
Qiang Zeng,

Jianhai Su, Chenglong Fu, Golam Kayas, Lannan Luo,
Xiaojiang Du, Chiu C. Tan, and Jie Wu

 DSN 2019

A Multiversion Programming
Inspired Approach to Detecting Audio

Adversarial Examples

2

3

Audio	AE	generation	

“I	wish	you	wouldn’t”	 “Open	the	front	door”	

• What is unique about Audio Adversarial Examples (AEs)?

• How to detect existing Audio AEs?

• How to detect future Audio AEs?

4

ASRs Are Ubiquitous
• Automatic Speech Recognition: convert speech to text
• Voice provides a convenient interface for HCI

Ø  Microsoft, Apple, Google, Amazon
Ø  Smart phones, homes, cars, etc.

• Playing a popular YouTube song may open your front door

5

6
that an exploit that compromises one program is ineffective
on others. We thus propose to run multiple ASR systems in
parallel, and an input is determined as an AE if the ASR
systems generate very dissimilar transcription results.

Moreover, while it is unknown how to systematically gen-
erate transferable audio AEs at this moment, we predict that
such techniques may be proposed in future. We thus aim to
handle transferable audio AEs as well, which is a notable
challenge to our system for two reasons. First, since there
are no transferable audio AEs, how can our machine learning
based AE detector be trained? Second, since such hypothetical
transferable AEs can fool multiple ASRs, how can this idea
still work?

Our first insight is that our detector essentially is not trained
using AEs, but similarity scores (which are calculated based
on the similarity of transcription results of different ASRs).
Thus, if we assign a high similarity score between two ASRs,
it simulates the effect that an AE can fool both. This way, we
can conveniently generate a dataset of hypothetical AEs in the
form of vectors of similarity scores. Our another insight is that,
due to the complexity and diversity of ASRs, it is difficult, if
not impossible, to generate audio AEs to fool all ASRs in
foreseeable future. In light of this, we generate a dataset of
hypothetical AEs that are rather transferable but cannot fool all
ASRs. We make use of this dataset to proactively train an audio
AE detection system that can keep resilient to transferable
AEs, as long as there is still one ASR that cannot be fooled by
the AEs. The code, datasets and models are publicly available.1

We made the following contributions.

• We empirically investigate the transferability of audio
AEs with multiple experiments and analyze the reasons
behind the poor transferability.

• To our knowledge, we build the largest audio AE dataset,
which can be reused by interested researchers.

• We propose a novel audio AE detection approach, called
MVP-EARS, inspired by multiversion programming,
which reaches accuracy 99.88%. The detection method
dramatically reduces the flexibility of the adversary, in
that audio AEs cannot succeed unless the host text is
highly similar to the malicious command.

• We propose the idea of proactively training a transferable-
AE detection system, such that our system is one giant
step ahead of attackers who are working on generating
transferable AEs.

The rest of this paper is organized as follows. We provide
some background knowledge about the ASR system’s general
architecture and audio AE generation in Section II. Then, we
discuss the transferability of audio AEs in Section III. We
describe the main idea and system architecture in Section IV
and present the detailed evaluation in Section V. SectionVI
gives a survey about related works. Finally, we present some
discussion in Section VII and conclude in Section VIII.

1https://github.com/quz105/MVP-audio-AE-detector

 S-P-IY-CH

Waveform

Phonemes

Words

Sentences

Language model

Acoustic model

Dictionary

Slide window segmentation

Frames

Feature extraction

Spectrogram

Acoustic feature recognition

 SPEECH

 SPEECH ON

...

Phoneme assembling

Language generation

Fig. 2: The process of converting an audio into a text sentence.

II. BACKGROUND

A. Automatic Speech Recognition System

An Automatic speech recognition (ASR) system is used to
automatically interpret human’s speech audio into texts [12].
ASR has been an active research topic since the first digit
recognizer Audrey was published by Bell Laboratories in
1952. As illustrated in Figure 2, the process of converting
an audio into a text sentence typically involves the following
four stages: feature extraction, acoustic feature recognition,
phoneme assembling, and language generation.

