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Audio AE generation
| D

“I wish you wouldn’t” “Open the front door”



- What is unique about Audio Adversarial Examples (AEs)?

- How to detect existing Audio AEs?

- How to detect future Audio AEs?
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ASRs Are Ubiquitous

- Automatic Speech Recognition: convert speech to text

- Voice provides a convenient interface for HCI
» Microsoft, Apple, Google, Amazon
> Smart phones, homes, cars, etc.

- Playing a popular YouTube song may open your front door
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ASRs are complex and diverse
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Transferability of Audio AEs

- Audio AE generation methods
» White-box: internals of the ASR are needed [Carlini & Wagner, 2018]

» Black-box: only the outputs of the ASR are needed [Alzantot et al.,
2018; Taori et al., 2018]

- Transferability of audio AEs is still an open question [cariini &
Wagner, 2018]

- NNs in ASRs have a large degree of non-linearity
- ASRs are diverse



- What is unique about Audio Adversarial Examples (AEs)?
> ASRs are complex and diverse
> Transferability of audio AEs is currently poor

- How to detect existing Audio AEs?

- How to detect future Audio AEs?



Our Idea

Background: Multiversion Programming (MVP)

Multiple programs are independently developed following the same
specification

Such that bugs are usually not shared => an exploit that
compromises one program is ineffective for other programs
Run these programs in parallel, and use voting

Main idea: MVP-inspired audio AE detection
All ASRs follow the same specification: convert speech to text
Run multiple ASR systems in parallel

If the ASRs generate similar results => the input is benign
If the ASRs generate dissimilar results => the input is an AE



System Design
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Target ASR: the ASR targeted by attackers; denoted as T

Similarity calculation
Given n auxiliary ASRs, n similarity scores are calculated
Similarity score: sim(T(input), ASR;(input))
Phonetic encoding is used, such that sim (“pear”, “pair’) = 1

Binary classifier: a simple SVM
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Evaluation Settings

- Target ASR
- DeepSpeech v0.1.0 (DSO0)
- Auxiliary ASRs

- Google Cloud Speech (GCS)
- Amazon Transcribe (AT)

- DeepSpeech v0.1.1 (DS7)
- Various combinations exist
- E.g., if GCS and AT are used as the auxiliary ASRs, it is denoted as
DSO0 + {GCS, AT}
- Dataset

- 2400 benign audio samples randomly selected from LibriSpeech
- 2400 AEs = 1800 white-box AEs + 600 black-box Aes
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Detection Accuracy (5-fold cross validation)

Classmer System

DSO+{DS1, GCS}  DSO+{DS1,AT}  DSO0+GCS,AT}  DS0+DS1, GCS, AT}
Accuracy 99.75% 99.86% 99.82% 99.88%
SVM FPR 0.29% 0.08% 0.08% 0.04%

FNR 0.21% 0.21% 0.29% 0.21%



- What is unique about Audio Adversarial Examples (AEs)?
> ASRs are complex and diverse
> Transferability of audio AEs is currently poor

- How to detect existing Audio AEs?

> A Multiversion Programming (MVP) inspired approach
> Accuracy 99.88%

- How to detect future Audio AEs?
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Insight 1: the binary classifier actually is not trained using AEs, but using
their corresponding similarity scores

Insight 2: the concept of hypothetical transferable AEs
A hypothetical AE = {s,, s,, ..., S}

If an AE can fool both the target ASR and an auxiliary ASR;, we assign a high
similarity score for si; otherwise, a low one

How high is “high”?
A transferable AE that can fool multiple ASRs will make the ASRs agree on the
injected malicious command, just like they agree on a benign sample
So we use the scores of 2400 benign samples to construct a pool of high scores



Type MAE AE # of MAE AEs
Type-1 AFE(DS0,DS1) 2,400
Type-2 AFE(DS0,GCS) 2,400
Type-3 AFE(DSO,AT) 2,400
Type-4 | AE(DS0,DS1,GCS) 2,400
Type-5 | AE(DS0,DS1,AT) 2,400
Type-6 | AFE(DS0,GCS,AT) 2,400

E.g., AE(DSO, DS1) means that the hypothetical MAE
(multi-ASR-effective) AE can fool both DS0 and DS1

We aim to build a comprehensive system that detects all

the 6 types of transferable AEs
Train the system using only type-4, type-5, and type-6 AEs
97.22% accuracy for type-4,5,6 AEs
100% accuracy for type-1,2,3 (and all the genuine AESs)




Overhead

- DSO +{DS1}
- 8.8 seconds for DS0 to recognize a sample on average
- Delay incurred by our system: 0.065s, that is, 0.74%



Contribution and Limitation

- Empirically investigated the transferability of audio AEs

- A simple but highly effective audio AE detection technique inspired by
Multiversion Programming
- Accuracy 99.88%

- Proactively trained a model that defeats transferable audio AEs even
before they exist

- A giant step ahead of attackers

- Limitation: the detection technique fails if the host text and the
malicious text are very similar

- However, existing AE generation methods claim that any host audio may be
used to embed a malicious command

- Our detection dramatically reduces this attack flexibility



All the datasets, code and models have been open-sourced

https://github.com/quz105/MVP-audio-AE-detector

Contact: Qiang Zeng (qzeng@cse.sc.edu)

Questions?



