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Abstract—In data center networks (DCN), large scale flows
produced by parallel computing frameworks form many coflows
semantically. Most inter-coflow schedulers only focus on the
remaining data of coflows and attempt to mimic Shortest Job
First (SJF). However, a coflow may consist of multiple stages. In
this paper, we consider the Multi-stage Inter-Coflow Scheduling
problem and try to give an efficient online scheduling scheme.
We first explore a short-sighted algorithm with the greedy
strategy. This gives us an insight into utilizing the network
resources. Based on that, we propose a far-sighted heuristic,
which schedules sub-coflows to occupy network bandwidth in
turn. Through simulations in various network environments, we
show that, compared to a state-of-the-art scheduler – Varys, a
multi-stage aware scheduler can reduce the coflow completion
time by up to 4.81× even though it is short-sighted. Moreover,
the far-sighted scheduler can improve the performance by nearly
7.95× reduction.

Index Terms—coflow, scheduling, multi-stage

I. INTRODUCTION

A huge demand for the processing of big data has hastened
the birth of cluster computing frameworks such as MapReduce
[1], Spark [2], Dryad [3] and so on. During the period of
processing, a large amount of data is produced and needs to
be transferred in data center network. The transmission of
data accounts for a significant part in task completion time,
which becomes the focus of data center researches in the
recent years. Previous researches [4–8] have studied the flow
scheduling, in an attempt to decrease the flow completion time
(FCT). However, a task of one application may produce many
flows which are interdependent. Scheduling flows in isolation
would then lose their communication semantics.

The recently proposed coflow abstraction enables semantic-
aware scheduling [9]. A coflow refers to a set of flows that
share the same performance target. Flows in a coflow serve
the same task and have dependency on each other. Completion
of a coflow requires the completion of all flows in it. In
virtue of this abstraction, scheduler is able to be aware of
the requirements of applications, obtaining a better coflow
completion time (CCT). Unfortunately, minimizing CCT by
inter-coflow scheduling is NP-hard [10]. As a consequence,
some efficient heuristic algorithms have emerged [10–14].

Considering that Shortest Job First (SJF) is the optimal
scheduling scheme for minimizing the average FCT over a
single link, many heuristics [4, 5, 7, 10] try to emulate SJF.
Most of them prioritize a coflow by counting the accumulative

data it has sent. Despite the fact that this method effec-
tively distinguishes coflows, we must notice that a coflow
may consist of multiple stages, and different stages transfer
different amounts of data [15]. Some coflows send a lot of
data in earlier stages, and then their to-be-transmitted data
would decrease. But before the decrease, traditional heuristics
have deprioritized these coflows because their accumulative
transmission data excesses the threshold and these coflows are
identified as large ones. As a consequence, their bandwidth is
narrow even if their remaining data is much less than other
coflows. Obviously, this mismatch will certainly elongate the
average CCT.

There exist many stages during the processing of a task
which has a corresponding coflow. We designate a stage of
the task associated with one coflow as a sub-coflow. It has two
phases: transmission and computation. During the first one, all
the flows belonging to this coflow transfer data from sources
to destinations. After all these flows finish transmission, the
computation begins. When the second phase finishes, this
sub-coflow is complete accordingly. In parallel computing
frameworks, the subsequent stages have dependency on the
antecedent stages, so in a coflow, the beginning of each sub-
coflow requires the completion of all the antecedent sub-
coflows.

In this paper, we propose the Multi-stage Inter-Coflow
Scheduling (MICS) Problem and present a multi-stage aware
scheduling framework. With the multi-stage awareness, sched-
ulers are able to have a more fine-grained view of coflow than
traditional heuristics. Moreover, we introduce two heuristics
to optimize the average CCT: Iteratively Approaching Optimal
(IAO) and Multi-stage Least Bottleneck First (MLBF). The
former is beneficial to guarantee fairness among coflows while
the latter can deliver a better performance.

In IAO, we partition the original MICS problem into many
Single-stage Inter-Coflow Scheduling (SICS) Problem. In each
SICS problem, we greedily minimize the average CCT of
corresponding sub-coflows, and then combine the scheduling
result in each SICS problem into the final result for MICS.
We first prove that the SICS problem is a convex optimization
problem, which allows us to search for the optimal solution.
In virtue of interior point method [16], we design IAO to
minimize the average sub-coflow completion time (SCCT). In
our experiments, IAO outperforms significantly a non multi-
stage aware one (e.g., Varys [10]). As the size of coflows



increases exponentially, it improves both average CCT (from
2× to 7.95×) and the completion time of all coflows (from
2.6× to 7.42×) compared to Varys.