The input is an audio represented in the form of a waveform.
(1) Feature Extraction. The input audio is first segmented into
short frames, each of which is converted into feature vectors,
such as MFCC feature vectors, LPC feature vectors, and
PLP feature vectors. Because MFCC approximates the human
auditory system’s response more closely than others, MFCC
feature vector is considered as the most suitable frequency
transformation format for speech data, and thus adopted by
most recent ASR systems [13]. (2) Acoustic feature recog-
nition. The extracted feature vectors are then recognized by
the acoustic model as phonemes; the phoneme is the minimal
unit of sounds of languages. (3) Phoneme assembling. Next,
the combined phonemes are used to estimate the potential
phoneme letter sequence, where the dictionary model is used
to correct the word spelling of the phoneme letter sequence.
(4) Language generation. At the last step, the generated words
are further adjusted to the contexts and merged to the final text
sentence by the language model.

The core part of an ASR system is the acoustic feature
recognition stage, which outputs phonemes. A phoneme is
affected by the sound in the corresponding frame and also the

2

ASRs are complex and diverse

Transferability of Audio AEs
• Audio AE generation methods

Ø  White-box: internals of the ASR are needed [Carlini & Wagner, 2018]

Ø  Black-box: only the outputs of the ASR are needed [Alzantot et al.,
2018; Taori et al., 2018]

•  Transferability of audio AEs is still an open question [Carlini &

Wagner, 2018]

•  NNs in ASRs have a large degree of non-linearity
•  ASRs are diverse

7

• What is unique about Audio Adversarial Examples (AEs)?
Ø  ASRs are complex and diverse
Ø  Transferability of audio AEs is currently poor

• How to detect existing Audio AEs?

• How to detect future Audio AEs?

8

Our Idea
• Background: Multiversion Programming (MVP)

•  Multiple programs are independently developed following the same
specification

•  Such that bugs are usually not shared => an exploit that
compromises one program is ineffective for other programs

•  Run these programs in parallel, and use voting

• Main idea: MVP-inspired audio AE detection
•  All ASRs follow the same specification: convert speech to text
•  Run multiple ASR systems in parallel
•  If the ASRs generate similar results => the input is benign
•  If the ASRs generate dissimilar results => the input is an AE

9

System Design

•  Target ASR: the ASR targeted by attackers; denoted as T
• Similarity calculation

•  Given n auxiliary ASRs, n similarity scores are calculated
•  Similarity score: sim(T(input), ASRi(input))
•  Phonetic encoding is used, such that sim (“pear”, “pair”) = 1

• Binary classifier: a simple SVM

10

and DeepSpeech are open source ASR systems, and Kaldi is
the target ASR system of CommanderSong), a two-iteration
recursive AE generation method is described in Commander-
Song: an AE generated by CommanderSong, embedding a
malicious command c and able to fool Kaldi, is used as a
host sample in the second iteration of AE generation using
the method [5], which targets DeepSpeech v0.1.0 and embeds
the same command c. We followed this two-iteration recursive
AE generation method to generate AEs, but our experiment
results [33] showed that the generated AEs could only fool
DeepSpeech but not Kaldi. That is, AEs generated using this
method are not transferable.

Furthermore, we adapted the two-iteration AE generation
method by concatenating the two aforementioned state-of-the-
art attack methods [5] and [6] targeting DeepSpeech v0.1.0 and
v0.1.1, respectively, expecting to generate AEs that can fool
both DeepSpeech v0.1.0 and v0.1.1. But none of the generated
AEs showed transferability [33].

Moreover, by changing the value of
“--frame-subsampling-factor” from 1 to 3, which
is a parameter configuration of the Kaldi model, we derived
a variant of Kaldi. The AEs generated by CommanderSong
did not show transferability on the variant, even given the
fact that the variant was only slightly modified from the
model targeted by CommanderSong. Here, we clarify that
CommanderSong did not claim their AEs could transfer
across the Kaldi variants.

