A Usable Authentication System Using Wrist-worn Photoplethysmography Sensors on Smartwatches

Jiacheng Shang and Jie Wu Center for Networked Computing Dept. of Computer and Info. Sciences Temple University

Smartwatches & Threats

Smartwatches

- Potentially more fashionable
- More immediate
- Allowing users to stay better engaged with the environment
- Rich features: various sensors, powerful CPU

- Apple Watch
- Samsung Gear
- Fitbit

Smartwatches & Threats

Threats:

- Collecting personal information (name, messages, emails,...)
- The data on smartwatches is not well protected
- Only a few devices provide simple authentication

(hp	Laptops & tablets Desktops Printers Ink & toner	Displays & accessories	$R \cdot I \cdot T$ Rochester Institute of Technology
			Finance & Administration > Risk Management > RIT Information Security > Smartwatches May Look Cool, But They Are Also Vulnerable
	News Advisory: July 22, 2015	Charo - Drint	SMARTWATCHES MAY LOOK COOL, BUT THEY
	Topics: Strategic Focus: Software, Products & Services	Share O Frint	Monu
	HP Study Reveals Smartwatches Vulnerable to Attack		SMARTWATCHES MAY LOOK COOL, BUT THEY ARE ALSO VULNERABLE Submitted by emhiso on Mon, 02/15/2016 - 13:56
	HP Fortify finds 100 percent of tested smartwatches exhibit se	curity flaws,	 RIT Information Security A fast growing market as of late is that of wearable technology.

News ~

Smartwatches in particular have increased in popularity

provides guidance for secure device use

Existing Solutions

Solutions	Limitations	
PIN or pattern	Brute force and shoulder surfing attacks	
Voiceprint	 Replay attack 	
Motion	 Low randomness Cannot work if the user is not performing pre-defined activities A. Johnston "Smartwatch-based biometric gait recognition" BTAS 2015 	
Electrocardiogram (ECG)	 Not available on existing smartwatches 	
P wave Q T wave	S. Chun "ECG based user authentication for wearable devices using short time Fourier transform" TSP 2016	

Basic Ideas

- Leveraging Photoplethysmography (PPG) signals influenced by hand gestures
 - Consisting of a light source (green light) and a photo detector
 - PPG sensor is available on smartwatches
 - used to monitor the blood flow by measuring the intensity of reflected light.

Basic Ideas

- Muscle and tendon movements change the blood flow
- Change of blood flow influences the intensity of reflected light

Basic Ideas

• Feasibility study

- The patterns of the same user are consistent
- The patterns of different users differ a lot

Attack Models

- Random guess attack
 - Without knowing the gesture that normal user picks

• Mimicry attack

Knowing the gesture that normal user picks

System Architecture

Detecting coarse starting point

Detecting coarse ending point

• Gestures introduce stronger fluctuations vs. the heartbeat

(a) PPG signal from starting point

Detecting coarse ending point

- Smoothing the raw PPG signal (remove small spikes)
 - Cutting the PPG signal into non-overlapped segments
 - Computing the short-time energy in each segment
- Finding the last significant pulse/valley

(a) PPG signal from starting point

(b) Short-time energy of PPG signal

Significant pulses/valleys: higher peak-to-peak distance than heartbeats

- Feature extraction
 - o 5 features are selected:
 - The mean value, excluding the highest and lowest 20% values
 - The location of the lowest valley
 - Peak to peak distance
 - Num. of peaks that are 0.2 seconds around the lowest valley
 - The minimal dynamic time wrapping distance between a new PPG signal and those in the training dataset (normalized to (0,1])

Normalizing extracted features

 Achieve good classification performance and balance the influences of different features

Z-score

$$F = \begin{bmatrix} f_{11} & f_{12} & \dots & f_{15} \\ f_{21} & f_{22} & \dots & f_{25} \\ \vdots & \vdots & \vdots & \vdots \\ f_{d1} & f_{d2} & \dots & f_{d5} \end{bmatrix}$$

For each entry f_{ij} : *i*: the *i*th PPG signal *j*: the *j*th feature

Each $f_{i,j}$ is normalized using Z-score $z_{ij} = (f_{ij} - mean(F_j))/std(F_j)$

- User authentication
 - Challenge: the device only has the knowledge of normal user
 - Classification without attackers' data
 - Normalizing new gesture using the knowledge of user's gestures

- User authentication
 - We use local outlier factor (LOF) as the classification model
 - Given a normalized feature vector $z = [z_{d1}, z_{d2}, ..., z_{d5}]$
 - The local reachability density (LRD) is computed by

$$\ln(z) = 1/(\frac{\sum_{r \in N_k(z)} \max\{k - distance(r), d(z, r)\}}{|N_k(z)|}$$

 $N_k(z)$ the k nearest d(z,r) the Euclidean neighbors of z distance between z and r

> k - distance(r) the distance of r to the k^{th} nearest neighbor

- User authentication
 - Comparing the LRD of the new gesture and the training data $LOF_{k}(z) = \frac{\sum_{r \in N_{k}(z)} \frac{lrd(r)}{lrd(z)}}{|N_{k}(z)|}$
 - An attacker is detected if LOF is larger than a threshold
 - The darkness represents the LOF value (the darker, the larger)

- We build a prototype implemented on the Samsung Gear 3 smartwatch running Tizen OS 3.0
- A graphical user interface (GUI) for data collection
- 12 volunteers where 7 of them act as normal users
- For each normal user:
 - 4 random guess attackers
 - 5 mimicry attackers

Overall performance

- Average authentication accuracy: 96.31%
- Average true rejection rate of random attack: 95.89%
- Average true rejection rate of mimicry attack: 91.64%

Impact of training set size

7 training instances are enough to ensure good performance

Impact of decision threshold

- authentication time
 - Authentication time: num. of attempts until being authenticated

Conclusion

- Designing an authentication system on commercial smartwatches
 - Software-based
 - Can be quickly launched on existing smartwatches
 - Without the knowledge of attackers
- Showing that PPG signals can be used for user authentication
 - Accurately reject mimicry attackers and random guess attackers

