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Abstract—General purpose GPU (GPGPU) computing has
produced the fastest running supercomputers in the world. For
continued sustainable progress, GPU computing at scale also
need to address two open issues: a) how increase applications
mean time between failures (MTBF) as we increase supercom-
puter’s component counts; and b) how to minimize unnecessary
energy consumption. Since energy consumption is defined by
the number of components used, we consider a sustainable
high performance computing (HPC) application can allow
better performance and reliability at the same time when
adding computing or communication components. This paper
reports a two-tier semantic statistical multiplexing framework
for sustainable HPC at scale. The idea is to leverage the powers
of statistic multiplexing to tame the nagging HPC scalability
challenges. We include the theoretical model, sustainability
analysis and computational experiments with automatic system
level multiple CPU/GPU failure containment. Our results
show that assuming three times slowdown of the statistical
multiplexing layer, for an application using 1024 processors
with 35% checkpoint overhead, the two-tier framework will
produce sustained time and energy savings for MTBF less than
6 hours. With 5% checkpoint overhead, 1.5 hour MTBF would
be the break even point. These results suggest the practical
feasibility for the proposed two-tier framework.

Keywords-Fault tolerant GPU computing; Data parallel pro-
cessing; Tuple switching network; Semantic statistical multi-
plexing;

I. INTRODUCTION

The fastest supercomputers today use large number of
GPU cards. The recent Chinese supercomputer, Tianhe-
1, used approximately 7000 GPU cards to produce 2.5
petaflops performance [1]. Even faster machines are under
construction. For example, the Oak Ridge National Lab-
oratory plans to develop a new peta-scale supercomputer
using an even larger number of “Fermi” GPUs to achieve
an expected peak performance of 20 petaflops [2].

There are also two less publicized factors: the fast shrink-
ing application mean time between failure (MTBF) [3] and
fast growing energy consumption. Since a failed application
must be restarted from the last checkpoint, optimal check-
point interval can eliminate unnecessary energy waste. It is
well known in the research community that both issues must
be tamed for sustainable extreme scale computing.

With the current parallel processing environments, it is
commonly accepted that to achieve higher performance,

reliability must be sacrificed [4]. For higher application reli-
ability, performance must be sacrificed. The interconnection
network is the performance and reliability bottleneck that
higher number of computing nodes can worsen application
performance. Removing this bottleneck is considered very
difficult.

Research finds that more sustainable architectures do exist
with far less scalability constraints. For example, the packet
switching networks [5] have delivered all-around scalability
for many decades. Up scaling computing or communication
components enables delivering higher service performance,
higher data and service availability and less data/service
losses. Although it is not immediately clear how the HPC
applications could leverage the packet switching (statistical
multiplexing) concepts, the scalability of the data networking
architecture should be an important reference point for any
computing/communication system at scale.

Inspired by the packet switching principles, we find that
like a lost data packet, a lost computation can always be
re-calculated if given the same input(s). This is true seman-
tically for both deterministic and non-deterministic compu-
tations. Therefore, for HPC applications, spatial redundancy
(redundant processing in parallel) is unnecessary. Since
every parallel application employs many parallel “workers”,
these workers share the same code base, if each such task can
be represented in a single “tuple”, theoretically sustainable
parallel processing would also be possible if we have a
proper API and construct a statistically multiplexed high-
level “tuple switch network™.

This paper reports a two-tier HPC computation frame-
work. In addition to a lower tier of traditional parallel
tasks, we propose a statistically multiplexed interconnection
network layer using the tuple space [6] abstraction. The idea
is to leverage the powers of statistic multiplexing to meet
the long standing HPC scalability challenges. Since packet
processing is done “’statelessly”, the proposed framework is
essentially a stateless parallel processing (SPP) machine.

