
SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks 00: 1–13 (2009)
Published online in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/sec.0000

SSL-Enabled Trusted Communication: Spoofing and
Protecting the Non-Cautious Users

Fang Qi1, Zhe Tang1, Guojun Wang1,2,∗ and Jie Wu2

1 School of Information Science and Engineering, Central South University, Changsha, 410083, P. R. China
2 Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA

Summary

The anti-spoofing community has been intensively proposing new methods for defending against new web-spoofing
techniques. In this paper, we analyze the problems within current anti-spoofing mechanisms, and propose a new
SSL protected trust model. Then, we describe the attacks on SSL protected trusted communication. In this paper,
we also propose the new Automatic Detecting Security Indicator scheme (ADSI) to defend against spoofing attacks
on SSL protected web servers. In a secure transaction, ADSI will randomly choose a picture and embed it into the
current web browser at a random place. This can be triggered by any security relevant event that has occurred on
the browser, and then automatic checking will be performed on the current active security status. When a mismatch
of embedded pictures is detected, an alarm goes off to alert the users. Since an adversary is hard to replace or mimic
the randomly embedded picture, the web-spoofing attack can not be mounted easily. In comparison with existing
schemes, (1) the proposed scheme has the weakest security assumption, and places a very low burden on the user
by automating the process of detection and recognition of web-spoofing for SSL-enabled trusted communication;
(2) it has little intrusiveness on the browser; and (3) it can be implemented in a trusted PC at an Internet Cafe.
Copyright c© 2009 John Wiley & Sons, Ltd.

KEY WORDS: Automatic Detecting; Security Indicator; Web-spoofing; Secure Socket Layer; Trusted
Communication

1. Introduction

With rapid development of the Internet and web
technologies, most of the online secure applications
(e.g., on-line banking) are protected with secure socket
layer (SSL) protocol [1]. Although SSL guarantees
that the received message is authentic and confidential
in the transmission, it does not authenticate the
interface between users and machines. Therefore,
the user may be cheated since the human computer
interface (HCI) is not trustworthy, despite an SSL

∗Correspondence to: School of Information Science and Engi-
neering, Central South University, Changsha 410083, China. E-
mail:csgjwang@mail.csu.edu.cn

protocol is performed. This HCI attack is also referred
to as web-spoofing in web applications.

Web-spoofing often fakes a new bogus window
and its methods. The bogus window, having the
same appearance as the original browser window,
shows the web content of the attacker. In addition,
the bogus browser can respond to the client’s input
events without being suspected. This attack allows an
adversary to observe and modify all web pages sent to
the user’s machine, and observes all input information
of the client.

Here is an illustrative example of web-spoofing,
a user likes to visit a bank for online transaction

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls [Version: 2008/03/18 v1.00]

2 F. QI ET AL.

and bank account management, by clicking a hyper-
link. Unfortunately, the user is misled to a bogus
web site which creates a spoofed password dialogue
windows. According to present web technologies,
SSL-protected windows have all the security features,
and hence careful users may check the indicators in
an SSL-protected web page: a closed lock icon in
the status bar, a text of the actual domain name in
the status bar, and a closed lock icon in the address
bar. The lock icon indicates that the page the user is
viewing was delivered to the user securely. Due to the
crafty spoofing technology, the spoofed window looks
exactly like a real window, and has a bogus status line
and other graphical user interface (GUI) components
with a security lock. Even a user that takes time to
inspect a web site certificate may be cheated since
the shown certificate may be bogus. Therefore, the
indicators do not guarantee that the received page is
authentic. Consequentially, the personal data entered
into password dialog boxes will be sent to the attacker
not the genuine server.

Web-spoofing attacks have been known for years
[2]- [8] and has resulted in business and e-commerce
transactions hijacking. To prevent web-spoofing,
many solutions [9]-[15] have been proposed. These
solutions create obvious logos such as text, symbols,
synchronized random dynamic boundaries (SRDs)
of the browser [9], a trusted credential area (TCA)
[11] or individually chosen background bitmaps [11]
designed for easy and definite recognition by users.

