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Abstract—One of the main hindrances that wireless sensor
networks (WSNs) face is the battery-powered sensors that need
to be charged from time to time. Recently, the approach of
having mobile chargers (MCs) that travel to the static sensors
of the network and transfer energy wirelessly and efficiently has
become a promising solution to that hindrance. An optimization
problem, called the mobile charger coverage problem, arises
naturally to keep all of the sensors alive with an objective of
determining both the minimum number of MCs required to meet
the sensor recharge frequency and the schedule of these MCs. It
is shown that this optimization problem becomes NP-hard in a
high-dimensional space, including 2-D space with homogeneous
recharging frequency. On the other hand, it is shown that a
polynomial-time algorithm exists for sensors with a homogeneous
recharge frequency on a 1-dimensional space (line or ring).
In this paper, we seek to find a delicate border between the
tractable and intractable problem space. Specifically, we study
the special case of heterogeneous sensors that take frequencies
of 1’s and 2’s (lifetimes of 1 and 0.5 time units) on a line,
conjecture its NP-hardness, propose a novel brute-force optimal
algorithm, and present a linear-time greedy algorithm that gives
a 1.5-approximation solution for the problem. A comprehensive
simulation is conducted to verify the efficiency of using our
proposed algorithms.

Index Terms—Cooperative charging, linear networks, mobile
chargers, wireless charging, wireless sensor networks.

I. INTRODUCTION

There are various applications for wireless sensor networks
(WSNs) with mobile chargers (MCs) assigned to visit the
sensors in the network at certain frequencies. With the devel-
opment of wireless energy charging technologies, using MCs
to keep charging the sensors becomes more practical. A natural
problem called mobile charger coverage problem arises as an
optimization problem with the objective of minimizing both
the number of MCs assigned to the sensors in the network
and the schedule of these MCs so that all requirements are
satisfied under some constraints.

In this paper, we study the mobile charger coverage problem
for a 1-dimensional (1-D) line specific heterogeneous WSN,
construct an optimal solution, and propose an approximation
algorithm for it. Each sensor needs to be visited by an MC on
a specific frequency. These MCs are assumed to recharge the
sensors instantly by visiting their location. Furthermore, the
MCs’ speed is limited to a certain maximum speed, and they
have an unlimited charging capability.
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Fig. 1: Toy example for the problem showing an optimal MC-solution.

Formalizing the general mobile charger coverage problem,
we consider a multi-dimensional space with a distribution of
sensor nodes S = {si} with an assigned fixed location xi
for every sensor si. For simplicity, each sensor si will be
denoted by its location xi. Each one of these sensor nodes xi
needs to be visited by an MC node from the set of deployed
MC = {MCi} at a given frequency fi, i.e. xi has to be visited
by one of the MCs no more than 1/fi after the previous visit
occurred at xi. An optimization problem arises to determine
the minimum number of MCs needed to satisfy the charging
requirement of the sensors, the MCs’ coverage areas, and their
velocities at every moment. A homogeneous mobile charger
coverage problem is the problem where the frequencies are
equal for all of the sensors. Other mobile charger coverage
problems are called heterogeneous mobile charger coverage
problems.

Figure 1 shows an example of a heterogeneous WSN
problem with allowed frequencies of 1’s and 2’s. The sensors
of frequency 1 and frequency 2 are denoted as boxed 1’s
and 2’s. We will call these sensors 1-sensors and 2-sensors,
respectively. In the example, we see an optimal solution for
a linear WSN of eleven sensors distributed at the locations
shown in the figure.

Wu et al. [1] have come up with an optimal solution for the
homogeneous mobile charger coverage problem for both the
1-D ring and 1-D line distributions of sensors. Furthermore,
they showed that the solution for a line distribution has at most
one MC more than the number of MCs in the solution of the
same distribution on a ring. Hence, we focus our efforts in
this work to consider 1-D line distributions of sensors. Their
optimal solution to solve the homogeneous line problem is
done by simply scheduling k MCs to cover non-overlapping
fixed intervals of length 0.5 so that all of the sensors are
covered, assuming, without loss of generality, the maximum
speed of the MCs to be one unit distance per unit, and the
frequencies of the sensors to be 1. In addition to that, they



have started the investigation of the heterogeneous problem
by proposing an approximation algorithm with a factor of 2
that solves the problem for a line distribution of sensors with
frequencies fi ∈ {1, 2, . . . , k} by greedily assigning MCs with
non-overlapping coverage areas that go back and forth as far
as possible at maximum speed while completely supplying the
demand of all the sensors in their coverage areas.

Here, we raise a concern about the delicate border in the
mobile charger coverage problem between the intractable and
tractable solution for it and try to fill this gap by studying
the 1-D linear heterogeneous WSN problem with frequencies
of 1’s and 2’s, we will call this heterogeneous distribution of
sensors (1 , 2 )-WSN. For general frequencies, we can group
frequencies bounded by the frequency 2i (i = 0, 1, 2, ...). That
is, frequencies more than 2i but no more than 2i+1 belong to
virtual independent network i as discussed in [2]

Our results are summarized as follows:
• An optimal solution for (1 , 2 )-WSNs’ mobile charger

coverage problem. This solution exhausts a set of solu-
tions with specific properties and chooses the optimal one
from them. Also, we conjecture the NP-hardness of this
problem.