This paper is organized as follows: Section 2 is a brief
survey of existing fault tolerant parallel computing meth-
ods. Section 3 describes the technical motivating factors of
the proposed methodology. Section 4 contains theoretical
discussions on push and pull parallel processing paradigms
in performance and sustainability perspectives. Section 5



introduces stateless parallel processing and its sustainability
analysis. Section 6 reports the design and results of com-
putational experiments. Section 6 contains the discussion
of the results. Section 7 contains the summary and future
directions.

II. FAULT TOLERANT COMPUTING

Component failure in a computer is a small probability
event. When the component count is large, however, the
cumulative effects are formidable. The lack of all-around
scalability in existing HPC applications has quickly driven
their MTBFs from weeks down to 60 minutes [3]. This
means that it would soon be impossible to have a full hour
continuous run for a large scale HPC application using the
current combination of hardware and software.

To preserve the valuable intermediary results, check-
point-restart (CPR) [7] is necessary. CPR requires periodical
savings of application’s intermediate states. When the ap-
plication crashes (any transient component failure can cause
this to happen), we could restart the application from the last
checkpoint, thus preserving the energy that had generated the
saved results.

There are two kinds of CPR: system level and applica-
tion level. System level CPR is provided by the parallel
programming API (Application Programming Interface) and
environment that allows the application program to call for a
checkpoint using a single instruction. Recovery is automatic.
The Berkeley’s BLCR library [8] is an example of system
level CPR. Application level CPR [9] is provided by the
programmer who must use his/her understanding of the
program to find the suitable time and frequency to save
critical data sets. The programmer is also responsible for
the coding of automatic recovery after failure.

In a typical GPGPU parallel system, the host processor
must use shared memory to communicate with multiple GPU
cards and a system level checkpoint must save the memory
contents shared amongst all processors. At the present time,
this is considered a non-trivial challenge ([10], [11] and
[12]).

CheCUDA [10] reported one method that can save the
state of a single GPU for a later restart or migration. A
number of improvements were also suggested to reduce
its large overheads. Authors of [11] reported an effort
using a virtualized GPU. [12] reported a method using a
stream interface provided by the NVIDIA CUDA to hide
latency. At the time of this writing, the CheCUDA is still
unstable. Due to the low level memory interface complexity
between multiple vendors, system level CPR for multiple
GPGPU is still under development. Future fused CPU-GPU
architectures may lesson the difficulties. But the current
interests are in portable computer productions. The use of
fused CPU-GPU processors in supercomputers is still on the
drawing board.

Existing HPC programming frameworks are primarily
based on the message passing standards [13], such as
OpenMPI [14], MPICH [15] and MVAPICH [16]. All these
systems provide an API for check-pointing the state of
individual nodes using the BLCR library and and an API
for communication channel check-pointing using a variety
of techniques [9].

In practice, only application level CPR is widely used.
The optimal CPR interval can minimize the overall running
time and save the energy consumption by committing the
minimal number of checkpoints. Finding and implementing
the optimal CPR interval requires non-trivial calculations
([17], [18]). For general purpose HPC, fault tolerance at
scale is considered very difficult [19].

III. MOTIVATION

The unique architectural advantage in packet switching
protocol design is the primary motivation of the reported
research. This unique architecture allows unlimited scalabil-
ity in performance and reliability as the network component
count increases. Since all HPC applications must involve
communications, we paid specific attention to the timeout
treatments in HPC applications. Interestingly, we found that
most people believe that a message timeout is identical to a
fatal error. Therefore, the application must halt.

The timeout of a communication request really means the
request’s state is unknown. Treating it as a fatal error forces
the entire application to halt on every possible transient
component error. Thus, as the component count increases,
the application’s MTBF decreases. This is the root cause of
HPC application sustainability challenges.

In contrast, the lower level data networks treat timeout in
fundamentally different ways. In packet switching networks,
a re-transmission logic coupled with idempotent processing
has been proven a winning formula if supported by a statisti-
cally multiplexed infrastructure. The counter-intuitive packet
switching protocols have delivered practical sustainable data
networks for many decades. It is perhaps the most scalable
man-made architectures in human history.