In [9], the authors proposed to apply synchronized
random dynamic boundaries (SRDs) to distinguish
authentic parts of the browser GUI from rendered
content received from a server by changing the
boundary colors of the real GUI pseudo-random and
unpredictable for remote attackers. In [10], the authors
introduced the concept of the trusted credential area
(TCA) which visualizes the authenticity of a web site
by means of extended graphical credentials (e.g. brand
logos, icons, seals). In [11], the authors proposed to
authenticate browser’s secure connection indicators
(BSCIs) by applying the concept of personalization
with individually chosen background bitmaps. In
case of a browser spoofing attack, the information
displayed by the browser, and the information
displayed in the independent authenticated BSCI will
differ, and the visual spoofing attack will be noticed
by the user. In [15], the authors proposed the scheme,
which is named as “dynamic security skins”, with a
trusted window in the browser dedicated to username
and password entry. If the visual hash which is
displayed by the trusted password window does match

the website background, it means that a remote attack
does not happen. To achieve mutual authentication
of the user and the server, the authors implement
the Secure Remote Password Protocol (SRP), which
is a existing verifier-based protocol, that is required
integrated into the SSL/TLS protocol.

However, these countermeasures are not satis-
factory due to the following reasons: (1) User’s
burden: they require mandatory effort of users, such
as attention to the change of boundaries, graphic
credentials, and the background bitmaps in web
browser at any moment; (2) GUI interference: the
GUI may be changed in a non-friendly way; (3)
machine-dependent: some previous methods require a
personal image or image database on the computer. If
a user visits an Internet bank at an Internet Cafe, it is
impractical for the Internet Cafe to provide personal
image or image database.

In this paper, we propose a countermeasure to web-
spoofing, which is referred to as automatic detecting
security indicator (ADSI). ADSI consists of three
modules whose tasks are, respectively, those of:
creating a random indicator, embedding the random
indicator, and detecting the random indicator. ADSI
makes sure that the present web page is trustworthy
for SSL-protected server, and gives an alarm when a
faked page is identified.

Compared with the previous countermeasures, our
solution has the following advantages : (1) Relax
user’s burden: our solution aims to remove the
user’s burden by automating the process of detection
and recognition of web-spoofing for SSL-based
communication. Almost all the previous methods
require that the user pay attention to the changes of
the browser; (2) Ease of use: this scheme has little
intrusion on the browser while other countermeasures
may need to disable JavaScript, pop-up windows
(e.g., [12]), or change the color of the boundaries
(e.g., [9]), or implement a trusted window in the
browser dedicated to username and password entry
(e.g., [15]; (3) Machine-independent: This scheme can
be implemented in any trusted PC at an Internet Cafe
without requiring personal folders with individually
chosen background bitmaps (e.g., [11], [15]).

In this paper, we analyze the problems in those anti-
spoofing countermeasures, and introduce the attack
on SSL-protected trusted communication. We also
propose a countermeasure to web-spoofing, which is
referred to as automatic detecting security indicator
(ADSI).

The organization of the paper is as follows. In
Section 2, we briefly review related works. Section

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–13 (2009)
DOI: 10.1002/sec

SSL-ENABLED TRUSTED COMMUNICATION 3

3 describes the trust model. Section 4 designs the
attack on trusted communication. Section 5 proposes
the scheme of ADSI and addresses the performance
of ADSI. Section 6 describes the implementation of
ADSI. Section 7 describes the analysis, and discussion
on the countermeasures of the trust model. At last, we
conclude the paper and discuss some future directions
in Section 8.

2. Related Work

The SSL-protected transaction process is as follows.
The SSL-enabled server owns a certificate issued by
a certificate authority, and responds to the client’s
requests. When a user requests a secure page via a web
browser, SSL protocol authenticates the server and
generates a session key for the secure communication
between the client and the server. Meanwhile, the
security lock is lit in the browser status line if the
server is authenticated. Additionally, if the user clicks
the security lock, the security information such as the
server certificate information will be shown on the data
area of the popup window. Nonetheless, the user may
be cheated by present web-spoofing attack.

