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Motivation

Traditional FL

 Pre-existing Local Datasets: Clients’ local datasets 
already exist before training, and the data is static;

 No Time-Sensitivity: The model does not need to 
account for the timeliness of the data.

Data-Driven FL in UAV networks

 Active Data Collection: Mobile clients (e.g., UAVs) 
actively collect data from PoIs;

 Time-Sensitive Models: The model needs to be 
trained as fast as possible;

 Budget Limit: Mobile clients spend some extra 

costs while the total budget from is limited.

Update Datasets Train with Fresh Data
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Challenges

⚫ Selected PoIs: explore PoIs & collect high-quality data

→ Quantify the impact of PoI data on the model training of FL?

→

⚫ Dependence: PoI selection and the corresponding UAV speed and path

→

Reveal relationship between the loss of global model and the 

decrease of the time consumed by UAVs?

Design decision-making strategies to obtain the UAV path and speed

within the constraints of energy consumption and the global loss function?
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Related Work

We aim to design a PoI selection mechanism for FL while 

considering data quality and limited budget simultaneously

 FL Data Selection: make selection of sample data within clients

e.g., A. Li, L. Zhang, J. Tan, Y. Qin, J. Wang, and X.-Y. Li, “Sample-level data selection 

for federated learning,” in IEEE INFOCOM, 2021, pp. 1–10.

 UAV Data Collection: UAV-based data collection in communication networks

e.g., Z. Dai, H. Wang, C. H. Liu, R. Han, J. Tang, and G. Wang, “Mobile crowdsensing for 

data freshness: A deep reinforcement learning approach,” in IEEE INFOCOM, 2021, pp. 1–10.

 CMAB: arms are selected as combinations from a set

e.g., G. Gao, J. Wu, M. Xiao, and G. Chen, “Combinatorial multi-armed bandit based unknown 

worker recruitment in heterogeneous crowdsensing,” in IEEE INFOCOM, 2020, pp. 179–188.

Ignore the importance of data collection
Ignore the relationship between data quality 

& energy consumption, time delays
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Contributions

✓ System: Introduce a novel DDFL system with UAVs collecting data from 

PoIs under energy constraints.

✓ Analysis: Derive a convergence upper bound, which relates the global 

model performance and the data from PoIs.

✓ Algorithm: Propose the Adaptive Two-stage CMAB-based FL(FedATC) 

algorithm and prove its approximate optimality.

✓ Experiments: Conduct extensive simulations based on multiple datasets 

to verify the performance of the FedATC.
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System Model

System Model

• BS: updates the global model and coordinates the 
flight paths and velocities of the UAVs

• UAV {1,2,...,U}: collect data and train the local 
model along a fight path and upload local model

• PoI selection: each PoI can be selected by at most 
one UAV at a time.

BS sends the initial model and 

flight route to the UAVs

UAV u: collect dataset from PoIs, 

local train and upload model

BS updates the global model 

asynchronously

BS sends global model and new 

flight route to UAV u

①

②

③

④

Procedure
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Problem Formulation 

➢Original Optimization problem:

Optimization Objective: 

Find the UAV velocity 𝑣𝑢 and data 

collection path 𝑅𝑢
𝑡 that minimizes the 

total time delay 𝑇𝑡𝑜𝑡𝑎𝑙 .

 Constraint 1: gap between global loss and the optimal loss without considering delay is limited.

 Constraint 2: the energy consumption of UAV 𝑢 does not exceed its specified limits.

 Constraint 3: the UAV’s speed remains within operational bounds.

Constraints

Goal
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Conergence Analysis

Assumption 1

For each UAV 𝑢 ∈ 𝑈, the loss function 𝐹𝑢
𝑡(𝑤) is 𝐾𝑢-Lipschitz gradient, i.e., 

||∇𝐹𝑡
𝑢 𝑤1 − ∇𝐹𝑡

𝑢 𝑤2 ||2 ≤ 𝐾𝑢||𝑤1 −𝑤2||2, which implies that the global 

loss function 𝐹(𝑤) is 𝐾-Lipschitz gradient with 𝐾 =
1

|𝑈|
σ 𝑢∈𝑈 𝐾𝑢.