The key concepts in a successful sustainable network
seem to include:

« Find a service dependent unit of transmission.

« Develop an end-to-end protocol with re-transmission
and idempotent processing based on the unit of trans-
mission.

« Develop a statistical multiplexed network based on the
unit of transmission.

Without statistical multiplexing, the actual state of a com-
munication task is theoretically not confirmable ([20], [21]
and [7]). With statistical multiplexing, the probability of
success increases proportionally as the number of redundant
path increases. The re-transmission protocol implements
transient storages for the transmission units. Therefore,
increasing the networking component counts improves the
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Figure 1. Messaging network and packet-switching data network.

network’s collective performance and reliability at the same
time. Although the packet-switching overhead is significant
compared to direct circuit-switching protocols, the low cost
fault tolerance and unlimited scalability of packet switching
concept have been proven to prevail in practice.

One often wonders why the low level data network
benefits are not automatically inherited by higher level
applications. The answer is that they operate on different
units of transmissions (Figure 1). In high level applications,
the data objects, such as messages, are only transmitted once.
Since the mutual information is zero between the protocol
layers [22], by the end-to-end principle [23], not only a
statistically multiplexed infrastructure is necessary, but also
the application programming interface (API) must include
the essential elements of the packet-switching principle for
the application to be sustainable.

Therefore, HPC application sustainability naturally hap-
pens if the units of computations are statistically multi-
plexed. We propose a robust runtime statistically multiplexed
“tuple switching network™ [24] and a high-level “tuple-
driven” parallel processing API in order to contain the
increasing risks of massive component failures.

IV. TUPLE-DRIVEN PARALLEL PROCESSING

In a “tuple-driven” parallel processing environment, au-
tomatic worker failure protection can be provided by al-
lowing a retrieved tuple of a work assignment to assume
“invisible” status until its processing is completed. If the
corresponding result does not arrive in time, its “invisible”
status can be reversed to “visible”, allowing other available
computing nodes to compete for the unfinished task [17].
In view of the “tuple switching network”, this mechanism
satisfies statistical multiplexing requirement analogous to the
automatic re-transmission of TCP packets.

In other words, the very feature that was responsible
for putting the data parallel processing methods into the
“Quasimodo” rank is actually indispensable for larger scale
computing.

The “tuple-driven” parallel processing environment has
the identical semantics of a data driven parallel processing
model. This saves us from providing the feasibility argu-
ments.

Since GPGPUs are exclusively used for parallel workers,
this means that we could use data parallel programming

to overcome the system level multiple GPU checkpoint
challenges.

Unlike explicit parallel programming methods, tuple-
driven parallel programming relies on communicating tuples
to automate task activation (also called “firing” in liter-
ature [25]). This enables automatic formation of SIMD,
MIMD and pipeline clusters at runtime. The net-benefit
of this feature is automatic “hiding” of communication
latencies (or “work stealing” [26]). For extreme scale HPC
applications, these sustainable qualities are desirable.

In addition to “stateless” workers, a practical HPC ap-
plication must also contain “stateful” masters (programs
responsible for delivering the semantically identical results
as sequentially computing the same data). The masters must
still be check-pointed to preserve the intermediate results.
It is not immediately clear if the overall computing time
with multiple master checkpoints (although less frequent and
potentially smaller) would still deliver sustainable savings
given the inherent inefficiencies of tuple parallel processing.

A pull-application programming environment forces the
programmers to focus on data partitions (or exposing par-
allelism). The data partitioning strategy determines the ulti-
mate deliverable performance.

The pull-based API does not have a fixed process-data
binding. Therefore, it is possible to statistically multiplex the
higher level data contents. Specifically, if the pull-based API
contains re-transmission and idempotent processing for HPC
computing tasks, all-around scalability should be certainly
attainable.