• An approximation solution with an improved approxi-
mation ratio of 1.5 for (1 , 2 )-WSNs, an enhancement to
this solution, and an analytical extension for the previous
approximation solution.

• A comprehensive simulation to verify the closeness of our
approximation solutions to the optimal one in different
distributions of sensors. The distributions were chosen to
model different real-life scenarios.

The remainder of the paper is organized as follows. In
Section II, some related works are reviewed. In Section III, the
optimal solution for the (1 , 2 )-WSN problem is proposed, and
the NP-hardness of the problem is conjectured. In Section IV,
a greedy algorithm with an approximation ratio of 1.5 for the
(1 , 2 )-WSN is proposed, an enhancement for this solution is
demonstrated, and an analytical expansion for the previously
proposed 2-approximation general algorithm is performed. In
Section V, simulation results are presented to compare the
different proposed solutions. Finally, Section VI gives the
conclusion.

II. RELATED WORK

The breakthrough of the employment of strong magnetic
resonances in wireless energy transfer technology [3] gave a
reliable way to provide the sensors in WSNs with power [4].
The wireless energy transfer technology has many commercial
applications [5]. Research has been conducted on wireless
energy charging by applying MCs to charge sensors in WSNs
[6]. Wu et al. [7] have formulated the mobile charging problem
which allows cooperative charging of sensors by MCs in a way
that guarantees none of the sensors will eventually run out of
energy, which is the same constraint we have in our paper.

The same problem has been formulated with many variable
parameters: considering the MCs with limited energy capacity

or with unlimited energy capacity so that the MCs themselves
need to be recharged periodically [1, 8, 9], considering the
demand of the sensors to be deadline-based or frequency-
based [10, 11], and considering the charging of the sensors to
be instant once they are visited or gradual in which a charging
time is needed [12, 13]. In our model, we consider the MCs to
have an infinite amount of energy, charging instantly once they
visit the sensors that demand their chargings on a frequency
base. We assume the charging time takes zero time. If the
actual charging time takes t units of time, it can be converted
to our proposed model by adding distance based on the
maximum velocity of the charging unit as discussed in [13].

The objective function to be optimized has some variances
in the literature too. Some studied the problem trying to
minimize the total distance a constant number of MCs travel
[14]; others tried to minimize the maximum distance traveled
by any one of the MCs [15]; while others studied minimizing
the total power consumed [7], and others studied the case in
which maximizing the charging throughput itself is concerned
[16] . In our paper, our objective is to minimize the number
of MCs needed to keep the sensors alive, similar to the model
Wu et al. have studied [7].

Even though we consider an instant full charging of the
sensors as some did [11], some have considered the problem
of charging the sensors to a partial capacity with a charging
rate constraint [17]. Finally, it is worth mentioning that even
though 1-D [1], 2-D [18–20], and 3-D [21] WSNs have been
studied for this problem, our work of studying the 1-D case
remains novel since we try to investigate the NP-hardness
boundary of the problem. For multi-dimensional instances of
sensor distributions, we can use various dimension reduction
processes, e.g., from 2-D to 1-D by constructing a spanning
tree and then finding a Hamiltonian path around the tree.

III. OPTIMAL SOLUTION FOR (1 , 2 )-WSN

We approach the (1 , 2 )-WSN problem assuming the max-
imum speed of MCs to be one unit distance per unit time.

A. Subspace reduction

In this subsection, we reduce the search space for the MC-
solution into one that has at least one optimal solution by
imposing some restrictions for the possible solution. We will
call our target optimal solution O. The restrictions on the
search space are:
• In the optimal solution O, the trajectories of the MCs

are end-to-end. This property holds after reducing any
optimal solution to O. This reduction can be made
by replacing any detour by an extension of the MC’s
trajectory to one side of its coverage area. A detour is
when an MC traverses from point A to point B in a time
more than the minimum possible time such that the MC
does not visit point B more than once nor reach the end
of its coverage area.
To prove this, we call the difference in time between the
detour and the minimum possible time τ . By replacing
this detour by a maximum-speed trajectory and traversing



Fig. 2: Deploying an MC with no previously ’visited’ sensors.

by τ time after one of the edges of the coverage area
without detouring nor violating the frequency require-
ment of any sensor, an equivalent optimal solution will
be obtained from the previous one.

• The MCs never go to the left of the leftmost sensor in O;
if there is an optimal solution in which the MCs cover an
area to the left of the leftmost sensor, it can be reduced to
another optimal solution in which the trajectories of the
MCs are bounded from the left by the leftmost sensor.

• The MCs never meet each other. First, we perform a
reduction in which the MCs never pass each other. This
reduction can be made simply by swapping the velocities
(direction and speed) of any two MCs passing each other.
After that, if any two MCs meet, we simply apply a shift
in time to the trajectory of one of them so that they do
not meet.