However, IAO is short-sighted to some extent. It only
focuses the current sub-coflows, leading to a local optimal
solution but not optimal for the entire transmission of all
the coflows. The lack of foresight affects the performance
of IAO, since IAO tends to transfer the current sub-coflows
simultaneously and consequently gives rise to overlap of their
computation phases. During the overlapping period, network
is idle, which is a great waste of link bandwidth.

In order to improve the network utilization, network should
be used by one sub-coflow exclusively instead of sharing.
Based on SJF, we propose MLBF heuristic to achieve this
target. In our experiment, it outperforms IAO from 1× to
1.65× in average CCT with the exponential increase in the
number of coflows.

The rest of this paper is organized as follows. We introduce
the network model, the coflow abstraction and the definition
of sub-coflow in Section II. Furthermore, we formulate the
MICS problem and prove its harness in Section III. Then we
propose two heuristics to solve this problem in Section IV and
evaluate them in Section V. Last but not least, we discuss our
work in Section VI, present related work in Section VII and
conclude this paper in Section VIII.

II. BACKGROUND

A. Network Model

In our study, we consider the data center network as a
giant non-blocking switch [4, 10, 13, 17] and only focus on
its ingress and egress ports (Figure 1). This abstraction is
reasonable because of the great progress made in full bisection
bandwidth topologies [18]. In this model, an ingress port
might send data to one or more egress ports, and an egress
port might receive data from one or more ingress ports. Owing
to the limited bandwidth of switch ports, we need to allocate
bandwidth to flows between ingress port set P and egress port
set Q. In Figure 1, there are more than one coflow passing
through an ingress port and there is only one flow of each
coflow in a port.

B. Coflow Abstraction

A coflow refers to a set of flows that are produced by
two groups of machines which serve the same task and share
the same performance target in the cluster parallel computing
framework. We define a flow f of coflow Ci as a tuple
f = (p, q) ∈ Ci, where p ∈ Pi and q ∈ Qi are the source and
destination ports respectively. In our network model, coflow
Ci has ingress port set Pi ⊆ P and egress port set Qi ⊆ Q. A
coflow has multiple stages, and the beginning of each stage
requires the completion of all the antecedent stages. A stage
of one coflow is defined as a sub-coflow. The set of coflows
in the network is C = {C1, C2, . . . , Cn}, and every coflow
has φ stages, which means each coflow has φ interdependent
sub-coflows.
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Figure 1. Coflow scheduling over Date Center Fabric with
3×3 ingress/egress ports. There exist 4 coflows: C1, C2, C3,
and C4. The width of flows indicates the rate of flow and
the width of ingress ports shows the bandwidth limit of ports.
Areas of flows are their remaining data.
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Figure 2. The dependency between sub-coflows in coflow Ci.
No.j is sub-coflow Ci,j and the arrows show their processing
sequence.

C. Sub-Coflow

A coflow is composed of multiple sub-coflows in a certain
sequence, and flows in these sub-coflows are the same. The j-
th stage of Ci is sub-coflow Ci,j . Once all the sub-coflows on
which Ci,j depends complete, Ci,j would begin immediately.
For example, in Figure 2, sub-coflow Ci,3 would not begin
until both Ci,1 and Ci,2 complete. Sub-coflows are processed
in topological order in this DAG.
Ci,j begins transferring at ti,j , and after the completion of

all its flows, it waits for the computing phase. Computation
would generate new data, which is the transmission load of
the next sub-coflow. When the computing phase finishes, the
sub-coflow completes and we define sub-coflow’s completion
time as SCCT. During the period of computation, the ports of
Ci,j are idle. We can assume that all the coflows arrive at the
same time 0, namely, ti,1 = 0 (∀1 ≤ i ≤ n).

III. PROBLEM FORMULATION

Given the information about a set of coflows and the
bandwidth of switch ports, we are supposed to decide at what
rate to serve their flows at a certain time to minimize the
average coflow completion time (CCT). In other words, if we
already know the data to be transferred for ∀f = (p, q) ∈
Ci,j is Vi,j,p,q , the related computing time is Ti,j and the



bandwidth of p and q are Rp and Rq , a function of time
ri,j,p,q(t) is required that describes the rate allocation for flow
f = (p, q) ∈ Ci,j at time t.

