duced compared to DP-FedSNLC, FedSMP, and DP-FedASGP.
Hence, the privacy protection of DP-FedAvg is second only to
cpSGD and better than DP-FedASGP. The attack accuracy of
DP-FedSNLC is much higher than the other methods, and it
offers the worst privacy protection performance. DP-FedSNLC
introduces noise into significant gradients based on the changes
in the loss function. In the early training stages, gradients
change significantly, while in the later stages, gradients gradu-
ally diminish. This leads to strong privacy protection in the early
stages of global model training and weaker privacy protection
in the later stages. Therefore, DP-FedSNLC performs worse
against inference attacks compared to DP-FedASGP, especially
under complicated MIAs. FedSMP achieves higher attack ac-
curacy compared to DP-FedASGP because FedSMP sparsifies
the model before adding noise perturbation. The degree of

model sparsification cannot adapt well to changes in the privacy
budget, making it more susceptible to attacks.

DP-FedASGP has slightly higher attack accuracy than
DP-FedAvg and cpSGD but is significantly lower than DP-
FedSNLC and FedSMP. This indicates that the privacy protec-
tion performance of DP-FedASGP is slightly worse than DP-
FedAvg and cpSGD but significantly better than DP-FedSNLC
and FedSMP. This is because DP-FedASGP only introduces
noise into partial significant gradients and dynamically com-
putes the gradient significance threshold in each training round.
This results in less introduced noise compared to DP-FedAvg
and cpSGD but makes DP-FedASGP offer a slightly weaker
defense against inference attacks compared to DP-FedAvg and
cpSGD. Furthermore, we have compiled the average attack
accuracy of the four attack methods across CNN and ResNet-
50 under different privacy budgets and different model training
methods, details are shown in Fig. 4.
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TABLE IV
GLOBAL TEST ACCURACY WITH DIFFERENT PRIVACY BUDGETS FOR

DIFFERENT TRAINING METHODS

Privacy Method MNIST CIFAR-10 CIFAR-100 Shakespeare
Budget (DP-) CNN Res50 CNN Res50 CNN Res50 RNN

0.1

FedAvg [24] 88.34% 89.10% 34.49% 45.73% 10.36% 26.21% 20.16%
cpSGD [25] 85.53% 86.42% 31.92% 44.27% 8.92% 24.91% 18.90%

FedSNLC [10] 90.74% 91.47% 39.82% 49.69% 13.94% 27.44% 22.34%
FedSMP [38] 91.02% 92.11% 40.55% 51.06% 14.29% 27.87% 22.95%

FedASGP 91.16% 92.53% 40.96% 51.35% 14.34% 28.05% 23.04%

0.2

FedAvg 91.68% 92.74% 42.88% 56.10% 16.17% 33.51% 27.87%
cpSGD 89.15% 90.11% 39.51% 54.53% 14.89% 32.11% 26.32%

FedSNLC 92.92% 94.45% 46.53% 57.31% 18.91% 34.37% 28.85%
FedSMP 93.10% 94.59% 46.72% 57.45% 19.38% 34.50% 29.06%

FedASGP 93.24% 94.80% 46.90% 57.65% 19.44% 34.82% 29.18%

0.5

FedAvg 93.87% 94.33% 48.36% 65.23% 20.21% 39.80% 31.46%
cpSGD 90.63% 91.55% 45.94% 62.98% 18.31% 38.15% 30.12%

FedSNLC 94.28% 95.40% 51.94% 66.74% 22.15% 41.40% 33.07%
FedSMP 94.53% 95.43% 51.20% 66.81% 22.53% 41.39% 33.24%

FedASGP 94.75% 95.82% 51.37% 66.80% 22.63% 41.57% 33.41%

3) Training with Different Datasets and Different Privacy
Budgets: As shown in Fig. 4, DP-FedASGP exhibits slightly
higher average attack accuracy than DP-FedAvg and cpSGD but
significantly lower than DP-FedSNLC and FedSMP, especially
when training models with high-complexity datasets.

4) Summary: DP-FedASGP is effective in defending against
inference attacks under low privacy budgets. The privacy pro-
tection performance of DP-FedASGP is similar to DP-FedAvg
and cpSGD but significantly better than DP-FedSNLC and
FedSMP, especially when training with CIFAR-10/100.