Applying these restrictions to our search space guarantees
that there will be at least one optimal solutionO in the reduced
search space. The optimal solution O has the following
properties:

Property 1: The optimal solution O has the leftmost uncov-
ered sensor completely supplied by exactly one MC.

This is a direct corollary from reducing any optimal solution
to one (O) in which MCs never meet under the imposed
restrictions. Hence, we can not make two MCs supply the
leftmost uncovered sensor without meeting.

Property 2: No sensor is supplied by more than two MCs in
the optimal solution O.

Since every MC will be deployed mainly to fully supply the
demand of the leftmost sensor of the remaining distribution of
sensors, the maximum length of any coverage area of any MC
will not exceed 0.5, which requires supplying every sensor in
the coverage area with energy at least once every unit of time.
This means we would not need more than two MCs to supply
any sensor of frequency 1 or 2.

Property 3: An MC’s starting point is always more than 0.25
away from the starting point of the previous MC in O.

We know from property 1 and property 2 that the optimal
solution O has all of the sensors in the first 0.5 distance units
completely supplied by at most two MCs. Thus, alleviating
the resulting problem as much as possible will be achieved
by making the next MC able to reach as distant away as
possible away, and that only happens if the starting point of
the coverage area of the next MC is after at least 0.25 distance

Fig. 3: Deploying an MC with previously visited sensors.

units of the starting point of the coverage area of the previous
MC. This means that the next MC will not visit the sensors
in the first 0.25 distance units.

B. Algorithm overview

In this subsection, we show the high-level of an algorithm
that searches for all the solutions in the reduced search space
with the restrictions, then picks the one of them that uses the
least number of MCs, which is O.

Constructing all of the solutions with these properties for
our (1 , 2 )-WSN, where the leftmost uncovered sensor location
is x1, will be as follows: First, deploy an MC that completely
supplies the sensors in [x1, x1 + 0.25]. Completely supplying
them directly implies that 1) the start point of the coverage
area of the MC is x1, and that 2) the endpoint of the coverage
area of the MC is in [x1 +0.25, ylast] where ylast is 0.25 + the
location of the first 2-sensor in [x1, x1 + 0.25] if there is any,
or ylast = x1+0.5 if there is no 2-sensor in [x1, x1+0.25]. The
exact possible locations of the endpoint are discussed in the
next subsection. Second, eliminate all the completely supplied
sensors, and then repeat the process for the new distribution
of sensors calling the leftmost uncovered sensor x1. We will
call the visited 2-sensors in (x1+0.25, ylast] partially-supplied
sensors, since they are not completely supplied and will be
addressed collaboratively with the next MC in an overlapping
region.

What makes this problem hard is what we will call the
constraint of overlaps which states that if two MCs supply a
2-sensor collaboratively in their overlapping region, then the
coverage areas of the two MCs have to be equal. This natural
constraint arises from the fact that if the two coverage areas
are not equal, then the time gap between their visits to the
2-sensor in the overlapping area will keep changing until it
eventually reaches more than 0.5, which would mean that the
concerned 2-sensor in the overlapping area is not supplied
properly.1

Determining the endpoint of the coverage area of any new
deployed MC is the hardest part. We find that the possibilities
of the best endpoint are limited: if there is no 2-sensor in
(x1 + 0.25, ylast], then choosing the endpoint to be ylast will
always be the best, but if there exists at least one 2-sensor in

1The time gap eventually becomes greater than 0.25 by reaching min{2×
Area1, 2×Area2} if Area1

Area2
is rational. If the ratio of their coverage areas is not

rational, then it reaches min{2×Area1, 2×Area2}−δ, 0 < δ < ε ∀ε > 0.



Algorithm 1 Endpoint selection for MC
Input: Sensor locations {x1, x2, . . . , xn} and frequencies

{f1, f2, . . . , fn}, fk ∈ {1, 2}.
The length l of the previous MC’s coverage area // l = 0
if there is none.

Output: The set of possible endpoints for the MC.
Depending on criterion C, Assign Possible Endpoints to be:
Case 1: {yfinal, ypartition}.
Case 2: {x1 + 0.25}.
Case 3: {x1 + 0.25, x1 + l}.

Fig. 4: An illustration of criterion C of how to determine the endpoints.

(x1 + 0.25, ylast] and x1 is not a partially-supplied sensor, we
will be left with two options:
• Option 1: Have all of the 2-sensors in (x1 + 0.25, ylast]

supplied collaboratively with the next MC by having
them in an overlap region between the two MCs.

• Option 2: 1) Define ypartition to be a point in [yfirst, ylast],
where yfirst is the first 2-sensor in (x1+0.25, ylast], 2) have
the 2-sensors in [yfirst, ypartition] supplied collaboratively
with the next MC by having them in an overlap region
between them, and 3) have the 2-sensors in (ypartition, ylast]
supplied completely by the next MC.