In DCN, coflow scheduling is subject to the following
restrictions:

1. Bandwidth Constraints. At any time t, the total band-
width allocated to any port should not be more than its
capacity: ∑

i,j,q

ri,j,p,q(t) ≤ Rp, ∀t (1)

∑
i,j,p

ri,j,p,q(t) ≤ Rq, ∀t (2)

2. Order of sub-coflows. For every coflow, its sub-coflows
must be processed in topological order in dependency graph.
Ci,j can begin to be processed only after all of Ci,h it depends
on have completed. Then the constraint of dependency is as
follows:

ti,h+max
p,q

τi,h,p,q+Ti,h ≤ ti,j , ∀h ∈ {x|Cj depends on Cx}
(3)

In this inequation, τi,h,p,q is the time cost of transferring
the data of flow f = (p, q) ∈ Ci,h and can be calculated by:∫ τi,h,p,q

0

ri,h,p,q(t)dt = Vi,h,p,q (4)

Considering that we only focus on the transmission of
data, we define CCT(Ci) as the completion time of the data
transferring phase of the last sub-coflow Ci,φ.

CCT(Ci) = ti,φ + max
(p,q)

τi,φ,p,q

As a result, the target is:

min
1

n

n∑
i=1

CCT(Ci)

We model this scheduling problem with Multi-stage Inter-
Coflow Scheduling Problem (MICS) and provide an online
scheduling framework.

Theorem 1: The MICS problem is NP-hard.
Proof: Chowdhury et al. [10] have proved that in the

same network model, scheduling of single-stage coflows to
minimize average CCT is NP-hard. MICS problem is the
scheduling of a combination of many single-stage coflows.
As a result, minimizing average CCT of multi-stage coflows
is NP-hard. �

IV. ONLINE SCHEDULING

Before the scheduling scheme, we firstly propose an on-
line scheduling framework: At the beginning, initial rate of
Ci,1 (∀1 ≤ i ≤ n) would be allocated at time 0. Rate allo-
cation only happen when a new sub-coflow arrives or an old
one completes. In experiments, we find it fairly balances the
network utilization and the overhead of frequent scheduling.
In addition, several assumptions are introduced to make us
focus on important decisions.
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Figure 3. The solid (blue) arrows indicate the processing
sequence that sub-coflows of the same coflow should follow.
The dashed (orange) arrows show the actual sequence.

A. Assumptions

1. Identical Switch Port. In consideration of the large-
scale deployment of routers in data center, most of their
transmission capacities are similar. In our abstraction, we can
assume that all the capacities of switch ports are the same
bandwidth R.

2. Bijection. We define a flow f = (p, q) a bijection from
ingress port p to egress port q, which means that, in a coflow,
each ingress port only receives data from one egress port, and
vice versa. Given that each flow has a unique ingress port
and egress port in a coflow, different flows would not conflict
each other on any port. By this way, we no longer need to
worry about the rate division of flows that share the same
port. Based on this assumption, we directly use f to represent
a flow, instead of 2-tuple (p, q).

3. Rate Consistency. Between two schedules, the rate of one
flow should not change, which is guaranteed by the framework
schedule strategy.

4. Ascending Sequence. In one coflow Ci, sub-coflow Ci,j
depends on all of Ci,h(1 ≤ h < j) and none of Ci,h(h ≥ j).
Under this assumption, there is no ring in the dependency
graph and an inference can be drawn that the next sub-
coflow Ci,j can begin immediately once the previous Ci,j−1
completes. For example, as shown in Figure 3, each sub-
coflow depends on all its antecedent ones, so the only feasible
sequence is 1, 2, 3, 4. This assumption ensures that the
sequence of sub-coflows in Ci is Ci,1, Ci,2, ..., Ci,φ.

B. Problem Analysis

With this framework, we only focus on a simplified prob-
lem: Allocate rate ri,f for all the flows in the current sub-
coflow of Ci before the next scheduling. Based on a simple
greedy, we try to minimize the average SCCT of current sub-
coflows, which will finally lead to the decrease of average
CCT. We assume that, the current sub-coflow of Ci is Ci,si ,
the completion time of Ci,si is ti, and the remaining volume
of its flow f is Vi,f . Then Equation (4) turns into:

ti = max
f

Vi,f
ri,f

(5)

Our online scheduling target is minimizing function T (r),
the sum of completion time of all the current sub-coflows.