Based on our detailed literature review and empirical study,
we find that so far there are no systematic methods that can
generate transferable audio AEs effective across diverse ASR
systems. This is consistent with the statement by Carlini et
al. [5] that transferability of audio AEs is an open question.

IV. MVP-INSPIRED AUDIO AE DETECTION

A. Multi-Version Programming
Multi-version programming (MVP) was first introduced in

1977 to enhance the reliability of software and computer
systems [34]. The main idea of MVP is to independently
develop multiple programs based on the same specification.
At runtime, multiple programs are executed concurrently and
perform the same task. At each checkpoint, each program
generates the result, which is to check the consistency of the
execution. After that, all programs reach consensus on the
execution states, and then proceed to the next stage.

The most significant benefit of MVP is relaxing the rigorous
requirement of the reliability of software by providing fault
tolerance from the system level. Since the multiple software
programs are developed independently, the probability that
they share the same flaw is very small. Especially, some
implementation specific flaws usually only occur in one pro-
gram. The software flaws of any program not only affect
the execution flow but also cause inconsistency among com-
parison results. Upon detecting inconsistency, some decision
algorithms are applied to determine the correct execution flow
and prevent the crashing of the execution. Such a concept
has already been used as an effective defense method against

Auxiliary
ASR1

Similarity
Calculation

Binary
Classifier

Auxiliary
ASRn

Target ASR

Detection
result…

Fig. 3: Architecture of the proposed detection system.

software flaws [35], and are widely used in development of
highly reliable software, such as flight control software on
modern airliners. Beside the fault tolerance, it has also been
proved to be effective to detect attacks that exploit zero-day
software vulnerabilities [36].

B. MVP-Inspired Idea
Given a system with MVP, an exploit that compromises one

program probably fails on other programs. This inspires us to
propose a system design that runs multiple ASRs in parallel.
The intuition behind this design is that different ASRs can
be regarded as ”independently developed programs” in MVP.
Since they follow the same specification—that is, to covert
audios into texts. Given a benign sample, they should output
very similar recognition results. On the other hand, an audio
AE can be regarded as an ”exploit”, and cannot fool all ASR
systems as illustrated in Section III-B. Thus, by comparing
the results of the multiple ASRs, we are able to determine
whether an audio is an AE or not.

This idea is comparable with the ensemble approach, where
multiple detection methods are combined to form a stronger
one [37]–[39]. But they do not adopt a concise architecture like
ours (e.g., [39] requires different input processing methods,
while [38] needs a generalist and multiple specialists), which
simply runs multiple ASRs in parallel for detection. Our work
is in spirit similar to an independent work [31]. However,
they differ in the following aspects: (1) That work [31]
aims to detect image AEs, while our work detects audio
AEs. More critically, their approach uses the softmax layer
outputs as features for AE detection and attackers can thus
adaptively generate the AE that leads to similar softmax
outputs between models, while we use the final transcription
outputs for AE detection and adaptive attacks cannot succeed
unless transcriptions are similar, which is difficult as discussed
in Section III-B. (2) That work only considers the bi-model
design, while we consider a more general N-model design. (3)
We do not stop at detecting existing audio AEs, but propose
the idea for proactively training systems to detect transferable
audio AEs, which may become possible in future.

C. Architecture
Figure 3 shows the system architecture. It consists of a

target ASR, multiple auxiliary ASRs, a similarity calculation
component, and a binary classifier. The target ASR is the
model targeted by the adversary (e.g., the speech recognition

4

Evaluation Settings
•  Target ASR

•  DeepSpeech v0.1.0 (DS0)

• Auxiliary ASRs
•  Google Cloud Speech (GCS)
•  Amazon Transcribe (AT)
•  DeepSpeech v0.1.1 (DS1)

• Various combinations exist
•  E.g., if GCS and AT are used as the auxiliary ASRs, it is denoted as

DS0 + {GCS, AT}

• Dataset
•  2400 benign audio samples randomly selected from LibriSpeech
•  2400 AEs = 1800 white-box AEs + 600 black-box Aes

11

12

For example, Google Cloud
Speech used as the single
auxiliary ASR, i.e., DS0 + {GCS}

Detection Accuracy (5-fold cross validation)

13

Classifier Metrics System
DS0+{DS1, GCS} DS0+{DS1, AT} DS0+{GCS, AT} DS0+{DS1, GCS, AT}

SVM

Accuracy 99.75% 99.86% 99.82% 99.88%
FPR 0.29% 0.08% 0.08% 0.04%
FNR 0.21% 0.21% 0.29% 0.21%

Dose false positives increase when there are more auxiliary ASRs?