Figure 1 shows the two options of the endpoints when
deploying an MC in the case where the sensor x1 is not
partially-supplied.

Considering the constraint of overlaps, the always-best
choice for the endpoint under option 1 will be ylast and the
always-best choice under option 2 will be ypartition, where
ypartition = max(xi)−lcovered, xi is a 2-sensor location in [x1+
0.25, ylast] that satisfies the following condition: There is no
2-sensor in (xi− lcovered, xi), and lcovered = yfirst− (x1 +0.25).
However, if max(xi) = yfirst, we set ypartition = yfirst, and if
there is no 2-sensor in (x1 +0.25, ylast], we set ypartition = ylast.

If the sensor x1 is partially-supplied, then the endpoint of
the next MC’s coverage area will lie under two other options:
• Option 3: The endpoint is x1 + 0.25 (we will not make

use of the overlap.)
• Option 4: The endpoint is x1+ l, where l is the coverage

area of the previous MC (we will make use of the
overlap.)

Figure 3, which illustrates the partially-supplied sensors in
the red color, shows these two options. This means that when

Algorithm 2 Search space for the optimal solution O
Input: Sensor locations {x1, x2, . . . , xn} and frequencies

{f1, f2, . . . , fn}, fk ∈ {1, 2}.
Output: The set of possible MC-solutions including O.
Initialization: All sensors are unvisited.

S = {} //The search space of the MC-solutions.
l = 0 //The last deployed MC’s coverage area.

Optimal(x1, x2, . . . , xn, l, S):
1: if all sensors are completely supplied then
S = S ∪ {Last generated MC-solution}.
return

2: Call Algorithm 1 to determine Possible Endpoints.
3: for each k in Possible Endpoints do
4: Generate an MC that covers [x1, k], add it to the current

MC-solution, and let l = k − x1.
5: Eliminate all sensors in [x1, x1 + 0.25] and 1-sensors in

[x1 + 0.25, k].
6: Annotate the 2-sensors in (x1 + 0.25, k] as ‘visited’.
7: Call Optimal(x1, x2, . . . , xn, l, S) where x1 is the

leftmost sensor.

we deploy a new MC, there will be only one possible start
point of its coverage area, which is the leftmost uncovered
sensor, and a maximum of two possible options of its endpoint:
option 1 and option 2 if there is no partially-supplied in
the remaining distribution, or option 3 and option 4 if x1 is
partially-supplied.

Furthermore, in the case of having partially-supplied 2-
sensors in the remaining distribution, choosing option 4 in
the special case where there is a nonvisited 2-sensor in
(x1, x1 + l− 0.25) will result in a solution that does not have
property 3. Hence, we exclude option 4 in this case.

Now, we have everything set up to define a criterion C to
choose the set of possible endpoints for the MC from three
cases: if x1 is not partially-supplied, there will be two possible
endpoints (option 1 and option 2), if x1 is partially-supplied
and there is a nonvisited 2-sensor in (x1, x1 + l− 0.25), then
there will be one possible endpoint (option 3), while there will
be two possible endpoints (option 3 and option 4) if there is
no 2-sensor in (x1, x1 + l−0.25). Figure 4 shows criterion C.

Algorithm 1 produces the set of the possible endpoints for
any new MC to be deployed to cover an area starting from
the leftmost remaining uncovered sensor x1.

C. Algorithm design

At this point, we tackled the hardness of the problem:
Where should the endpoint of the coverage area of the next
MC be determined? Even though we know for sure where
the MC’s coverage area starts (it will start from the leftmost
uncovered sensor), determining where the previous one ends
remains hard. Algorithm 1 is designed so that the produced
MC-solutions hold the properties of our reduced search space.

The main question that holds and forces us to exhaust all
possible MC-solutions is how can we make our next deployed



Algorithm 3 Greedy 1.5-approximation solution
Input: Sensor locations {x1, x2, . . . , xn} and frequencies

{f1, f2, . . . , fn}, fk ∈ {1, 2}.
Output: A 1.5-approximation MC-solution.
Initialization: i = 0 //The MCs’ indexes.
1: While there is a non-zero leftmost sensor x do
2: i = i+ 1.
3: if there is a leftmost 2-sensor x′ in [x, x+ 0.25] then

Generate MCi that covers [x, x′ + 0.25].
4: else

Generate MCi that covers [x, x+ 0.5].
5: Eliminate the sensors in [x, x+ 0.25].
6: Subtract 1 from visited sensors in (x+ 0.25, x+ 0.5].
7: for every MC2i, generate an additional MC that covers the

same area MC2i covers.

MC contribute in supplying the other sensors in the (1 , 2 )-
WSN in a way that makes the remaining distribution of sensors
need as less MCs as possible? Algorithm 2 exhausts all the
possible MC-solutions with properties 1–3.

Theorem 1. The MC-solution in S, which is produced by
Algorithm 2, with the least number of MCs is the optimal
solution O and has a time complexity of O(d× 16L).

Proof. Algorithm 2 does nothing but exhaust all of the MC-
solutions with properties 1–3 in our subspace. Since O has
these properties, choosing the MC-solution with the least
number of MCs from all of the generated solutions with these
properties gives us O.