To mount a web-spoofing attack, the attacker would
lure the client to accept malicious packets so as to
sit in the middle between the target server and client.
The connection could be redirected to the attacker’s
site pretended to be a trusted server without any
client notification. As a result, the attacker is able to
insert, delete, and tamper the communication data. The
attacker may also feed the browser with the faked
web content with a manipulated certificate. In this
way, a malicious web server is set up to communicate
with the client “securely”. Although bogus pages are
shown to the user, the GUI looks like the same as the
genuine one when a web-spoofing attack is mounted
successfully.

Felten et al [2] proposed a web-spoofing attack.
In the scheme, an attacker stays between the client
and the target site such that all web pages destined
to the user’s machine are routed toward the attacker’s
server. The attacker rewrites the web pages in such
a way that the appearances of these pages do not
change at all. On the client browser, the normal status
and menu information bar are replaced by identical-
looking components supplied by the attacker. The
attack [2] can prevent HTML source examination
by using JavaScript to hide the browser’s menu bar,
replacing it with a menu bar that looks just like the
original one. To attack a SSL-enabled web server, the

attacker sends to the client a certificate of an innocent
person to avoid punishment. Although the method is
quite straightforward, it is hard to launch because the
attacker has to obtain the corresponding private key of
the innocent person. It is also easy to be detected since
a cautious user can also detect this attack by checking
the security properties of the server.

Lefranc and Naccache [16] described malicious
applets that use Java’s sophisticated graphic features
to rectify the browser’s padlock area and cover the
address bar with a false https domain name. Mounting
this attack is much simpler than [8] as it only demands
the insertion of an applet in the attacker’s web page.
The attack was successfully tested on Netscape’s
Navigator. But the attack is not successful when it
is tested on Microsoft’s Internet Explorer because a
warning message is added in the end of the popup
window. To overcome this shortcoming, the authors
suggested to patch an artificial image. However, a
weird image may also alert the client that an attack
is under way. Moreover, Horton et al [10] and Paoli et
al [11] adopted the patch method.

Ye et al [9] proposed a trusted path solution to
defend against web spoofing. The authors set up the
boundary of the browser window with different colors
according to certain rules. They defined an internal
reference window whose color is randomly changed.
Any malicious web content will fail to control a
browser window due to uncontrollable inset/outset
attributes. Therefore, if a new pop-up window has
a different color from that of the reference window,
the user concludes that a web-spoofing attack is
under way. For the small screen devices (such as
hand-held device), this countermeasure is impractical
because it is inconvenient to open two windows and
switch between the windows. Moreover, the attacker
can create a bogus reference window to overlap the
original reference window so as to break the defense.

Herzberg et al [10] proposed the concept of the
trusted credential area (TCA). The authors suggest
creating a “trusted credentials area” as a fixed part of
the browser window. The trusted credentials areas are
unspoofable areas in a browser’s user interface, which
visualize the credentials from the web site, such as
logos, icons, and seals of the brand, that have been
certified by trusted certificate authorities. A strength
of the solution is that it does not rely on complex
security indicators. However, careful consideration
must be given to the design of an indicator for insecure
windows so that spoofed credentials can be easily
detected. It is not clear how logos will be certified,
and how disputes will be resolved in the case of

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–13 (2009)
DOI: 10.1002/sec

4 F. QI ET AL.

similar logos. This method is costly for a certification
authority to verify that certified logos are sufficiently
distinct. Unfortunately, in some cases, users may be
confused by the imitational brand logos. To detect this
attack, they must be able to inspect the certificate, and
to distinguish the domain name of the real web site
from the spoofing site.

Adelsbach et al [11] proposed to implement and
combine all concepts in an adaptive web browser
toolbar, which summarizes all relevant information,
and allows the user to get this crucial information
at a glance. Since this toolbar is a local component
of the user’s system, a remote attacker cannot
access it by means of active web languages. The
advantage of this implementation is that a user has a
permanent and reliable overview about the status of
his web connection. Once a user has personalized the
browser’s GUI, the user achieves sufficient security
against visual spoofing attacks. The user only has
to verify the web browser’s personalization and the
certificate information, which is always displayed. A
disadvantage of the toolbar described above is that its
implementation depends on the underlying browser,
as it must be integrated in the web browser’s user
interface. At each login, the user must recognize his
personal image.

