A Multiversion Programming
Inspired Approach to Detecting Audio
Adversarial Examples

Qiang Zeng,
Jianhai Su, Chenglong Fu, Golam Kayas, Lannan Luo,
Xiaojiang Du, Chiu C. Tan, and Jie Wu
DSN 2019

“panda” “gibbon”
57.7% confidence 99.3 % confidence

Audio AE generation
| D

“I wish you wouldn’t” “Open the front door”

- What is unique about Audio Adversarial Examples (AEs)?

- How to detect existing Audio AEs?

- How to detect future Audio AEs?

5
ASRs Are Ubiquitous

- Automatic Speech Recognition: convert speech to text

- Voice provides a convenient interface for HCI
» Microsoft, Apple, Google, Amazon
> Smart phones, homes, cars, etc.

- Playing a popular YouTube song may open your front door

Cortana Google Now Siri Alexa
’ I l
Google

Devices () O~ Che=-~CC [Ohe
Platorms [il oS @ 0S i os &

Waveform

Frames

Spectrogram

Phonemes

Words

Sentences

WW‘W‘P

Feature extraction

o

<_l ey «— % «—

S-P-1Y-CH

l Phoneme assembling

SPEECH

l Language generation

SPEECH ON

Slide window segmentation

ASRs are complex and diverse

Acoustic feature recognition <« -r . 9 Acoustic model

“- Dictionary

<+ — m 9 Language model

Transferability of Audio AEs

- Audio AE generation methods
» White-box: internals of the ASR are needed [Carlini & Wagner, 2018]

» Black-box: only the outputs of the ASR are needed [Alzantot et al.,
2018; Taori et al., 2018]

- Transferability of audio AEs is still an open question [cariini &
Wagner, 2018]

- NNs in ASRs have a large degree of non-linearity
- ASRs are diverse

- What is unique about Audio Adversarial Examples (AEs)?
> ASRs are complex and diverse
> Transferability of audio AEs is currently poor

- How to detect existing Audio AEs?

- How to detect future Audio AEs?

Our Idea

Background: Multiversion Programming (MVP)

Multiple programs are independently developed following the same
specification

Such that bugs are usually not shared => an exploit that
compromises one program is ineffective for other programs
Run these programs in parallel, and use voting

Main idea: MVP-inspired audio AE detection
All ASRs follow the same specification: convert speech to text
Run multiple ASR systems in parallel

If the ASRs generate similar results => the input is benign
If the ASRs generate dissimilar results => the input is an AE

System Design

—» Target ASR —
] Auxiliary Similarity Binary Detection
'III'I|||I|I' | ASR "| Calculation | | Classifier | = result
Auxiliary | |
1 ASR,

Target ASR: the ASR targeted by attackers; denoted as T

Similarity calculation
Given n auxiliary ASRs, n similarity scores are calculated
Similarity score: sim(T(input), ASR;(input))
Phonetic encoding is used, such that sim (“pear”, “pair’) = 1

Binary classifier: a simple SVM

T
Evaluation Settings

- Target ASR
- DeepSpeech v0.1.0 (DSO0)
- Auxiliary ASRs

- Google Cloud Speech (GCS)
- Amazon Transcribe (AT)

- DeepSpeech v0.1.1 (DS7)
- Various combinations exist
- E.g., if GCS and AT are used as the auxiliary ASRs, it is denoted as
DSO0 + {GCS, AT}
- Dataset

- 2400 benign audio samples randomly selected from LibriSpeech
- 2400 AEs = 1800 white-box AEs + 600 black-box Aes

700
For example, Google Cloud w 600 m Benign Samples
SpeeCh used as the Single f;;' =0 W Adversarial Examples
auxiliary ASR, i.e., DSO + {GCS} & 400 P
k]
& 300
K]
g 200
% 100
o IIIHI ARRARARRAARRARERNARRRNRRRRARRAN Iﬂ7l““1lllj1 ulll“”“lﬂul hlllLJMlijLu IJJI‘“Y”“” n
M ERERERE PRS-
o o o o o o o o o o
Similaritv Score
1.0 -0-0-0-0 00— ——————————— °
0.8 - !
[J
0.6 £
e | !
[a
" 04 :
T8
0.2 - DeepSpeech0.1.0+
--e-- GoogleCloudSpeech
AUC=0.9961 |
o019 @ L Sessesesessd
0.0 0.2 0.4 0.6 0.8 1.0

FPR

Detection Accuracy (5-fold cross validation)

Classmer System

DSO+{DS1, GCS} DSO+{DS1,AT} DSO0+GCS,AT} DS0+DS1, GCS, AT}
Accuracy 99.75% 99.86% 99.82% 99.88%
SVM FPR 0.29% 0.08% 0.08% 0.04%

FNR 0.21% 0.21% 0.29% 0.21%

- What is unique about Audio Adversarial Examples (AEs)?
> ASRs are complex and diverse
> Transferability of audio AEs is currently poor

- How to detect existing Audio AEs?

> A Multiversion Programming (MVP) inspired approach
> Accuracy 99.88%

- How to detect future Audio AEs?

—»| Target ASR
b — !
] Auxiliary Similarity | 1 Binary I Detection
'I||'||||II|' | ASR, " Calculation [1"| Classifier T result
[
Auxiliary
| ASR,

Insight 1: the binary classifier actually is not trained using AEs, but using
their corresponding similarity scores

Insight 2: the concept of hypothetical transferable AEs
A hypothetical AE = {s,, s,, ..., S}

If an AE can fool both the target ASR and an auxiliary ASR;, we assign a high
similarity score for si; otherwise, a low one

How high is “high”?
A transferable AE that can fool multiple ASRs will make the ASRs agree on the
injected malicious command, just like they agree on a benign sample
So we use the scores of 2400 benign samples to construct a pool of high scores

Type MAE AE # of MAE AEs
Type-1 AFE(DS0,DS1) 2,400
Type-2 AFE(DS0,GCS) 2,400
Type-3 AFE(DSO,AT) 2,400
Type-4 | AE(DS0,DS1,GCS) 2,400
Type-5 | AE(DS0,DS1,AT) 2,400
Type-6 | AFE(DS0,GCS,AT) 2,400

E.g., AE(DSO, DS1) means that the hypothetical MAE
(multi-ASR-effective) AE can fool both DS0 and DS1

We aim to build a comprehensive system that detects all

the 6 types of transferable AEs
Train the system using only type-4, type-5, and type-6 AEs
97.22% accuracy for type-4,5,6 AEs
100% accuracy for type-1,2,3 (and all the genuine AESs)

Overhead

- DSO +{DS1}
- 8.8 seconds for DS0 to recognize a sample on average
- Delay incurred by our system: 0.065s, that is, 0.74%

Contribution and Limitation

- Empirically investigated the transferability of audio AEs

- A simple but highly effective audio AE detection technique inspired by
Multiversion Programming
- Accuracy 99.88%

- Proactively trained a model that defeats transferable audio AEs even
before they exist

- A giant step ahead of attackers

- Limitation: the detection technique fails if the host text and the
malicious text are very similar

- However, existing AE generation methods claim that any host audio may be
used to embed a malicious command

- Our detection dramatically reduces this attack flexibility

All the datasets, code and models have been open-sourced

https://github.com/quz105/MVP-audio-AE-detector

Contact: Qiang Zeng (qzeng@cse.sc.edu)

Questions?