C. Global Model Availability

In this section, by evaluating the availability of DP-FedSGP
using the global test accuracy of the model, we will prove
that DP-FedASGP can offer the best global model availability
compared to the other four methods. As detailed in Table IV and
illustrated in Figs. 5 and 7, we present the global test accuracy
and average test accuracy results of DP-FedAvg, cpSGD, DP-
FedSNLC, FedSMP, and DP-FedASGP. In addition, to more
intuitively show the differences between DP-FedASGP and
other methods, we also provide the average global test accuracy
on four datasets in Table V. Note that a higher global test
accuracy in the experimental results indicates higher model
training availability.

1) The Lower The Privacy Budget, The Better The Avail-
ability: As shown in Table IV, when training the CNN and
ResNet-50 with the MNIST dataset and privacy budget ε= 0.1,
DP-FedASGP demonstrates a substantial global test accuracy
improvement of approximately 2.82% and 3.43% compared
to DP-FedAvg, respectively. When ε= 0.5, DP-FedASGP still
outperforms DP-FedAvg, with a slightly reduced improvement
of about 0.88% and 1.49%, respectively. Similar trends are
observed during training with the CIFAR-10/100 and Shake-
speare datasets, where the increase in global test accuracy with
DP-FedASGP is more pronounced at ε= 0.1 compared to 0.5.
Therefore, DP-FedASGP can improve the availability of the
global model with low privacy budgets.

2) The More Complex the Dataset, the Better the Availabil-
ity: When training with the relatively simple MNIST dataset,
the performance differences among these five methods are

not particularly significant. However, when training with the
CIFAR-10/100 and Shakespeare datasets, which exhibit higher
data complexity, DP-FedASGP stands out by achieving the
highest global test accuracy. In particular, during training with
complex datasets, characterized by moderate data complex-
ity, DP-FedASGP significantly outperforms DP-FedAvg and
cpSGD in terms of global test accuracy. DP-FedASGP only
introduces noise perturbation into partial significant gradients
in each training round and dynamically calculates the gradient
aggregation weights. These improvements in DP-FedASGP can
enhance the precision of gradient perturbation, which is partic-
ularly beneficial for complex datasets.

3) The Average Global Test Accuracy: We average the global
test accuracy of ε= {0.1, 0.2, 0.5} on the four datasets, DP-
FedASGP has a higher average global test accuracy than the
other methods. As shown in Table V, DP-FedASGP achieves a
higher average global test accuracy than DP-FedAvg, cpSGD,
DP-FedSNLC, and FedMSP on the four datasets, with improve-
ments of approximately 2.62%, 4.71%, 0.45%, and 0.19%,
respectively. cpSGD combines gradient quantization and DP
to ensure privacy protection definition. However, since cpSGD
quantizes gradients, it is equivalent to introducing privacy
noise perturbation. Therefore, under the same privacy budget
setting, cpSGD has the lowest average global test accuracy. DP-
FedAvg can only prevent the addition of larger noise. Thus, DP-
FedAvg introduces more noise than DP-FedSNLC, FedSMP,
and DP-FedASGP. DP-FedSNLC evaluates the changes in the
loss function to determine whether gradients are important and
then introduces noise perturbation. FedSMP tends to overly
sparsify the model under low privacy budgets, leading to poor
performance, but FedSMP still effectively reduces the addition
of noise. Therefore, DP-FedAvg, DP-FedSNLC, and FedSMP
outperform cpSGD in terms of global test accuracy.

4) Summary: As the MNIST dataset has relatively low
complexity, these five methods exhibit similar global test accu-
racy, and the precision improvement can be negligible. How-
ever, for the CIFAR-10/100 and Shakespeare datasets, with
a significant increase in dataset complexity, the global test
accuracy of DP-FedASGP outperforms DP-FedAvg, cpSGD,
DP-FedSNLC, and FedSMP. When training with low privacy
budgets, the average global test accuracy of DP-FedASGP on
the four datasets is higher than other methods. Therefore, DP-
FedASGP can offer the best global model availability among
these five methods.