Dhamija et al [15] proposed the scheme “dynamic
security skins”, that allows a remote web server to
prove its identity in a way that is easy for a human user
to verify and hard for an attacker to spoof. The browser
extension provides a trusted window in the browser
dedicated to username and password entry. The
scheme allows the remote server to generate a unique
abstract image for each user and each transaction. This
image creates a skin that automatically customizes
the browser window or the user interface elements
in the content of a remote web page. To authenticate
content from the server, the user can visually verify
that the images match. Given an initial seed, Random
Art generates a random mathematical formula that
defines a color value for each pixel in an image
[17]. The image generation process is deterministic
and the image depends only on the initial seed. The
advantage is that the user has to recognize only one
image and remember one low entropy password, no
matter how many servers he wishes to interact with.
Another advantage is that, to authenticate content from
an authenticated server, the user only needs to perform
one visual matching operation to compare two images.
The disadvantage of this method is that the GUI
may be changed in a non-friendly way, because its
implementation depends on the trusted window. This

method also requires personal image, which can not be
used in the Internet Cafe. The method requires the user
to pay attention to the difference of images between
the trusted window and the background bitmaps of the
browser. The implementation of the method is based
on the secure remote password protocol, this could
result in a drawback, because it requires the integrating
of SRP with SSL/TLS to the web server side.

3. Trust model

It is assumed that ADSI relies on a trusted computer,
which is a safe environment without spyware or virus.
This assumption is widely accepted by other schemes
[10] [11], and also reasonable since it is impossible to
provide security function in a compromised computer.
A trusted PC is different from a personal PC.
Concretely, a user has partial control of a trusted PC,
but total control of a personal PC. For example, a home
computer is a personal PC, while a non-compromised
computer at an Internet Cafe is a trusted PC, since
a normal user can not change the configuration
of the computer. Thus, the previous schemes (e.g.,
[11]) are only applicable to personal computers since
the computers are customized to link security signs
with individually chosen background bitmaps in the
personal folders.

With respect to Fig.1, the trust model in ADSI has
four parties: user, web client, web server, and attacker.
In this model, the user initiates a web client (e.g.,
Netscape Navigator or Microsoft Internet Explorer) to
access a web server, so as to download content or a
web page from the server. The client may reside either
on a trusted PC at an Internet Cafe or on a personal PC.
The attacker can launch any spoofing attacks between
the server and the client.

The trust path from the user to the web server have
four sub-paths: Sub-path 1, user to PC; Sub-path 2,
PC to web browser; Sub-path 3, web browser to web
content; and Sub-path 4, web content to web server.

¦ [Sub-path 1]-user to PC: The user needs to trust
the PC in a transaction process. As mentioned
above, the trusted PC was not infected with any
virus or spyware, such as a keystroke logger, and
provides the platform for our ADSI.

¦ [Sub-path 2]-PC to web browser: The browser
needs to also be trusted. Most attackers
manipulate spoofed browsers to lure the user
to input passwords, since this method is
easily implemented and effective. Protecting

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–13 (2009)
DOI: 10.1002/sec

SSL-ENABLED TRUSTED COMMUNICATION 5

Fig. 1. Trust Model.

the browser from spoofing, especially the SSL-
enabled browser, is the major concern of the
anti-spoofing community.

¦ [Sub-path 3]-web browser to web content: Even
with the genuine browser, the rendered web
content may still be counterfeited. Security
signs which are unknown to the attacker, e.g.,
personal icons instead of the padlock (which
might be a fake one), are needed to visually
remind the user of the authenticity of the web
content.