9D. Li, M. Xiao, Y. Xu and  J. Wu Optimizing Data-Driven Federated Learning in UAV Networks

Theorem 1 (Global Loss Reduction). Given Assumption 1, when a UAV collects
data along path 𝑅𝑢

𝑡 for training local models, the reduction of the aggregated
global loss 𝐹 𝑤𝑡 is bounded as follows:

where 𝛼𝑝 =
𝑘

2𝑈2

𝜂

|𝐷𝑝|

2

and 𝛽𝑝 =
1

𝑈

𝜂

𝐷𝑝
.



Step 1: Convert Problem

Theorem 2. Given Assumption 1, we can derive an upper bound for the 
discrepancy between the flight path 𝑅𝑡

𝑢 utilized by UAV 𝑢 in the 𝑡−th major
round and the optimal path 𝑅1

∗, under the constraints of UAV speed and energy
consumption. The bound is formulated as:

F wt − F∗ wt ≤ 𝛴𝑝∈𝑃1∗𝛴𝑖=0
𝑚−1𝑉𝑝 − 𝛴𝑝∈𝑃𝑢𝑡𝛴𝑖=0

𝑚−1𝑉𝑝

where 𝑉𝑝 =
𝜂

𝑈
<

σ𝑥,𝑦∈𝐷𝑝

1

𝐷𝑝
∇𝑓 𝑤𝑡−1, 𝑥, 𝑦 , ∇𝐹 𝑤𝑡 ∗ > +

𝐾𝜂2

2𝑈2 ||σ 𝑥,𝑦 ∈𝐷𝑝

1

|𝐷𝑝|
∇𝑓 𝑤𝑡−1, 𝑥, 𝑦 ||2.

NOTE: controlling 𝛴𝑝∈𝑃1∗𝛴𝑖=0
𝑚−1𝑉𝑝 − 𝛴𝑝∈𝑃𝑢𝑡𝛴𝑖=0

𝑚−1𝑉𝑝 can control the the satisfaction of 

the constraint
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Step 1: Convert Problem

➢Converted Optimization problem:

Constraints

Goal
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 Constraint 1: gap between the sum of the current path's 𝑉𝑝 and the optimal path's 𝑉𝑝 is limited. 

 Constraint 2: the energy consumption of UAV 𝑢 does not exceed its specified limits.

 Constraint 3: the UAV’s speed remains within operational bounds.

Optimization Objective: 

Find the UAV velocity 𝑣𝑢 and data 

collection path 𝑅𝑢
𝑡 that minimizes the 

total time delay 𝑇𝑡𝑜𝑡𝑎𝑙 .



Step 2: Decoupling and Modeling

➢ Decouple UAV Velocity and Path Planning

12

➢ Divide the path planning problem into two 

steps:

➢ PoI Selection

➢ Route Planning

➢ Model PoI Selection as a Combinatorial 

Multi-Armed Bandit (CMAB) Problem

CAMB Our problem

Arm Each available PoI

Reward The reduction of the global 

model loss function
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Step 3: Two-stage CMAB

We introduce 𝑵𝒑
𝒕 and 𝛁𝐟𝐩

𝐭 to record:

•𝑵𝒑
𝒕 : the number of times that PoI 𝑝 has been selected up to 

round 𝑡.

•𝛁𝐟𝐩
𝐭 : the average gradient of PoI 𝑝
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➢ Stage 1:

➢ Quality Function

➢ Cost Function

𝐶1 = E𝑡𝑜𝑡𝑎𝑙

➢ Cost Bound

B1 = 𝛾𝐸𝑢

Basic idea: Select the PoI that can maximally boost the UCB-based quality function per unit cost 
under budget constraint 𝐵.
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Step 3: Two-stage CMAB

We introduce 𝑵𝒑
𝒕 and 𝛁𝐟𝐩

𝐭 to record:

•𝑵𝒑
𝒕 : the number of times that PoI 𝑝 has been selected up to 

round 𝑡.