T (r) =

n∑
i=1

ti =

n∑
i=1

max
f

Vi,f
ri,f

(6)



The aggregate rate of all the current flows should not exceed
the capacities of ports. Note that based on the aforementioned
definition, flow is equivalent to a source-destination port pair.
For convenience, we denote ω as the number of flows in⋃n
i=1 Ci,si , which is the set of flows of current sub-coflows.

The original constraints Equation (1) and (2) can be simplified
to:

n∑
i=0

ri,f ≤ R, ∀1 ≤ f ≤ ω (7)

We model this problem as Single-stage Inter-Coflow
Scheduling Problem (SICS).

Theorem 2: The SICS problem is a convex optimization
problem.

Proof: The proof of convex optimization requires the
problem has two characteristics: 1. the function is a convex;
2. the solution space is a convex set.

1. The target function T (r) is convex.
Firstly, we will prove the function of n-dimension vector

x, max(x) is convex.
We pick two n-dimension vectors ~a = (a1, a2, . . . , an),

~b = (b1, b2, . . . , bn) and a number t ∈ [0, 1] arbitrarily. We
assume ai = max(~a) and bj = max(~b). Then

ak ≤ ai ⇒ tak ≤ tai, ∀1 ≤ k ≤ n

Similarly,

bk ≤ bj ⇒ (1− t)bk ≤ (1− t)bj , ∀1 ≤ k ≤ n

As a result,

tak + (1− t)bk ≤ tai + (1− t)bj , ∀1 ≤ k ≤ n

which is,

max(t~a+ (1− t)~b) ≤ tmax(~a) + (1− t) max(~b)

So max(~x) is convex.
Also, it is obvious that the function of scalar ri,f , g(ri,f ) =

Vi,f

ri,f
is convex. Together with the convexity of max(~x), the

function of vector ~ri, h(~ri) = max
f

g(ri,f ) is convex. Then

the function of matrix r, T (r) =
n∑
i=1

h(ri) is convex.

2. the solution space is a convex set.
The solution space is all n × ω matrices in which every

element x satisfies x ∈ [0, R]. We take two matrices A and
B arbitrarily, and then


Ai,f , Bi,f ∈ [0, R],

n∑
i=0

Ai,f ≤ R,
n∑
i=0

Bi,f ≤ R
(∀1 ≤ i ≤ n, ∀1 ≤ f ≤ ω)

Clearly, ∀λ ∈ [0, 1], for any element Ci,f of new matrix
C = λA+ (1− λ)B is

Ci,f = λAi,f + (1− λ)Bi,f ∈ [0, R]

Also,
n∑
i=0

Ci,f =

n∑
i=0

[λAi,f + (1− λ)Bi,f ]

= λ

n∑
i=0

Ai,f + (1− λ)

n∑
i=0

Bi,f

≤ R
As a result, the new matrix C still belongs to the solution

space, so it is a convex set.
In summary, the online scheduling problem is a problem of

minimizing a convex function over a convex set, so that it is
a convex optimization.

�

C. A Local Solution: IAO

Considering that the SICS problem is convex optimization,
the local optimum must be the global optimum. In virtue
of the interior point method [16], our algorithm Iteratively
Approaching Optimal (IAO) can be constructed as Algorithm
1. As the iterative process goes on, the result gets closer to
the optimum.

In Algorithm 1, c is the decreasing coefficient, and its
range is [0.1, 0.5]. F (r, ζk) is a barrier function and it has
an important characteristic: F (r, ζk) is near to T (r) if r is far
from the bound of solution space, while F (r, ζk) is extremely
large if r is near the bound. With this characteristic, itera-
tively searching for minimizing this barrier function without
constraints is bound in the solution space automatically. As the
iterative process goes on, the barrier factor ζk decreases, and
F (r, ζk) would gradually approach T (r), until the precision
ε is achieved.

Algorithm 1 Iteratively Approaching Optimal Algorithm

Input: data matrix V , initial allocation r(0), precision ε
Output: rate allocating matrix r

1: Initialize the barrier factor ζ1 = 1
2: k ← 1
3: while true do
4: Construct the barrier function F (r, ζk) = T (r) −

ζk
∑ω
f=1(ln(R−

∑n
i=0 ri,f ))

5: Begin with r(k−1), minimize F (r, ζk) without con-
straint, and obtain a new solution r(k)

6: if |T (r(k))− T (r(k−1))| ≤ ε then
7: break;
8: else
9: ζk+1 ← cζk;

10: k ← k + 1;
11: end if
12: end while
13: return r(k)

In view of the high complexity of interior point method,
we set the initial allocation by Weighted Fair Sharing (WFS):

V1,f
r1,f

=
V2,f
r2,f

= · · · = Vn,f
rn,f

(∀1 ≤ f ≤ ω)



With suitable precision and initial allocation, the speed of
IAO can be accelerated significantly. Because IAO focuses on
the SICS problem, fairness among sub-coflows is guaranteed
every time IAO is invoked. In fact, the improvement of
fairness is especially evident when the bandwidth is limited
for a high workload.