¦ [sub-path 4]-web content to web server: Rarely
mentioned, yet not unimportant, all of the
security signs may indicate that the web server
is authenticated with SSL protected protocol,
only the web server is not the one the
user desires (e.g., the user may be confused
by two similar URLs: www.citibank.com
and www.citibanks.com. While the latter
has registered at some CA with a genuine
certificate). Thus, it is the responsibility of the
user to check the authenticity of the URL.

4. Attacks on Trusted Communication

This section designs the attack on the sub-path2 of the
trust model in SSL protected communication.

With reference to Fig.1, the attacker can insert,
delete, and tamper the communication data. He may

feed the browser with the faked web content and a
manipulated certificate. In sum, a spoofed web server
is set up to communicate with the client securely. After
forcing the client to receive malicious packets, the
attacker sends a HTML file to the client so as to create
a spoofed browser. This malicious HTML page may

1. Create a new window with the method
window.open(attackerURL,
"BogusWindow", "menubar=0,
scrollbars=0, directories=0,
resizable=0, toolbar=0,
location=0, status=0"), the parameter
“0” indicates that the attacker disables the
default browser window configuration.

2. Draw a bogus status line and other GUI
components with a security lock.

3. Display the content of the target page and
4. Create event response functions. For example,

when the user checks the security property,
an artificial dialog box should be pop up
to convince the user that all the security
information is correct.

Technically, this bogus interface is generated after
the client accepts a malicious HTML file (see Table I),
which creates a new window without a status line. The
new window is split into two frames. One is named
the upperFrame. The upperFrame showing the web
page attacker.html of the target site, is provided

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–13 (2009)
DOI: 10.1002/sec

6 F. QI ET AL.

Table I. Frame settings

<FRAMESET ROWS=“*,18” frameborder=“YES”
border=“1” framespacing=“0”>

<FRAME NAME=“upperFrame”SRC=“attacker.html”
>

<FRAMESET cols=“*,24,24,24,150”
frameborder=“YES” border=“1” framespacing=“0”>

<frame name=“ielogo” scrolling=“NO”
MARGINHEIGHT=“0”noresize src=“ielogo.html”>
<frame name=“status” scrolling=“NO”

MARGINHEIGHT=“0”noresize src=“clearbg.html”>
<frame name=“progress” scrolling=“NO”

MARGINHEIGHT=“0” noresize src=“clearbg.html”>
<frame name=“lock” scrolling=“NO”

MARGINHEIGHT=“0” noresize src=“lock.html”>
<frame name=“earth” scrolling=“NO”

MARGINHEIGHT=“0”noresize src=“earth.html”>
</FRAMESET>

</FRAMESET>

Table II. Display security lock

<html>
<head>

<title>Untitled Document lock</title>
<meta http-equiv=“Content-Type”
content=“text/html;charset=iso-8859-1”>

</head>
<body bgcolor=“#c8d0d4”>

</body>
</html>

by the attacker. But, from the view of the client, the
content is not abnormal because the content is correct.
The other frame is forged to be the status line of the
genuine browser, and is split further into 5 sub-frames.
Those sub-frames display IE icons with the HTML
file ielogo.html, an earth icon with the HTML file
earth.html and a security lock (closed) icon with
the file lock.html.

To cheat the careful users, lock.html provides
the security lock icon, as well as its actions. Table
II is the code of lock.html where showLayer()
processes the click event. When the user clicks on the
security lock icon, the response action will display
the certificate information of the bank server as the
genuine browser does.

A HTML tag <LAYER> is a frame that can be
absolutely positioned. It can occupy the same 2D
spaces as another frame. A layer looks like a frame
with a document property that is an object actually,
with all the properties of the top-level document
object. It captures events in the same way as the top-
level window or document. The basic properties are

Table III. Embedding the spoof applet

<div id=“Layer1” style=“position:absolute; visibility:hidden;
width:400px; height:500px; z-index:1;left: 80px; top: 40px”>

<applet code=SpoofApplet archive=”Spoof.jar”
width=410 height=477 MAYSCRIPT=true>

</applet>
</div>

Table IV. Change visibility of a layer

<Javascript>
Function showLayer()