D. Applicability Analysis Under Higher Privacy Budgets

In Sections V-B and V-C, the privacy protection performance
of DP-FedASGP is approximately equivalent to DP-FedAvg
and cpSGD. When training with low privacy budgets, DP-
FedASGP can offer better global model availability than other
methods. Therefore, in this section, we choose DP-FedAvg
as the comparative method. We will prove that DP-FedASGP
can maintain excellent applicability even under higher privacy
budgets.

Table VI and Fig. 6 present the experimental results of global
test accuracy for DP-FedAvg and DP-FedASGP (CNN model)
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Fig. 5. Average global test accuracy with different training methods and privacy budgets across CNN and ResNet-50.

Fig. 6. Global test accuracy with higher privacy budgets on CNN.

TABLE V
AVERAGE GLOBAL TEST ACCURACY WITH DIFFERENT TRAINING METHODS

ON DIFFERENT DATASETS

Dateset Model
DP- DP-FedAvg cpSGD DP-FedSNLC FedSMP

FedASGP [24] [25] [10] [38]

MNIST
CNN 93.05% 91.30% 88.33% 92.65% 92.88%

(−1.75) (−4.72) (−0.40) (−0.17)

Res50 94.38% 92.06% 89.36% 93.77% 94.04%
(−2.32) (−5.02) (−0.61) (−0.34)

CIFAR-10
CNN 46.40% 41.91% 39.12% 46.10% 46.16%

(−4.49) (−7.28) (−0.30) (−0.24)

Res50 58.60% 55.69% 53.93% 57.91% 58.44%
(−2.91) (−4.67) (−0.69) (−0.16)

CIFAR-100
CNN 18.80% 15.58% 14.04% 18.33% 18.73%

(−3.22) (−4.76) (−0.47) (−0.07)

Res50 34.81% 33.17% 31.72% 34.40% 34.59%
(−1.64) (−3.09) (−0.41) (−0.22)

Shakespeare RNN 28.54% 26.50% 25.11% 28.09% 28.42%
(−2.04) (−3.43) (−0.45) (−0.12)

Average 53.51% 50.89% 48.80% 53.04% 53.32%
(−2.62) (−4.71) (−0.45) (−0.19)

with ε= {0.1, 0.2, 0.5, 1, 2, 4} in the above experimental envi-
ronment. Note that a higher global test accuracy in the experi-
mental results indicates better applicability.

As the privacy budget increases, DP-FedASGP consistently
outperforms DP-FedAvg in global test accuracy. When ε=
0.1, DP-FedASGP achieves higher global test accuracy than
DP-FedAvg by approximately 2.82%, 6.47%, and 3.98% on
the MNIST and CIFAR-10/100 datasets, respectively. When
ε= 4, DP-FedASGP outperforms DP-FedAvg by about 0.43%,

TABLE VI
GLOBAL TEST ACCURACY WITH HIGHER PRIVACY BUDGETS FOR DIFFERENT

TRAINING METHODS ON CNN

Privacy Budget Method (DP-) MNIST CIFAR-10 CIFAR-100

0.1
FedAvg [24] 88.34% 34.49% 10.36%
FedASGP 91.16% 40.96% 14.34%

0.2
FedAvg 91.68% 42.88% 16.17%

FedASGP 93.24% 46.86% 19.44%

0.5
FedAvg 93.87% 48.36% 20.21%

FedASGP 94.75% 51.37% 22.63%

1
FedAvg 95.12% 52.73% 22.74%

FedASGP 95.83% 54.56% 25.04%

2
FedAvg 96.27% 55.87% 24.97%

FedASGP 96.68% 57.12% 26.77%

4
FedAvg 96.89% 58.10% 26.53%

FedASGP 97.32% 59.83% 27.87%

1.73%, and 1.34% on the three datasets. However, as ε increases
from 0.1 to 4, the performance gap between DP-FedASGP and
DP-FedAvg gradually diminishes. Although DP-FedASGP may
result in a slight decrease in privacy protection, it simplifies the
gradients of the model during training. When training with low
privacy budgets, DP-FedASGP can provide sufficient privacy
protection to the gradients. This makes it challenging for ad-
versaries to infer sensitive information, even if some gradient
information is exposed through membership inference attacks.
Since DP-FedASGP only introduces noise perturbation into
partial significant gradients in the current training round and
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Fig. 7. Global test accuracy on Shakespeare dataset.

does not change the amount of noise perturbation in essence.
DP-FedASGP can still perform initial perturbation for gradi-
ents according to the privacy budgets. Therefore, the lower the
privacy budgets, the better the availability of DP-FedASGP. Ad-
ditionally, DP-FedASGP can maintain excellent applicability
even under higher privacy budgets.