D. More Far-sighted Heuristic: MLBF

Owing to the awareness of multi-stage, scheduler has
obtained a great advance in minimizing the average CCT.
However, the greedy scheduling scheme only cares about
the average completion time of current sub-coflows. This
might benefit the performance in the short term, but fails take
account of the successive sub-coflows. Hence to some extent,
they are short-sighted.

Notice that after every transmission completes, the related
computation begins at once. And during this period, the sub-
coflow does not need any bandwidth resource. In an extreme
case, between two schedules, a short-sighted optimizer tends
to schedule all the sub-coflows to transfer simultaneously,
which decreases the SCCT, but the network would be com-
pletely idle during their computing. Given that the time of
computation is non-negligible, considerable network band-
width resource is wasted in these coflow’s lifespan.

A far-sighted schedule is supposed to take the computation
time into consideration and interlace transmissions with each
other to improve the network utilization. The parallelism of
computing and transferring can significantly speed up the
transmission of other sub-coflows. The more scattered trans-
missions are, the less time they cost. In order to accomplish
this target, these sub-coflows that have a less bottleneck time
should complete earlier.

The bottleneck time refers to the transmission time if all
the remaining bandwidth is allocated to this coflow. When
remaining bandwidth is Λ and the flow f ∈ C transfers Df

amount of data, bottleneck ΓC can be calculated by

ΓC = max
f

Df

Λf
(8)

We propose Multi-stage Least Bottleneck First (MLBF)
heuristic. When a sub-coflow arrives or completes, this algo-
rithm would be invoked. Firstly, it calculates the bottlenecks Γ
of sub-coflows C, and sorts them according to Γ in ascending
order. In this order, remaining bandwidth Λ is allocated by
sub-coflows’ bottlenecks, so that flows of the same sub-coflow
complete at the same time. Finally, remaining bandwidth is
allocated averagely.

V. EVALUATION

In our experiments, using a simulator implemented in MAT-
LAB, we develop our testbed with these default settings: The
data size of flows follows a uniform distribution in [0,200MB],
there are 70 coflows in DCN and each coflow has 10 stages
and 50 flows. Besides, the default computing speed is 10MB/s.
The data size is large enough that every experiment will last at
least 1000 simulated seconds, in order to avoid random errors.

Algorithm 2 Multi-stage Least Bottleneck First

Input: sub-coflows C, bandwidth limit Λ
Output: rate allocation R

1: for all C ∈ C do
2: ΓC ← calc bottleneck(C,Λ) using Equation 8
3: end for
4: C← sort asc(Γ) B sort C according to Γ
5: for all C ∈ C do
6: τ ← calc bottleneck(C,Λ)
7: for all f ∈ C do
8: Rf ← Df/τ
9: Λf ← Λf −Rf

10: end for
11: end for
12: Allocate remaining Λ to C averagely
13: return R
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Figure 4. Influence of the scale of coflows.

In Figure 4, as the number of concurrent coflows in DCN
increases, the average network bandwidth for each coflow
is narrow, leading to an increase in average CCT of Varys.
However, multi-stage aware schedulers using IAO and MLBF
handle this situation well. Their improvements increase sig-
nificantly with the exponential increase of coflow number.
Obviously, multi-stage aware schedulers are more capable
of tackling the challenge of coflows on a massive scale. In
addition, when coflow number exceeds 40, the advantage of
MLBF over IAO gradually appears. The improvement of IAO
and MLBF over Varys increases from 2× to 4.81× and 2.01×
to 7.95× respectively.

In real-world scenarios, the distribution of coflows might
vary a lot. We evaluate the sensitivity of the three scheduling
schemes by coflows under uniform (Uni.), exponential (Exp.),
and normal (Nm.) distribution in Figure 5. We set up them
by the same average volume of data. Furthermore, normal
distribution is tested by setting the standard deviation 25,
50, 75, and 100. Figure 5 shows that the multi-stage aware
schedulers have a steady performance while Varys fluctuates.
In different distributions, MLBF and IAO still have a better
performance than Varys and MLBF keeps an advantage over
IAO by 1.56× on average.