We conjecture that the (1 , 2 )-WSN problem is an NP-
hard problem. Analysing the complexity of our brute-force
algorithm (Algorithm 2) shows that the recursive call inside
the loop is equivalent to a maximum number of nested loops
of L/0.25, where every loop has a maximum of two iterations.
Each iteration takes O(n/0.25) to find max(xi) in order to
calculate ypartition, where n is the number of sensors in the
search region of max(xi). This search region is bounded by
0.25. This means that in the worst-case scenario, the algorithm
takes O(d × 2L/0.25) = O(d × 16L) time, where d is the
maximum sensor-density of any region of length 0.25 in the
given linear WSN. d is bounded by n/0.25.

IV. APPROXIMATION SOLUTIONS FOR (1 , 2 )-WSN

In this section, we propose our new greedy approximation
algorithm and an enhancement for it in the first part, and
perform an analytical expansion for a previous general ap-
proximation algorithm in the second part.

A. A novel approximation algorithm

First, we will set up a lower bound for the optimal solution
O. The lower bound is going to be determined by seeking the
optimal solution Ω of the problem after lifting the constraint
of overlaps. We will assume that 2-sensors are now satisfied
if they are supplied collaboratively by two MCs of different

Algorithm 4 General greedy solution
Input: Uncovored sensor locations {x1, x2, . . . , xn} and

frequencies {f1, f2, . . . , fn}, fk ∈ R.
Output: A 2-approximation MC-solution.
1: if n = 0 then return.
2: Generate an MC that goes back and forth as far as possible

at a full speed to cover sensors at {x1, . . . xi−1}.
3: Recursively call Algorithm 4 for {xi, . . . xn}.

Fig. 5: The lower bound of the optimal, the 1.5-approximation algorithm, and
the enhanced 1.5-approximation algorithm.

coverage areas, these coverage areas shall not exceed 0.5.
Then we will propose an approximation solution for the
original problem which produces a number of MCs that is
bounded by 1.5 of the lower bound produced by Ω.

Even after lifting the constraint of overlaps, the optimal
solution of the resulting alleviated problem Ω still has the
properties 1–3. The optimal solution Ω is produced as follows:
deploying an MC covering the area starting from the leftmost
sensor and ending as far as possible while completely supply-
ing the sensors in the first 0.25 distance. We may treat the
2-sensors visited by this sensor but not completely supplied
(the visited 2-sensors after the 0.25 distance) as 1-sensors for
the next MC. Continuing to deploy the MCs at this manner
produces the lower bound of the optimal solution Ω.

Theorem 2. The MC-solution, which is produced by Algo-
rithm 3, is an approximation solution with ratio of 1.5 and
has a time complexity of O(L).

Proof. After producing Ω, simply addressing the sensors in
the overlapping regions (i.e., considering the the constraint
of overlaps again) by deploying additional MCs for them
gives us the 1.5-approximation solution. Algorithm 3 produces
this solution; lines 1–6 of it produce Ω, line 7 generates the
additional MCs that address any possible overlap. The number
of these additional MCs cannot exceed half the number of
MCs in Ω. This confirms our approximation ratio of 1.5.

Analysing the time complexity of Algorithm 3 shows that
its run-time is linearly proportional to L/0.25 as the number
of iterations is upper-bounded by O(L/0.25) = O(L), where
L is the whole length of the linear WSN.

We may enhance the solution produced by Algorithm 3 by
deploying the additional MCs only when needed instead of
deploying them for all even-numbered MCs. That may be done
by making the last line of the algorithm produce additional



Fig. 6: The optimal solution O and Algorithm 4’s approximation solution.

MCs to only cover the overlaps of different-lengths coverage
areas. Even though this improvement generally reduces the
number of additional MCs, the approximation factor of the
solution remains 1.5.

Figure 5 shows the MCs generated by lines 1–6 of the
approximation algorithm ( Ω ), the additional MCs added by
line 7 ( 1 ), and the additional MCs added by the enhanced
approximation algorithm which only assigns MCs to address
the overlaps between two different length coverage areas ( 2 ).

B. New analysis for the 2-approximation solution

Wu et al. [1] have proposed Algorithm 4 as an approxima-
tion algorithm to generate an MC-solution for heterogeneous
WSNs with any frequencies. They have proved that this
algorithm produces a solution with an approximation ratio of
2. In this section here, we prove that this approximation ratio
becomes tighter as it reaches 1.5 for (1 , 2 )-WSNs.

Theorem 3. The MC-solution, which is produced by Algo-
rithm 4, is an approximation solution with ratio of 1.5 when
applied to the (1 , 2 )-WSN and has a time complexity of O(L).

Proof. Considering the optimal solution O, we know from
property 2 that the optimal solution O may have overlaps
between the coverage areas of no more than two MCs. It
is trivial to show that if, for some distribution of sensors,
O has no overlaps, then Algorithm 4 (as well as Algorithm
3) produces the same optimal solution. However, when the
optimal solution O gets to have two MCs with an overlapping
region as shown in Figure 6, Algorithm 4 produces exactly
three MCs in order to be able to cover the same region the
two overlapping MCs cover.