{var doc=window.top.frames[0].document;
var layerstyle=doc.all[“Layer1”][“style”];
if(layerstyle.visibility==“hidden”)

layerstyle.visibility=“visible”;
else layerstyle.visibility =“hidden”; }

</Javascript>

the same as the other HTML elements. The layer-
specific attributes are “top”, “visibility” and
“id” properties: the “top” property specifies its
position so as to move the layer; “visibility”
controls whether the layer is displayed;“id” identifies
the layer. Table III sets up the layer to forge the
certificate window. Table III is the code that generates
the layer whose id is “Layer1”, default visibility
attribute is “hidden”, and size is 400× 500 pixels.
Its top-left coordinate is (80, 40). The document
loaded in this layer is the applet encapsulated in
a jar file “Spoof.jar”. This applet is enabled to
communicate with the HTML JavaScript functions by
setting the attribute “MAYSCRIPT=true”. The code in
Table III is appended to the server web, as well as the
jar file “Spoof.jar”.

To cheat careful users, the malicious applet should
response to the user input dynamically. To this end, the
bogus browser processes 5 kinds of events.

1. Click on the closed lock icon: The code in
lock.html (see Table II) indicates that the
function showLayer() will make the layer
visible when the onClick event occurs. The code
in module showLayer() in Table IV finds
the document at first, then finds the layer, based
on layer id value “Layer1” attribute, which is
defined in Table III. The event response module
changes the visibility attribute of the layer to
be “visible” from “hidden”. That is to say, the
certificate window will be shown when the user
clicks on the lock icon. In order to save time for
next display of certificate information, the layer
is hidden other than not destroyed, when closing
the certificate window.

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–13 (2009)
DOI: 10.1002/sec

SSL-ENABLED TRUSTED COMMUNICATION 7

Table V. Response to click on lock

OkButton.addActionListener(new ActionListener() {
Public void actionPerformed(ActionEvent e) {
JSObject win=JSObject.getWindow(theApplet);
// theApplet is the name of the malicious applet.

Object[] args=new Object[0];
win.call(“showLayer”,args);}

});

2. Click on the tab button: the corresponding tab
page will be exposed. Class JTabbedPane
provides an easy way to switch between the
tabs.

3. Moving the certificate window: when the
position of mouse is obtained, the new position
of the layer can be set. However, the layer can
move in the area of the bogus window only. This
weakness may help a cautious user to detect
the attack. Unfortunately, few users check the
security by moving a window.

4. Click on the internal buttons: When a user clicks
the buttons whose actions are restrained to the
applet itself, the action procedures are easy to
be realized. The exemplary button is the “Install
Certificate . . . ” in the General tab page.

5. Click on external buttons: The buttons, includ-
ing the “OK” button and the “close” button in
the top-right corner, can close the certificate
window. Because the button click event is
received by the applet, the applet should
pass it to the HTML/JavaScript page. By
searching the JSObject tree, the method
actionListener of Okbutton calls the
Javascript function showLayer() in the
HTML page. Table V illustrates this code.

6. When the user clicks on the system close button
on the top-right corner of the browser window to
close the window, the attribute of layer visibility
is set to be “hidden”.

5. Countermeasures on Trusted
Communication

In this section, we describe the Automatic Detecting
Security Indicator (ADSI) for preventing web-
spoofing in detail.

As a countermeasure to web-spoofing, ADSI
(Automatic Detecting Security Indicator) is a part
of the browser (e.g., Microsoft Internet Explorer).
When a user starts a browser, ADSI is initiated at the
same time. ADSI includes three modules: creating the

random indicator, embedding the random indicator,
and detecting the random indicator.

Before we describe the modules of ADSI, we define
a logic concept as the Secure Browsing Session (SBS).
A user initiates SBS on a trusted PC (Fig. 1). Within
an SBS, the user shall start a browser, visit some
web sites, and enjoy the surfing experiences. ADSI
exists for the whole lifetime of the session. In other
words, the existence of ADSI implies an active SBS.
Furthermore, the user is not limited on the usage of
SBS in certain PC. Notice that one SBS maps to
one ADSI only, yet we allow the user to open many
SBSs on the same PC. To simplify the description, we
discuss a single SBS with a single ADSI.