No, as more “evidences” are present by extra ASRs

When a single auxiliary ASR is used,
the accuracy is 99.56 (using DS1), 98.92% (GCS), 99.71% (AT)

• What is unique about Audio Adversarial Examples (AEs)?
Ø  ASRs are complex and diverse
Ø  Transferability of audio AEs is currently poor

• How to detect existing Audio AEs?
Ø  A Multiversion Programming (MVP) inspired approach
Ø  Accuracy 99.88%

• How to detect future Audio AEs?

14

15

In future, attackers may be able to generate
transferable audio AEs.

Will this totally defeat this detection approach?

Or, can our approach do better,

say, proactively fight transferable AEs?

•  Insight 1: the binary classifier actually is not trained using AEs, but using
their corresponding similarity scores

•  Insight 2: the concept of hypothetical transferable AEs
•  A hypothetical AE = {s1, s2, …, sn}
•  If an AE can fool both the target ASR and an auxiliary ASRi, we assign a high

similarity score for si; otherwise, a low one

•  How high is “high”?
•  A transferable AE that can fool multiple ASRs will make the ASRs agree on the

injected malicious command, just like they agree on a benign sample
•  So we use the scores of 2400 benign samples to construct a pool of high scores

16

and DeepSpeech are open source ASR systems, and Kaldi is
the target ASR system of CommanderSong), a two-iteration
recursive AE generation method is described in Commander-
Song: an AE generated by CommanderSong, embedding a
malicious command c and able to fool Kaldi, is used as a
host sample in the second iteration of AE generation using
the method [5], which targets DeepSpeech v0.1.0 and embeds
the same command c. We followed this two-iteration recursive
AE generation method to generate AEs, but our experiment
results [33] showed that the generated AEs could only fool
DeepSpeech but not Kaldi. That is, AEs generated using this
method are not transferable.

Furthermore, we adapted the two-iteration AE generation
method by concatenating the two aforementioned state-of-the-
art attack methods [5] and [6] targeting DeepSpeech v0.1.0 and
v0.1.1, respectively, expecting to generate AEs that can fool
both DeepSpeech v0.1.0 and v0.1.1. But none of the generated
AEs showed transferability [33].

Moreover, by changing the value of
“--frame-subsampling-factor” from 1 to 3, which
is a parameter configuration of the Kaldi model, we derived
a variant of Kaldi. The AEs generated by CommanderSong
did not show transferability on the variant, even given the
fact that the variant was only slightly modified from the
model targeted by CommanderSong. Here, we clarify that
CommanderSong did not claim their AEs could transfer
across the Kaldi variants.

Based on our detailed literature review and empirical study,
we find that so far there are no systematic methods that can
generate transferable audio AEs effective across diverse ASR
systems. This is consistent with the statement by Carlini et
al. [5] that transferability of audio AEs is an open question.

IV. MVP-INSPIRED AUDIO AE DETECTION

A. Multi-Version Programming
Multi-version programming (MVP) was first introduced in

1977 to enhance the reliability of software and computer
systems [34]. The main idea of MVP is to independently
develop multiple programs based on the same specification.
At runtime, multiple programs are executed concurrently and
perform the same task. At each checkpoint, each program
generates the result, which is to check the consistency of the
execution. After that, all programs reach consensus on the
execution states, and then proceed to the next stage.