The three MCs will be produced by Algorithm 4 in the
following order: The first MC will be deployed to cover
the sensors in the region [a, b), then the second one will
be deployed to cover the sensors in the region [b, b + 0.25].
The third MC will cover any remaining sensor in the region
(b+ 0.25, c].

In the worst-case scenario, when the optimal solution O
has each MC to cover a region with an overlap with exactly
one other MC, where this region is significantly far from other
coverage areas, Algorithm 4 produces three MCs for each two
overlapping MCs. Hence, an approximation ratio of 1.5.

The run-time of the algorithm is upper-bounded by L/0.25;
for any WSN with sensors of frequencies of 1’s and 2’s and
a given length L, the number of iterations will not exceed
dL/0.25e, even for a dense distribution of 2-sensors. This

upper bound of the worst-case scenario gives us a fairly tight
upper bound for the time complexity of Algorithm 4, which
is O(L).

V. SIMULATION

In this section, we conduct simulations to evaluate the
effectiveness of the algorithms discussed in this paper.

A. Experimental Settings

In our simulations, the frequencies of the sensors (fk)
follow the Bernoulli distribution with a certain probability for
each of the two possible frequencies to occur. The distribution
of the locations of the sensors was considered to follow one
of three different scenarios. The first scenario distributes the
sensors uniformly on the given line segment of length l after
placing a sensor on each edge of the line segment. We will
call this distribution the uniform distribution of sensors.

The second distribution of the locations is cluster distribu-
tion, where k sensors are distributed uniformly as the centers
of the clusters, then two sensors are placed on the two edges
of the line WSN of length l, then the remaining sensors are
divided equally into k groups (if there is a shortage in the
remaining number of sensors to be divided equally into k
groups, all the shortage is applied to one random cluster).
The remaining sensors are distributed around the k center of
clusters on a normal distribution N(xcluster, σ

2), where each
group of sensors has its own xcluster as the mean of their
locations, and a certain standard deviation σ. We will call
this distribution the cluster distribution of sensors.

The third distribution is a mixture between the latter two
distributions, where a certain percentage of sensors are dis-
tributed to follow the uniform distribution, while the rest of
them are distributed to follow the cluster distribution. We will
call this distribution the mixed distribution of sensors.

Our choice to choose such distributions comes from their
practical emulation of real-world situations, whether for WSNs
or border patrolling applications. This gives us a vast number
of parameters: the first one is the percentage of the 2-sensors,
the second one is the probability distribution which the lo-
cations of the sensors follow. Each one of those distributions
has its own additional parameters. The uniform distribution
has an additional two parameters: the length of the WSN and
the total number of sensors. The cluster distribution has an
additional four parameters: the length of the WSN, the total
number of sensors, the number of clusters, and the standard
deviation of the sensors in the clusters. The mixed distribution
has an additional five parameters: the length of the WSN, the
total number of sensors, the number of clusters, the standard
deviation of the sensors in the clusters, and the percentage of
the uniformly distributed sensors.

B. Algorithm Comparison

We consider various settings to compare the performance of
the four algorithms: the algorithm that produces the optimal
solution O, our proposed 1.5-approximation greedy algorithm
(Algorithm 3), the enhanced version of our 1.5-approximation



Fig. 7: The results of the algorithms under the uniform distribution with various percentages of 2-sensors. s is the number of sensors, p is the percentage of
the 2-sensors, and L is the length of the WSN.

Fig. 8: The behavior of the algorithms with uniform distribution under varying
percentage of 2-sensors and fixed other parameters.

algorithm, and Wu’s greedy algorithm for general line het-
erogeneous WSNs (Algorithm 4). Because of the exponential
time-complexity of our optimal algorithm, we include small-
scale scenarios of limited lengths and numbers of sensors.

C. Experimental Results

We can observe from the first three plots in Figure 7
that for the uniform distribution, fixing all of the parameters
but the length of the WSN shows that the number of MCs
grows almost linearly with the increase of the length of the
WSN. The enhanced algorithm and the Wu’s 2-approximation
general algorithm both give results very close to the optimal
solution under a constant number of sensors. Furthermore, it is
clear that the dominance by 1-sensors favors the enhanced 1.5-
approximation algorithm over the 2-approximation algorithm.

Observing the last three plots in Figure 7 in which the
density of the sensors varies under a fixed length of the
WSN, we see that the 2-approximation algorithm behaves very
closely to the optimal algorithm with different percentages of

2-sensors as opposed to the enhanced algorithm that depends
significantly on the percentage of the 2-sensors deployed.