Computation phases account for an important part of the
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Figure 6. Sensitivity to the computing speed.

processing of a task. Network utilization is influenced by
the computing speed because parallelism of computation and
transmission can reduce the idle time of network. We test the
three scheduling schemes with different computing speeds.
Figure 6 shows a notable decline of average CCT of Varys
with the improvement of computing speed. Varys is not aware
of multi-stage characteristic, so that its CCT depends on the
computation time directly and is sensitive to the computing
speed. Meanwhile, IAO and MLBF leverage this characteristic
and perform well - from 1.75× to 4.34× and from 2.52×
to 6.74× than Varys. Owing to a better network utilization,
MLBF outperforms IAO by 1.49× on average.

Besides improvement in average CCT, multi-stage aware-
ness also brings forward the time latest coflow completes (Fig-
ure 7). We observed that the latest coflow of multi-stage aware
schedulers has a much less CCT than Varys. It is because
the awareness give schedulers insight to reduce unnecessary
waiting time, potentially avoiding perpetual starvation.

However, IAO is more attractive under a high workload than
MLBF because of its improvement of fairness among coflows.
We define the improvement of average CCT (ACCT), standard
deviation (STD) and the factor of workload as follows:

Improvement of ACCT =
ACCT of Varys

ACCT of Alg.

Improvement of STD =
STD of Varys

STD of Alg.
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Figure 7. Multi-stage awareness potentially avoids perpetual
starvation.
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Figure 8. Performance of IAO and MLBF under different
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Factor of Workload =
amount of data

maximum of bandwidth

In Figure 8, as the workload increases, IAO has a great
improvement of STD on MLBF while its performance on
ACCT is slightly worse than MLBF. A less STD means a
more fair scheduling, which is important to a high workload.

VI. DISCUSSION

Bijective Flow In our study, flows are assumed to be bijection.
Simple though, it lays a solid foundation for our future work.
We can consider a physical port as multiple virtual ports of
which sum bandwidth equals to the physical port. By this way,
the complex flows can be divided into many bijections, which
have been studied in this paper.
Scheduling Without Prior Knowledge It is difficult to know
the information about stages of coflows a priori. However,
there still some feasible solutions. Firstly, these information
can be notified when coflows register with schedulers by an
API (e.g., Varys [10]). Secondly, this information can also be
obtained by machine learning (e.g., CODA [19]). Although it
might be not accurate enough, the applications do not need any
modifications. We believe that this information is sufficient to
drive a multi-stage aware scheduler well.



VII. RELATED WORK

Coflow Schedulers Coflow is recently proposed by Stoica et
al. [9]. After that, a lot of solutions have emerged to improve
coflow performance. Varys [10] is the first coflow aware
scheduler which leverages the characteristics of coflow to
minimize CCT. Qiu et al. [20] proposed a way to minimize the
weighted CCT while scheduling coflows with release dates.
Aalo [13] provides a scheme without prior knowledge, taking
the dependency of coflows into consideration.

We focus on the multi-stage characteristic of coflow that
has not been noticed before and give schedulers a fine-grained
view of coflows.
Flow Schedulers Transport-level flow scheduling has been
studied in a long time. Hedera [6] designed a dynamic
scheduling system to utilize aggregate network resources.
Orchestra [21] noticed the semantics between flows, and
optimized at a higher level that individual flows. Baraat [22]
further promoted scheduling level to task, so that schedulers
become task-aware. Using expansion ratio, Zhang et al. [23]
designed MERP to achieve efficient flow scheduling without
starvation.

We schedule flows at a higher level, obtaining more se-
mantics. Minimizing CCT is more beneficial to improve the
performance of applications than minimizing FCT directly.

VIII. CONCLUSION

We study the coflow scheduling and find an important
characteristic that a coflow has multiple stages. In light of
our observation, we formulate the Multi-stage Inter-Coflow
problem and prove it to be NP-hard. We divide the MICS
problem into many Single-stage Inter-Coflow problems. Then
we prove the SICS problem to be a convex optimization
problem. We construct a solution IAO to approach the optimal
rate allocation for every SICS problem and experiments show
IAO improves average CCT by up to 4.81×. However, we find
this strategy is short-sighted. In virtue of SJF, we propose a
far-sighted scheduling scheme – MLBF, which outperforms
IAO by up to 1.65×.
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