The pull-applications require the processing environment
to support a data repository for matching computing tasks
at runtime. This introduces an additional communication
overhead that almost doubles the overhead for every direct
inter-processor communication request.

The increased overheads allow the introduction of statis-
tical multiplexing on the high level HPC semantic network:

1) The potential to deploy multiple interconnection net-
works in parallel, thus relieving the performance bot-
tleneck to allow more computing nodes in parallel and
to support diverse communication patterns.

2) The potential to offer automatic worker fault tolerance,
thus reversing the negative effect on application MTBF
and delivering sustainable performance with automatic
failure containment.

The pull-based also makes it easier to seamlessly include
heterogeneous processor types, such as single-core and
multicore CPUs, DSPs, and GPGPUs. It can also include
legacy push-based HPC applications. This is the basis for
the proposed two-tier system.

Like the Internet, a pull-based two-tier framework can po-
tentially deliver scalable performance, scalable availability,
scalable service losses and energy efficiency at the same
time.
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Figure 2. Tuple Switching Network.

The following sections reports findings based on an ex-
perimental pull-based statistical multiplexing project named
Synergy [27].

V. STATELESS PARALLEL PROCESSING
A. Architecture

Stateless parallel processing (SPP) [24] was inspired by
the sustainability of packet switching architecture for data
networks. Figure 2 shows the conceptual diagram of the
proposed “tuple switching network”.

In Figure 2, SW represents a collection of redundant
network switches. UVR stands for Unidirectional Virtual
Ring — a fault resistant (self-healing) virtual communication
channel that links all nodes for an application. Each node is a
standalone processor of some particular type. Each node has
multiple network interfaces, local memory, disk and single
or multiple processing units; it can also host multiple GPU
cards.

A global tuple space is implemented as follows:

1) Data requests travel through a UVR.
2) All nodes participate in data matching in parallel.
3) All networks participate in direct data exchanges.

These functions are implemented in a single daemon
that runs on each node. Like the peer-to-peer file sharing
systems, the SPP daemons communicate with each other
to form a single consistent HPC machine image using any
available resources. Each daemon holds the local data. Data
matching requests travel by UVR. The actual data transfers
are done in parallel via the multiple redundant physical
networks. For parallel applications with optimized grain
sizes, only a few data items should reside on each node.
At application level, all nodes participate in a statistically
multiplexed global tuple space. Applications use the tuple
space API to communicate with local daemon which in
turn communicates with other daemons to complete data
acquisition in parallel. Each application exploits multiple
redundant networks automatically to counter-balance the
speed disparity between computing and communication.
There is no single point failure for such HPC applications.
Using a binary broadcast protocol, each UVR can scale to
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Figure 3. Static and statistical semantic networking.

include millions of nodes with no more than O(lgP) data
matching complexity.

Failure containment for multiple multicore CPU and GPU
is now feasible by leveraging the automatic “worker fault
tolerance” without involving low level memory CPR. Un-
like traditional supercomputing environments, the statistical
multiplexed semantic network promises overall scalability:
adding computing nodes or networks will increase both
application’s performance and reliability.

Figure 3 makes a conceptual comparison between the
static (push-application) and statistical multiplexed semantic
networks (for SPP applications), where 7" stands for “tuple”
which is the unit of transmission of the semantic network.

In Figure 3, the push API does not contain re-transmission
and idempotent processing of units of transmissions. Each
message is like a UDP packet in data networks, it only
gets sent once. The tuples in the SPP semantic networks
are like TCP virtual circuits with automatic re-transmission
and idempotent processing built-in.

B. Application Development

A pull-application will use only data manipulation com-
mands. The Tuple Space abstraction [6] naturally fits our
needs.

The tuple space API contains three data manipulation
primitives [24]:

1) Put(TupleName, buffer): This call inserts the contents

of “buffer” with TupleName into the space.

2) Get(&NameBuffer, &buffer): This call retrieves and

destroys a tuple with a matching name in NameBuffer.