Figure 8 shows how the different algorithms behave for a
fixed number of sensors and a fixed length of the WSN. At the
two edges where we have homogeneous WSN, the enhanced
and 2-approximation algorithms give exactly the same result
as the optimal solution. In general, the 2-approximation algo-
rithm performs better under these settings and very close to the
optimal algorithm. However, for the settings where we have 1-
sensors dominate the 2-sensors, the enhanced algorithm very
closely beats the 2-approximation algorithm. The normal 1.5-
approximation algorithm performs very closely to its upper
bound due to the blind deployment of the additional MCs to
address the overlaps whether they are needed or not.

We may observe from Figure 9 that the behavior of the
algorithms under the cluster distribution, the first three plots
show that, under low standard deviation (dense clusters),
the enhanced and the 2-approximation general algorithms
perform very closely to the optimal algorithm. As the clusters
become more loose, the enhanced algorithm performs more
poorly than the 2-approximation algorithm which does not
get affected heavily by the standard deviation parameter. The
third plot shows behavior close to the behavior in uniform
distribution due to the high standard deviation.

The second three plots in Figure 9 show how the number
of clusters affects the needed numer of MCs under different
standard deviations; the tighter the clusters are (have lower
standard deviation), the more their number correlates more
strongly with the needed number of MCs. For low standard
deviation, the number of MCs increases almost-linearly with
the number of clusters under fixed other parameters. With
a higher standard deviation, an increase in the number of



Fig. 9: The results of the algorithms under the cluster distribution with various standard deviations. p is the percentage of the 2-sensors, σ is the standard
deviation, L is the length of the WSN, k is the number of clusters, and s is the number of sensors.

Fig. 10: The behavior of the algorithms with cluster distribution under varying
standard deviation with fixed other parameters.

clusters affects the needed number of MCs less. For very high
standard deviation values, the number of clusters does not
affect the outcome of the algorithms. Furthermore, it is clear
that the 2-approximation algorithm outperforms the enhanced
1.5-approximation algorithm under the cluster distribution.
The last line of plots in Figure 9 shows again how the 2-
approximation algorithm performs very closely to the optimal
solution. This is due to the fact that this algorithm is actually
exactly the same as the first six lines of Algorithm 3 (which
produce the lower bound of the optimal solution Ω) except
that in line 6, it does not subtract 1 from the 2-sensors in
(x+ 0.25, x+ 0.5].

Figure 10 shows how the number of MCs, for a fixed
number of clusters with fixed length of WSN and number
of sensors, correlates directly with the standard deviation, and
how under various standard deviations, the 2-approximation
algorithm remains very close to the optimal solution.

In Figure 11, the behavior of the algorithms under the
mixed distribution is shown. The first plot shows that the
length of the WSN affects the number of MCs almost as
linearly as the previous two distributions. From the different
distributions and various parameters settings, the previously
proposed general 2-approximation algorithm outperforms the
enhanced 1.5-approximation algorithm by around 10%, where
the original 1.5-approximation algorithm produces a solution
that is always close to the upper bound of 1.5. The 2-
approximation algorithm remains very close to the optimal
solution in all the observed scenarios due to its closeness to the
algorithm that produces the optimal solution’s lower bound.

VI. CONCLUSION

In this paper, we establish an investigation for the NP-
hardness boundaries between the tractable and intractable
solutions of the mobile charger coverage problem. The sched-
ule of the least possible number of mobile chargers for
heterogeneous line wireless sensor networks with sensors of
frequencies 1’s and 2’s is studied. We obtain the optimal
solution for this problem by exhausting all of the possible



Fig. 11: The results of the algorithms under the mixed distribution with different settings, u is the percentage of uniformly-distributed sensors, p is the percentage
of the 2-sensors, σ is the standard deviation, L is the length of the WSN, k is the number of clusters, and s is the number of sensors.

solutions with specific properties, and conjecture the NP-
hardness of it. A 1.5-approximation algorithm, an enhance-
ment of this approximation, and an analytical expansion for
a previously proposed general 2-approximation algorithm are
done. Simulation results compare the optimal solution with
our approximation algorithms and the previous general ap-
proximation algorithm. The simulation shows that in practical
set-ups, our enhanced algorithm performs 10% less than the 2-
approximation algorithm, which remains very close to the opti-
mal solution. In future work, we will try to study different line
WSNs of different frequency ranges, prove the NP-hardness
of this problem, and come up with better approximations.

REFERENCES

[1] R. Beigel, J. Wu, and H. Zheng. “On optimal scheduling of multi-
ple mobile chargers in wireless sensor networks.” In Proceedings
of the first international workshop on mobile sensing, computing
and communication (MSCC ’14), 1–6, 2014.

[2] H. Zheng, and J. Wu. “Cooperative Wireless Charging Vehicle
Scheduling.” In IEEE International Conference on Mobile Ad
Hoc and Sensor Systems (MASS) pp. 224-232, 2017.

[3] A. Kurs, A. Karalis, R. Moffatt, JD. Joannopoulos, P. Fisher, M.
Soljacic. “Wireless power transfer via strongly coupled magnetic
resonances.” In Science, 83-6, 2007.