The most significant benefit of MVP is relaxing the rigorous
requirement of the reliability of software by providing fault
tolerance from the system level. Since the multiple software
programs are developed independently, the probability that
they share the same flaw is very small. Especially, some
implementation specific flaws usually only occur in one pro-
gram. The software flaws of any program not only affect
the execution flow but also cause inconsistency among com-
parison results. Upon detecting inconsistency, some decision
algorithms are applied to determine the correct execution flow
and prevent the crashing of the execution. Such a concept
has already been used as an effective defense method against

Auxiliary
ASR1

Similarity
Calculation

Binary
Classifier

Auxiliary
ASRn

Target ASR

Detection
result…

Fig. 3: Architecture of the proposed detection system.

software flaws [35], and are widely used in development of
highly reliable software, such as flight control software on
modern airliners. Beside the fault tolerance, it has also been
proved to be effective to detect attacks that exploit zero-day
software vulnerabilities [36].

B. MVP-Inspired Idea
Given a system with MVP, an exploit that compromises one

program probably fails on other programs. This inspires us to
propose a system design that runs multiple ASRs in parallel.
The intuition behind this design is that different ASRs can
be regarded as ”independently developed programs” in MVP.
Since they follow the same specification—that is, to covert
audios into texts. Given a benign sample, they should output
very similar recognition results. On the other hand, an audio
AE can be regarded as an ”exploit”, and cannot fool all ASR
systems as illustrated in Section III-B. Thus, by comparing
the results of the multiple ASRs, we are able to determine
whether an audio is an AE or not.

This idea is comparable with the ensemble approach, where
multiple detection methods are combined to form a stronger
one [37]–[39]. But they do not adopt a concise architecture like
ours (e.g., [39] requires different input processing methods,
while [38] needs a generalist and multiple specialists), which
simply runs multiple ASRs in parallel for detection. Our work
is in spirit similar to an independent work [31]. However,
they differ in the following aspects: (1) That work [31]
aims to detect image AEs, while our work detects audio
AEs. More critically, their approach uses the softmax layer
outputs as features for AE detection and attackers can thus
adaptively generate the AE that leads to similar softmax
outputs between models, while we use the final transcription
outputs for AE detection and adaptive attacks cannot succeed
unless transcriptions are similar, which is difficult as discussed
in Section III-B. (2) That work only considers the bi-model
design, while we consider a more general N-model design. (3)
We do not stop at detecting existing audio AEs, but propose
the idea for proactively training systems to detect transferable
audio AEs, which may become possible in future.

C. Architecture
Figure 3 shows the system architecture. It consists of a

target ASR, multiple auxiliary ASRs, a similarity calculation
component, and a binary classifier. The target ASR is the
model targeted by the adversary (e.g., the speech recognition

4

• E.g., AE(DS0, DS1) means that the hypothetical MAE
(multi-ASR-effective) AE can fool both DS0 and DS1

• We aim to build a comprehensive system that detects all
the 6 types of transferable AEs
•  Train the system using only type-4, type-5, and type-6 AEs
•  97.22% accuracy for type-4,5,6 AEs
•  100% accuracy for type-1,2,3 (and all the genuine AEs)

17

TABLE V: 5-fold cross validation testing results (reported as mean/STD) of four multi-auxiliary-model systems.

Classifier Performance System
DS0+{DS1, GCS} DS0+{DS1, AT} DS0+{GCS, AT} DS0+{DS1, GCS, AT}

SVM
Accuracy 99.75% / 0.05% 99.86% / 0.08% 99.82% / 0.10% 99.88% / 0.10%

FPR 0.29% / 0.21% 0.08% / 0.10% 0.08% / 0.10% 0.04% / 0.08%
FNR 0.21% / 0.23% 0.21% / 0.23% 0.29% / 0.21% 0.21% / 0.23%

KNN
Accuracy 99.77% / 0.04% 99.81% / 0.08% 99.75% / 0.17% 99.86% / 0.08%

FPR 0.25% / 0.16% 0.13% / 0.10% 0.21% / 0.23% 0.08% / 0.10%
FNR 0.21% / 0.23% 0.25% / 0.21% 0.29% / 0.21% 0.21% / 0.23%

Random Forest
Accuracy 99.73% 0.08% 99.81% / 0.12% 99.77% / 0.08% 99.84% / 0.08%

FPR 0.25% / 0.16% 0.13% / 0.17% 0.17% / 0.08% 0.08% / 0.10%
FNR 0.29% / 0.28% 0.25% / 0.21% 0.29% / 0.21% 0.25% / 0.21%

(a) DS0+{DS1} (b) DS0+{GCS} (c) DS0+{AT}

Fig. 5: The ROC curves of the three single-auxiliary-model systems.