3) Read(&NameBuffer,&buffer): This call only retrieves

a tuple with a matching name in NameBuffer.

The “&” sign represents “access by reference” convention
meaning that the variable NameBuffer’s contents can be
altered to hold the value of a matching tuple name at
runtime.

Since different processor types and processing environ-
ments require different coding (MPI, OpenMP, CUDA, etc),
each worker should contain multiple implementations for the
same kernel in order to adapt itself to the available resources
at runtime.

Figure 4 illustrates the programmer’s view of tuple space
parallel processing. Each application will be decomposed
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Figure 4. Logical View of SPP Programming.

into multiple masters with each responsible for a computing
intensive kernel in the application. Each master program
is matched with a single worker program. Each worker
program will run automatically on multiple available het-
€rogeneous processors.

The master program uses the “Put” command to send
unprocessed work assignments to the tuple space. It uses
the “Get” command extracts the results.

The worker program repeats the “Get”, “Compute” and
“Put” sequence for as long as there are assignment tuples.
Since the worker codes are programmed to automatically
adapt to different processing environments, it will run on all
nodes authorized by the application owner. The application
terminates when there are no more assignment tuples.

The tuple operations must be implemented with the exact
semantics as specified. Implementing tuple space using
compiler generated codes, such as the approach taken by
the Linda project [6], makes it impossible to use statistical
multiplexing.

C. Sustainability Analysis

In this section, we assess the expected time savings using
“worker fault tolerance”, as promised by the SPP statistical
multiplexing framework.

To do this, we build two models (based on [17]) for a
typical HPC application with check-points. The first one
is for push-based parallel programming systems where any

component failure would cause the entire application to halt.
The second is for SPP where only master failure or 100%
worker failure would halt the application. We then compare
the expected processing times using the respective optimal
checkpoint intervals. It is worth mentioning that unlike [18]
where the optimal check-point interval model was based
on a system exhibiting Poisson single component failures,
the following models assume multiple Poisson component
failures.

According to [17], we define the expected computing time
with failure, as follows:

o to: Interval of application-wide check-point.

o «: Average number of failures within a unit of time

which follows Poisson distribution.

o Kj: Time needed to create a check-point.

e K;: Time needed to read and recover a check-point.

o T": Time needed to run the application without check-
points.

Further, we define:

e «7: Average number of failures of critical (non-worker)
element failure in a time unit which follows Poisson
distribution.

o «ag:Average number of failures of non-critical (worker)
element failure in a time unit which follows Poisson
distribution.

Thus, o = ay + «as.

Assuming failure occurs only once per checkpoint interval
and all failures are independent, the expected running time E
per check-point interval with any processing element failure
is

t
E = (1 —atg)(Ko + to) + ato(Ko + to + K1 + 50)

The expected running time per check-point interval with
worker failure tolerance will be:

'
E = (1—ato)(KO-HO)+a1t0(Ko+t0+K1+50)+a2t0(K0+t0+X)

where X = recovery time for worker time losses. We can
then compute the differences £’ — F, as follows:

t
E—E =(a—o)to(Ko + to + K1 + 50)
- O(th(KO + to + X)
t
Zagto(Ko +to + K1 + 50 — Ko —to —X)

t
:Oézt()(Kl + 50 — X)

Since the number of workers is typically very large, the sav-
ings are substantial. The total expected application running
time Ep without worker fault tolerance is:
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For example, if we set the checkpoint interval 5 = 60
minutes, the checkpoint creation and recovery time Ky =
K; = 10 minutes, and the average worker failure delay
X = 30 sec = 0.5 minute, the expected time savings per
checkpoint under any single worker failure is about 39.5
minutes (or greater than 50% savings).

t
E — E' = asto(Ky + 50 - X)

= (10 + 30 — 0.5)
= 39.5,

because asty = 1 (single worker failure).