E. Summary of Experiments

We implemented the experimental environments of DP-FL,
in which we conducted comprehensive experiments for eval-
uating the performance of DP-FedASGP by comparing with
baselines such as DP-FedAvg, cpSGD, DP-FedSNLC, and
FedSMP. These experiments were carried out on the MNIST,
CIFAR-10/100, and Shakespeare datasets. The experimental
results show that the average global test accuracy of DP-
FedASGP on the four datasets and three models is about 2.62%,
4.71%, 0.45%, and 0.19% higher than DP-FedAvg, cpSGD,
DP-FedSNLC, and FedSMP, respectively. When training with
low privacy budgets, DP-FedASGP can improve model accu-
racy while ensuring privacy protection, exploring a better bal-
ance between these two aspects efficiently. Even under higher
privacy budgets, DP-FedASGP can still maintain excellent ap-
plicability. These improvements in DP-FedASGP can enhance
both the privacy protection and model accuracy of the global
model during the model training.

VI. CONCLUSION

Local gradients of DP-FL become excessively sparse in cer-
tain training rounds. Especially when training with low privacy
budgets, there is a risk of introducing excessive noise into the
uploaded gradients. This issue leads to a significant degradation
in the accuracy of the global model. To effectively balance the
privacy protection and model accuracy of DP-FL, we propose
an approach called DP-FedASGP, which combines the idea of
gradient sparsification and DP to achieve both gradient per-
turbation and gradient aggregation in DP-FL. Particularly, DP-
FedASGP constructs a gradient perturbation method based on
sparse vectors to evaluate and protect significant gradients in
each training round. Subsequently, to dynamically calculate the
aggregation weights of the gradients, DP-FedASGP employs

a dynamic aggregation weights calculation method based on
the local loss function and the local data size. DP-FedASGP
then formulates the global model gradient aggregation method
to accelerate the convergence of the global model. Experiments
on four datasets and three models manifest that DP-FedASGP
can more effectively perturb significant gradients during each
training round. Thus, DP-FedASGP can enhance the accuracy
and availability of model training while ensuring privacy pro-
tection. Therefore, DP-FedASGP can effectively explore a bet-
ter balance between privacy protection and model accuracy of
DP-FL.

APPENDIX A
PROOF OF THE THEOREM 1

According to Assumption 1, after introducing Laplace noise,
the output function is

F ′
model(D) =Fmodel(D) +

(
Laplace1

(
ΔS

ε

)
,

Laplace2

(
ΔS

ε

)
, ..., Laplaced

(
ΔS

ε

))
,

(21)

where ΔS =maxD,D′ ‖Fmodel(D)− Fmodel(D
′)‖p, p is typ-

ically set to 1, and its specific representation is given by

ΔS =max
D,D′

(
d∑

i=1

|Δxi|
)
. (22)

Because the output function F ′
model(D) satisfies the defini-

tion of ε-DP, which is given by (4). Then we can get

Pr [F ′
model(D) =O]≤ eεPr [F ′

model(D
′) =O] . (23)

To prove Theorem 1, we need to prove the validity of (23). As
we aggregate the global gradient based on the gradient weights,
then we have

Fmodel(D
′) = (x′

1, x
′
2, . . . , x

′
d)

T

= (x1 +Δx1, x2 +Δx2, . . . , xd +Δxd)
T
,
(24)

according to (24) we can get

ΔS =max
D,D′

(
d∑

i=1

∣∣xi − x′
i

∣∣) . (25)

Since DP-FedASGP needs to introduce Laplacian noise into
partial gradients, datasets D and D′ need to satisfy the selection
of the partial gradients. Therefore, we define ω ∈ [0, 1] as the
gradient selection coefficient. As ω → 1, more gradients are
selected. Thus, for any domain function with input datasets D
and D′, we have

Fmodel(D) = (x1, x2, . . . , xωd, . . . , xd)
T , (26)
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Fmodel(D
′) = (x′