TABLE VI: Impact of the number of ASRs on FPR and FNR.

of Aux. ASRs System FPR FNR

1
DS0+{DS1} 0.38% 0.50%
DS0+{GCS} 1.71% 0.46%
DS0+{AT} 0.25% 0.34%

2
DS0+{DS1, GCS} 0.29% 0.21%
DS0+{DS1, AT} 0.08% 0.21%
DS0+{GCS, AT} 0.08% 0.29%

3 DS0+{DS1, GCS, AT} 0.04% 0.21%

TABLE VII: The detection results of unseen-attack AEs for
three single-auxiliary-models.

System Threshold FPR FNs FNR Defense rate
DS0+{DS1} 0.88 4.13% 0 0.00% 100%
DS0+{GCS} 0.82 4.75% 4 0.17% 99.83%
DS0+{AT} 0.85 3.92% 2 0.08% 99.92%

as AE(DS0,DS1,GCS). Two similarity scores are selected
from �Be (representing that this AE can successfully attack
DS0, DS1, and GCS), and one similarity score from �Ak

(representing that this AE cannot attack AT).
Through this, we create six different types of MAE AEs, as

listed in Table IX. Each type contains 2400 MAE AEs.

Accuracy. For each type of MAE AEs, we construct six
datasets: each dataset contains 2400 benign samples and 2400
the corresponding MAE AEs. For each dataset, 80% of its

TABLE VIII: The detection results of unseen-attack AEs for
four multiple-auxiliary-models.

System Defense rate
Black-box AEs White-box AEs

DS0+{DS1, GCS} 99.33% 100%
DS0+{DS1, AT} 99.17% 100%
DS0+{GCS, AT} 99.33% 99.89%

DS0+{DS1, GCS, AT} 99.33% 100%

TABLE IX: Six different types of hypothetical MAE AEs.

Type MAE AE # of MAE AEs
Type-1 AE(DS0,DS1) 2,400
Type-2 AE(DS0,GCS) 2,400
Type-3 AE(DS0,AT) 2,400
Type-4 AE(DS0,DS1,GCS) 2,400
Type-5 AE(DS0,DS1,AT) 2,400
Type-6 AE(DS0,GCS,AT) 2,400

benign samples and MAE AEs are used for training, and the
remaning 20% for testing. We use SVM as the binary classifier,
and PE JaroWinkler to measure the similarity.

Table X shows the testing results. We can see that the
systems trained on different types of MAE AEs have very
high accuracies (higher than 97%), and low FPRs and FNRs.
Robustness to unseen-attack MAE AEs. We further investi-

9

Overhead
• DS0 + {DS1}
•  8.8 seconds for DS0 to recognize a sample on average
• Delay incurred by our system: 0.065s, that is, 0.74%

18

Contribution and Limitation
•  Empirically investigated the transferability of audio AEs

•  A simple but highly effective audio AE detection technique inspired by
Multiversion Programming
•  Accuracy 99.88%

•  Proactively trained a model that defeats transferable audio AEs even
before they exist
•  A giant step ahead of attackers

•  Limitation: the detection technique fails if the host text and the
malicious text are very similar
•  However, existing AE generation methods claim that any host audio may be

used to embed a malicious command
•  Our detection dramatically reduces this attack flexibility

19

All the datasets, code and models have been open-sourced

https://github.com/quz105/MVP-audio-AE-detector

Contact: Qiang Zeng (qzeng@cse.sc.edu)

Questions?

20