On the other hand, if the MTBF is 3 hours in a system
of 1024 processors, this gives aty = 180a = 1 or a =
1/180. Thus, oy = 1/(180 « P) = 1/184,320. The optimal
checkpoint interval for a system with a single master and
1024 workers would be:

2K,
th=/(—=2) = V2 x 10 x 184320 = 1,920.

o — (X9
This means that for this HPC application using 1024 nodes,
it is not necessary to checkpoint the master unless the
application running time 7' is greater than 30 hours [28].

In other words, for an application that needs 30 hours
computing time, the total savings would be about 5
Megawatt hours (1024 processors with 187 watts per pro-
Cessor).

Assuming the SPP (Synergy) slow down factor = 3,
Figure 5 shows that the expected time savings (71') versus
the application MTBFs as the CPR overhead (Checkpoint
Time/Running Time) varies from 5%, 15%, 25% to 35%

for a processor of 1024 nodes. Figure 5 shows that even
with three-times slower performance, the SPP frame work
still delivers sustained performances. Higher CPR overheads
accelerate the benefits.

In practice, these figures suggest the break even points
between using single tier mono-scale simulation to two-tier,
possibly multi-scale simulation. Since GPUs are exclusively
used for workers, SPP offers system level multiple GPU
fault tolerance without involving check-pointing GPU/CPU
shared memories.

VI. COMPUTATIONAL EXPERIMENTS
A. Experiment Setup

Application. We use matrix multiplication to simulate
the compute intensive core of a large scale time marching
simulation application. Given two N x N matrices A and
B, the experimental system computes k matrix products as
follows: (0 < i < k):

C:AkXB,
AZ':Ai_1XB

C is the final solution. We then created one MPI and
one Synergy implementation for the same application. Both
implementations include a master and a worker.

Due to MPI programming limitations, processing granu-
larity is always % (P=number of processors) and cannot
be adjusted after compilation. Synergy does not have this
limitation.

Objectives. We would like to compare the actual running
times of MPI and Synergy implementations with and without
failures. We record the following information:

1) Running times without check-points.

2) Checkpoint overhead.

3) Performances with check-points without failure.

4) Performances with check-points and recovery with
failure injections.

Processing Environment. We used the Lincoln cluster
by NCSA, hosted at Teragrid (www.teragrid.org), for the
reported experiments. The Lincoln cluster consists of 192
compute nodes (Dell PowerEdge 1950 dual-socket nodes
with quad-core Intel Harpertown 2.33GHz processors and
16GB of memory) and 96 NVIDIA Tesla S1070 accelerator
units. Our application allows 20 Tesla units. Each unit has 8§
CPUs with 2.33 GHZ each, 16GB memory total, and 4 Tesla
S1070 cards. Each unit provides 345.6 gigaflops of double-
precision performance. The file system is Lustre with 400
TB disk storage shared with another cluster (Abe).

Development Software. All experiments run in Red Hat
Enterprise Linux 4. The GPU codes use CUBLAS (CUDA
2.2). (http://www.ncsa.illinois.edu/UserInfo/Training/
Workshops/CUDA/) and Intel C++ compiler 10.0 for Linux
(http://www.ncsa.illinois.edu/UserInfo/Resources/
Software/Intel/Compilers/10.0/C_Release_Notes.htm ).
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Figure 5.

The parallel processing environments include:

o OpenMPI (http://www.open-mpi.org/)

o Synergy v3.0 (http://spartan.cis.temple.edu/synergy)

Failure Injection Method. The minimal number of pro-
cessors we would like to validate our calculations with is
1024. We distribute the failures to the optimal number of
GPU units for each environment.

We use a Poisson random number generator, as in [29],
to perform the injection of failures. The failure injection
algorithm accepts variable MTBFs.

B. Computation Experiments and Results

In practice, the check-point creation time Kj is different
for MPI and for Synergy. For MPI, the check-point must
include the global state of all involved masters. For Synergy,
the master check-point only needs to include local states.
Multiple masters will check-point in sync and in parallel
using a distributed synchronized termination algorithm [30].