1, . . . , x
′
ωd, . . . , x

′
d)

T

= (x1 +Δx1, . . . , xωd +Δxωd, . . . , xd)
T , (27)

with input datasets D, D′ and sensitivity ΔS, we can get

ΔSN =max
D,D′

(
ωd∑
i=1

| xi − x′
i |

)

=max
D,D′

(
ωd∑
i=1

|Δxi |
)

≤ΔS. (28)

According to Assumption 2, we can get Fmodel(D) =
(0, 0, ..., 0)

T , Fmodel(D
′) = (Δx1,Δx2, ...,Δxwd,

..., 0)T . When O = (y1, y2, ..., yd)
T , we have

Pr[F ′
model(D) =O] =

ωd∏
i=1

ε

2ΔSN
e
− ε

ΔSN
|γi|, (29)

Pr[F ′
model(D

′) =O] =

ωd∏
i=1

ε

2ΔSN
e

ε
ΔSN

|Δxi−yi|. (30)

Then we can get

Pr[F ′
model(D) =O]

Pr[F ′
model(D

′) =O]
=

∏ωd
i=1

ε
2ΔSN

e
− ε

ΔSN
|yi|∏ωd

i=1
ε

2ΔSN
e
− ε

ΔSN
|Δxi−yi|

= e
ε

ΔSN

∑ωd
i=1(|Δxi−yi|−|yi|). (31)

To prove the validity of (23), we need to prove∑ωd
i=1 (|Δxi − yi| − |yi|)≤ΔSN . For each |Δxi − yi| − |yi|,

according to the absolute inequality, we have

ωd∑
i=1

(−|Δxi|)≤
ωd∑
i=1

(|Δxi − yi| − |yi|)≤
ωd∑
i=1

(|Δxi|), (32)

and
ωd∑
i=1

(|Δxi|)≤max
D,D′

(
ωd∑
i=1

|Δxi|
)

=ΔSN ≤ΔS, (33)

according to (29), (30) and (33), we can get

ωd∑
i=1

(|Δxi − yi| − |yi|)≤ΔSN ≤ΔS. (34)

We can get
∑ωd

i=1 (|Δxi − yi| − |yi|)≤ΔSN from (34).
Therefore, we can prove that (10) exit and F ′

model(D)
can satisfy the definition of DP, i.e. Pr [F ′

model(D) =O]≤
eεPr [F ′

model(D
′) =O] holds. Thus, Theorem 1 concludes.

APPENDIX B
PROOF OF THE THEOREM 2

We prove Theorem 2 from both ∀i Ri(D)≥Ri(D
′) and

∀i Ri(D)≤Ri(D
′). If both Ri(D)≥Ri(D

′) and Ri(D)≤
Ri(D

′) can prove Theorem 2, then Theorem 2 is true.
First, we assume that ∀i Ri(D)≥Ri(D

′). Then, (35) and
(36) exist.

fi(D, κ) = Pr[Ri(D) + α < λ+ κ], (35)

gi(D, κ) = Pr[Ri(D) + α≥ λ+ κ], (36)

where κ is the parameter input for the function fi(D, κ). Then
we have

fi(D, κ) = Pr[Ri(D) + α < λ+ κ]

≤ Pr[Ri(D
′) + α < λ+ κ]

= fi(D
′, κ), (37)

gi(D, κ) = Pr[Ri(D) + α≥ λ+ κ]

≤ Pr[Ri(D
′) + α+ χ≥ λ+ κ]

≤ eε1/q Pr[Ri(D
′) + α≥ λ+ κ]

= eε1/qgi(D
′, κ), (38)

according to (37) and (38), we can get

Pr[M(D)]

≤
∫ +∞

−∞
Pr[κ= β]

∏
j∈i

fj(D
′, κ)

∏
j /∈i

eε1/qgj(D
′, κ)dκ

≤ (eε1/q)q Pr[M(D′)]≤ eε1+ε2 Pr[M(D′)]. (39)

Following these steps, (39) can satisfy Definition 4. There-
fore, ε= ε1 + ε2 + ε3 holds.