•𝛁𝐟𝐩
𝐭 : the average gradient of PoI 𝑝
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➢ Stage 2:

➢ Quality Value

➢ Cost Function

➢ Cost Bound

Basic idea: Select the PoI that can maximally boost the UCB-based quality function per unit cost 
under budget constraint 𝐵.
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Algorithm Analysis
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Theorem 3: 

The worst 𝛼 −approximate regret of Alg. 1,
symbolized by 𝑅2(𝐵2), can be expressed as:

𝑅2 𝐵2 = 𝑂(𝑃𝑓ln(𝐵2 + 𝑃𝑓 ln 𝐵1 ).
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Computational Complexity: 

𝑂(𝑃2)



Step 4: The FedATC Algorithm

➢ Based on the selected PoIs, use the 2-Opt TSP heuristic algorithm as an example 

to obtain the path.

➢ An iterative approach is used to handle speed and path separately:

➢ Initialize UAV’s speed as 𝑣1 .

➢ Use the previously mentioned method to obtain the approximate optimal path.

➢ Re-estimate the optimal speed using gradient descent or a decrement method 

until the energy consumption limit is met.

➢ The computational complexity of FedATC is 𝑂(
𝑃2𝑣𝑚𝑎𝑥 𝑁𝐿+𝑁𝑇

𝑣𝑠𝑡𝑒𝑝
).
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Experimental Settings

Dataset and Model

◆ Dataset: MNIST, Fashion-MNIST(FMNIST), 

SVHN, CIFAR-10

◆ Model: LR (convex) and CNN (non-convex)

Parameter settings

◆ The number of UAVs is 4 or 8

◆The energy bound ranges from [105, 5 ∗ 105]

◆ The number of PoIs ranges from [10, 30]

Evaluation Metrics

◆ Accuracy: the number of correct predictions

◆ Time: the cumulative time to achieve the 

required accuracy 

◆ Time Speedup: based on Random algorithm

Compared Algorithms

◆ FedATC : our proposed algorithm    

◆ Random 

◆ ODE: based on data quality

◆ UWR: based on data quality and energy
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Performance of CNN on MNIST, FMNIST, SVHN and CIAFR10

⚫ The cumulative time 

taken by FedATC is 

significantly less than the 

other three algorithms

⚫ This difference is more 

pronounced at higher 

accuracy thresholds

⚫ Deploying more UAVs 

reduces cumulative time, 

but the performance gap 

between algorithms 

narrows due to a fewer 

number of available PoIs
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•This difference is more pronounced at higher accuracy thresholds.
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Performance of LR on MNIST with non-IID data
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⚫ Transitioning to a LR model, FedATC consistently 
outperforms other algorithms, with 8 UAVs 
significantly reducing cumulative time

⚫ In non-IID data scenarios, FedATC shows better 
time efficiency, but performance gains are less 
pronounced due to data distribution effects



Time Speedup Ratio

⚫ The time speed-up ratio increases 
with energy bound, peaking at 30 ∗
104 units, then begins to decline

20

NOTE:The speed-up ratio is defined as Δ =
𝑇𝑟𝑎𝑛𝑑𝑜𝑚

𝑇
.

⚫ The time speed-up ratio rises with the number 
of PoIs, peaking at 20 or 22, after which it 
decreases due to increased convergence time
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Conclusions 

◆ Introduce a novel DDFL system in UAV networks that abstracts a data 

layer alongside conventional server and client layers.

◆ Model the PoI selection problem as a CMAB issue and propose a two-

stage CMAB-based algorithm for approximate optimal selection.

◆ Propose the FedATC algorithm to jointly optimize data collection routes 

and UAV velocity and evaluate the algorithm performance via simulations.

Future work:

◆ Investigate improvements for PoI selection when data distribution is 

non-IID, as current performance is less than ideal.

◆ Explore data-driven problems in decentralized scenarios.
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Q & A
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