The recovery time K; would also be different. For MPI,
the recovery time is a simple reading of a globally saved
state. For Synergy, the recovery time includes launching
multiple masters reading the saved states in parallel. For
simplicity, we consider the differences negligible.

In the reported experiments, we used only a single master.
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Sustainability analysis: Expected Elapsed Time vs. MTBF (P=1024, Synergy Overhead=3)

The matrix multiplication kernel is programmed using
CUDA linear library CUBLAS. It is included in the CUDA
2.2 toolkit. The CUDA kernel is “wrapped” by the Synergy
calls as depicted in Figure 4.

GPU programming is very sensitive to the change in the
granularity due to loading overheads. Fine tuning granularity
produced counter-intuitive results, shown in Figure 5 (P =
5), where MPI granularity is fixed %.

Figure 6 also shows that the MPI implementation pro-
duces the best results at 19 GPU workers where the gran-
ularity is at 600. The same figure shows that the Synergy
application does best with 5 GPU workers and a granularity
of 1000.

Both the MPI and the Synergy workers can be pro-
grammed to adapt to either CPU or GPU processors at
runtime based on the availability of a free device. In this
experiment we use workers that are solely geared toward
finding a GPU device, locking it and using it to do the matrix
computation.

As mentioned earlier, system level CPR for multiple
GPUs is an unsolved challenge for MPI codes. We had to
use application level checkpointing. The same CPR code
is used for Synergy master, where worker fault tolerance
is provided by automatic “shadow tuple” recovery (worker
fault tolerance [24]).
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Figure 6. Performance without checkpoint and failure (N=10,000, Rounds
= 10).

The reported computation results were recorded with the
following parameters:

« N =10,000.

e P =5 or P =19 (adjusted for optimality).

o K =400 (rounds).

o K is measured 10 seconds.

o to and t{(optimal CPR interval) are calculated automat-

ically for each scenario.

The failure injection algorithm is tunable for different
MTBF values. We then distributed the projected failures
(based on P = 1024) across the processing nodes statis-
tically.

Figure 6 shows the performance differences between
OpenMPI and Synergy without checkpoints. It shows that
for small number of GPU units (5), Synergy out performs
MPI due to granularity optimization. MPI beats Synergy
performance at larger P values, since there was only a
single interconnection network in the test environment. For
the same amount of work, MPI program needed more GPU
workers.

As mentioned earlier, our application level check-point
simply writes the matrices to the stable storage syn-
chronously (to avoid restart errors). Otherwise, we would
lose the latest checkpoint due to the disk caching. All
checkpoints are executed at the optimal intervals according
to the discussions in Section 5.3.

Failure were injected by a “killer” program. The Kkiller
program runs at the end of each MTBF cycle (Figure 6). It
then kills a random running process.

For the MPI run, each random kill is “all or nothing”. This
means that if the “killer” needs to terminate any process, the
master must reload the last checkpoint file and lose all the
rounds computed since. Since the reloading is mandatory,
this setup produces statistically equivalent results as for P =
1024.

In the case of the Synergy run, the CPR process is similar
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Figure 7. Running time with failures (N=10,000, Rounds=400,

P=5(Synergy), P=19(OpenMPI).

to MPI except that the failures are statistically distributed as
master or worker failures. A master failure will follow the
same process as MPI, but a worker failure does not stop the
running. Once a worker is killed the work tuple that was
assigned to this worker reappears in the tuple space after a
short delay. A new computing node will pick up the load.
This allows the overall computation to continue with limited
time loss (variable X as discussed in Section 5.3). In this
setup, the master receives more than expected failures when
P =1024.

Figure 7 shows the computational results for OpenMPI
and Synergy with simulated failures.

In Figure 7, we used accelerated MTBFs to demonstrate
the net effects of multiple CPRs within the context of
the experiment setup. These results are consistent with the
sustainability model predictions.