[4] W. Xu, W. Liang, X. Jia, Z. Xu, Z. Li, and Y. Liu. “Maximizing
Sensor Lifetime with the Minimal Service Cost of a Mobile
Charger in Wireless Sensor Networks.” In IEEE Transactions
on Mobile Computing, vol. 17, no. 11, pp. 2564-2577, 2018.

[5] PRIMOVE e-Mobility Solution. [Online]. Available:
http://primove.bombardier.com

[6] Y. Ma, W. Liang, and W. Xu. “Charging Utility Maximization
in Wireless Rechargeable Sensor Networks by Charging Mul-
tiple Sensors Simultaneously.” In IEEE/ACM Transactions on
Networking, vol. 26, no. 04, pp. 1591-1604, 2018.

[7] M. Wu, Y. Dongdong, K. Jiawen, Z. Haochuan, and Y. Rong.
“Optimal and Cooperative Energy Replenishment in Mobile
Rechargeable Networks.” In IEEE 83rd Vehicular Technology
Conference (VTC Spring), pp. 1-5, 2016.

[8] W. Liang, Z. Xu, W. Xu, J. Shi, G. Mao, and SK. Das.
“Approximation Algorithms for Charging Reward Maximization
in Rechargeable Sensor Networks via a Mobile Charger.” In
IEEE/ACM Transactions on Networking, vol. 25, no. 05, pp.
3161-3174, 2017.

[9] W. Xu, W. Liang, X. Jia, Z. Xu, Z. Li, and Y. Liu. “Maximizing
Sensor Lifetime with the Minimal Service Cost of a Mobile
Charger in Wireless Sensor Networks.” In IEEE Transactions
on Mobile Computing vol. 17, no. 11, pp. 2564–2577, 2018.

[10] P. Yang, T. Wu, H. Dai, X. Rao, X. Wang, P. Wan, and X. He.
“MORE: Multi-node Mobile Charging Scheduling for Deadline
Constraints.” In ACM Transactions on Sensor Networks vol. 17,
no. 01, Article 7, 2020.

[11] S. Zhang, J. Wu, and S. Lu. “Collaborative Mobile Charging.”
In IEEE Transactions on Computers, vol. 64, no. 03, pp. 654-667,
2015.

[12] N. Wang, J. Wu, and H. Dai. “Bundle Charging: Wireless
Charging Energy Minimization in Dense Wireless Sensor Net-
works.” In IEEE 39th International Conference on Distributed
Computing Systems (ICDCS), pp. 810-820, 2019.

[13] L. He, L. Kong, Y. Gu, J. Pan, and T. Zhu. “Evaluating the
On-Demand Mobile Charging in Wireless Sensor Networks.” In
IEEE Transactions on Mobile Computing, vol. 14, no. 09, pp.
1861-1875, 2015.

[14] Y. Ma, W. Liang, and W. Xu. “Charging Utility Maximization
in Wireless Rechargeable Sensor Networks by Charging Mul-
tiple Sensors Simultaneously.” In IEEE/ACM Transactions on
Networking, vol. 26, no. 04, pp. 1591-1604, 2018.

[15] W. Xu, W. Liang, and X. Lin. “Approximation Algorithms
for Min-Max Cycle Cover Problems.” In IEEE Transactions on
Computers, vol. 64, no. 03, pp. 600-613, 2015.

[16] M. Wu, D. Ye, J. Kang, H. Zhang, and R. Yu. “Optimal
and Cooperative Energy Replenishment in Mobile Rechargeable
Networks.” In IEEE 83rd Vehicular Technology Conference
(VTC Spring), pp. 1-5, 2016.

[17] W. Xu, W. Liang, X. Jia, and Z. Xu. “Maximizing Sensor
Lifetime in a Rechargeable Sensor Network via Partial Energy
Charging on Sensors.” In IEEE 13th International Conference
on Sensing, Communication, and Networking (SECON), pp. 1-
9, 2016.

[18] F. H. Tseng, H. H. Cho, and C. F. Lai. “Mobile Charger Plan-
ning for Wireless Rechargeable Sensor Network Based on Ant
Colony Optimization.” In Advances in Computer Science and
Ubiquitous Computing. Lecture Notes in Electrical Engineering,
Springer, vol. 715, 2021.

[19] S. Zhang, Z. Qian, J. Wu, F. Kong, and S. Lu. “Optimizing
itinerary selection and charging association for mobile chargers.”
In IEEE Transactions on Mobile Computing, vol. 16, no. 10, pp.
2833–2846, 2016.

[20] F. Sangare, Y. Xiao, D. Niyato, and Z. Han. “Mobile charging in
wireless-powered sensor networks: Optimal scheduling and ex-
perimental implementation.” In IEEE Transactions on Vehicular
Technology, vol. 66, no. 08, pp. 7400–7410, 2017.

[21] C. Lin, C. Guo, H. Dai, L. Wang, and G. Wu. “Near Optimal
Charging Scheduling for 3-D Wireless Rechargeable Sensor
Networks with Energy Constraints.” In IEEE 39th International
Conference on Distributed Computing Systems (ICDCS), pp.
624-633, 2019.