Next, we assume that ∀i Ri(D)≤Ri(D
′). Then, we have

∀i Ri(D)≥Ri(D
′)− χ. Following the steps above, we have

fi(D, κ− χ) = Pr[Ri(D) + α < λ+ κ− χ]

≤ Pr[Ri(D
′)− χ+ α < λ+ κ− χ]

= fi(D
′, κ), (40)

gi(D, κ− χ) = Pr[Ri(D) + α≥ λ+ κ− χ]

≤ Pr[Ri(D
′) + α≥ λ+ κ− χ]

≤ eε1/q Pr[Ri(D
′) + α≥ λ+ κ]

= eε1/qgi(D
′, κ), (41)

where χ is the change in the variable. As the independent vari-
able changes from κ to κ− χ, according to the ε-DP definition,
we can get

Pr[M(D)] =

∫ +∞

−∞
Pr[κ= β + χ]

∏
j∈i

fj(D
′, κ− χ)

×
∏
j /∈i

eεi/qgj(D
′, κ− χ)dκ

≤
∫ +∞

−∞
eε2 Pr[κ= β]

∏
j∈i

fj(D
′, κ)

×
∏
j /∈i

eεi/qgj(D
′, κ)dκ

≤ (eε1/q)qeε2 Pr[M(D′)] = eε1+ε2 Pr[M(D′)].
(42)

Following the above steps, (42) can satisfy Definition 4, ε=
ε1 + ε2 + ε3 still holds. From both ∀i Ri(D)≥Ri(D

′) and
∀i Ri(D)≤Ri(D

′), we can always get the total privacy budget
ε= ε1 + ε2 + ε3. In this way, Theorem 2 concludes.
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APPENDIX C
PROOF OF THE THEOREM 3

We prove that the global model parameters Wt in T training
rounds can form a Cauchy sequence, thereby further demon-
strating the convergence of the DP-FedASGP. The Cauchy se-
quence is a special case of a real number sequence that plays
an important role in mathematical analysis. A sequence of real
numbers xn is called a Cauchy sequence if, for any given
positive real number ρ > 0, there exists a positive integer ψ such
that for all m,n > ψ, the distance between any two terms in the
sequence |xn − xm| is less than ρ.

In other words, for any given precision requirement ε, when
the number of terms in the sequence is sufficiently large, the
distance between any two terms in the sequence is close enough.
This means that as the number of terms in the sequence in-
creases, the differences between the terms become smaller and
smaller, eventually approaching a limit. According to Assump-
tion 4, (16), and (19) we can get

‖gt‖=
∣∣∣∣∣
∣∣∣∣∣1k

k∑
i=1

∇Li(Wt)γt(i)

∣∣∣∣∣
∣∣∣∣∣

≤ 1

k

k∑
i=1

‖∇Li(Wt)γt(i)‖ ≤
1

k

k∑
i=1

Mi. (43)

Let M =max{M1,M2, . . . ,Mk} represent the maximum
norm of all client local gradients. Therefore, we have

‖gt‖ ≤
1

k
· k ·M =M. (44)

Thus, the global gradient gt is also bounded. For all t, there
is a constant M that makes ‖gt‖ ≤M . This means that we can
set the gradient clipping threshold C to a constant M .

Now that we have proved that the global gradient gt is
bounded. Next, we will prove that Wt is a Cauchy sequence,
i.e., for any given ρ > 0, there exists a positive integer ψ. For
any m,n > ψ, we have ‖Wm −Wn‖< ρ. According to the
bounded properties of the gradient and the conditions of the
noise term, we have

‖Wm −Wn‖
= ‖(Wm−Wm−1)+(Wm−1−Wm−2) · · ·+(Wn+1−Wn)‖
≤ η(‖gm‖+N) + η(‖gm−1‖+N) · · ·+ η(‖gn‖+N)

≤ η(M +N)(m− n), (45)

where N is noise. We can choose a small enough learn-
ing rate η such that η(M +N)< ρ. Suppose we choose η =

ρ
2(M+N)(m−n) . Then we have

‖Wm −Wn‖< η(M +N)(m− n) =
ρ

2
. (46)

Therefore, for a sufficiently large ψ, we have ‖Wm −Wn‖<
ρ, which proves that Wt is a Cauchy sequence, converging to
a finite value. In this way, Theorem 3 concludes.
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