VII. DISCUSSIONS

This paper proposed a two-tier framework for sustainable
HPC applications at scale. We argued that an Internet-like
strategy is necessary in order to mitigate the increasing
risks of massive component failures and to deliver lasting
sustainability for HPC at scale.

We proposed the need for a tuple-switching network based
on the recognition of the dynamic semantic network of
a running HPC application. We showed that push-based
parallel applications have fragile semantic network, it is
not possible to leverage statistic multiplexing to counter
scalability challenges. We propose to measure sustainability
when adding computing and communication components for
simultaneous benefits in

1) increased application performance,

2) increased application’s availability, and

3) reduced computation loses.

We have shown that one possible framework to deliver the
above measures is the SPP architecture using the concept of



statistical multiplexing of application’s semantic network.

Sustainable HPC also brings energy efficiency. The sav-
ings come from drastically reduced global checkpoints.
There are also more potentials for productivity gains. For
example, it may not be necessary to manually write the
“wrappers” to include legacy applications into an extreme
scale application. Automated tools have been experimented
with using Parallel Markup Language (PML)[31]. More
efforts are needed to study how to compose multi-scale
codes using the proposed tuple space parallel programming
environment [32]. This also applies to the GPGPU appli-
cations that dedicated personnel would focus on producing
the optimized GPU kernels while the wrapper would be
automatically generated.

HPC application batch scheduling would be trivialized
since the SPP applications can exploit any available re-
sources and optimization is built-in. Non-stop HPC would
become a reality where components can be taken offline
for repair without shutting down the running applications.
Energy efficiency would further improve since we can
now afford the optimal processing granularity and optimal
checkpoint intervals.

Future studies would also include research on diverse
applications with different communication patterns. Auto-
matic matching of interconnection network topologies with
runtime communication patterns would also be possible.

With commercial cloud computing becomes a reality, op-
timization models are also needed to help users calculate the
optimal strategy to maximize the yield of a given budget for
each computing intense application. Theoretical models are
also needed to study the stability of even larger systems that
integrate physical sensors and wireless components (cyber
physical systems).Since the tuple switching network is very
similar to the packet switching network, with the recent
hardware advances in high performance FPGA circuits [33],
it is possible to develop direct hardware support for HPC and
cyber physical systems needs to further improve the overall
performances for all applications.

VIII. CONCLUSIONS

The fundamental result of the reported research is the
use of statistical multiplexing to solve the seemingly “im-
possible” computational problems. We have shown that
the powers of statistic multiplexing can indeed tame the
nagging HPC sustainability challenges that have troubled
us for a long time. Our limited computational experiments
showed the practical feasibility that confirms with the greater
implications described in the theoretical models. We showed
that extreme scale HPC can be practical via the proposed
two-tier framework.

Although the proposed two-tier framework can potentially
up scale to extreme large sizes, the actual deliverable per-
formance for any given application is still confined by the
maximal available and exploitable resources at runtime. The

proposed framework merely removes the structural impedi-
ments. Semantic multiplexing differs from the “messaging-
switching network™ concept [34] in the recognition of dif-
ferent units of transmissions. Like the packet switching
protocol that has delivered stochastic and reliable determin-
istic data service for many decades, we expect the same
benefits for higher level semantic networks. Optimization of
semantic network multiplexing is a new research problem
since most higher level semantic networks are implemented
using the TCP/IP protocol. Optimization schemes are needed
to eliminate unnecessary redundancies.

The reported result has far-reaching consequences. Statis-
tic multiplexing of semantic network can also solve sus-
tainability problems for other applications, such as online
transaction processing, storage networks and service ori-
ented architectures [28]. It can theoretically eliminate all
communication-induced uncertainties — a desirable feature
for all mission critical applications. Since most applica-
tions will naturally gravitate towards mission critical status,
the concept of statistical multiplexing of semantic network
is important for all future robust extreme scale comput-
ing/communication systems.
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