An SBS is typically started with an activation of
a browser. ADSI is initiated as a parallel process.
Then ADSI creates the random indicator. When the
SBS sends the secure web page request, the SBS
calls the embedding of the random indicator module
at the same time. Whenever there is any new event,
such as starting an new HTTPS request, ADSI will
be triggered on detecting the changes of status. ADSI
snapshots the proper region of the position, and
compares it with the indicator. If the two pictures
are matching, ADSI will keep silence. Otherwise,
ADSI will report a web-spoofing alarm. Finally, the
user needs to take care of closing his SBS at the
end of the session to erase his sensitive information
while accessing some security related web sites. ADSI
ends with the closing of the session. The schematic
representation of a sequence of process in SBS and
ADSI is shown in Fig.2.

5.1. Creating the random indicator

To automatically identify authenticated web pages and
detect bogus pages, ADSI can generate random image.
For instance, an indicator image is produced with
random seed such as URL, screen data, system time
and file records, etc[17]. In subsection 6.2, we choose
another method to generate a random indicator. The
random indicator is integrated into the ADSI.

5.2. Embedding the random indicator

After the random indicator is generated, it will be
embedded into a random position in the browser to
indicate a secure page. The random embedding makes
sure that a faked popup browser window is not able to
predict the position and replicate the image.

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–13 (2009)
DOI: 10.1002/sec

8 F. QI ET AL.

Initialize
SBS

Secure Web
Page Request

Web Page
Display

Create the
Random Indicator

Embed the
Random Indicator

Detect the
Random Indicator

Captured Image is in
concert with the

indicator

Call the embedding
module to indicate a

secure page

SBS

Report an alarm

N

ADSI

Initialize
ADSI

Keep SilenceClose Secure
Browsing Session

Activation of
Browser

ADSI ends with the
closing of the session

Y

Startup ADSI as a
parallel process

End of the SBS End of ADSI

Snapshot the proper
region and compare
with the indicator

New
HTTPS
Request

Trigger

Fig. 2. The schematic representation of a sequence of
process in SBS and ADSI.

5.3. Detecting the random indicator

Whenever there is any new action of the web browser,
i.e., connecting with a new web site, or starting an
SSL connection request, ADSI will be triggered on
checking the changes of status. ADSI will also trigger
the checking process if an HTTPS is shown in the URL
bar. To check the authenticity, ADSI will check the
indicator at its proper position on the browser, e.g.,
the Up-Right region of the browser where the image
may occur. Please recall that the adversary cannot
predict the region of the position, but ADSI knows
the region. To detect the image, ADSI may snapshot
the proper region, and compare it with the indicator. If
the captured image is not in concert with the indicator,
ADSI will report a web-spoofing, e.g., an alarm with a
speaker or institutive sequence. Otherwise, ADSI will
keep silence.

6. Implementation

We choose Mozilla 3.5, which is an open source
browser, to implement visualization of ADSI .

6.1. Mozilla user interface and architecture

The visualization of ADSI is implemented as a
Mozilla extension.

Mozilla has configurable and downloadable
chrome. In fact, most of Mozilla’s windows (and
dialogs) will be described using this mechanism.
XML user-interface language (XUL) is the name
of the language in which these UI (User-interface)
descriptions are built [18].

In Mozilla, XUL is handled much in the same way
that HTML, or other types of content are handled.
When you type the URL of an HTML page into the
browser’s address field, the browser locates the web
site and downloads the content. The Mozilla rendering
engine takes the content in the form of HTML source
code and transforms it into a document tree. The
tree is then converted into a set of objects that can
be displayed on the screen. Cascading Style Sheets
(CSS), images, and other technologies are used to
control the presentation. XUL functions in much the
same way.

Mozilla provides a method of installing content
locally, and registering the installed files as part of its
chrome system. This allows a special URL form to be
used which is called a chrome: //URL. By accessing
a file using a chrome URL, the files receive elevated
privileges to access local files, access preferences and
bookmarks, and perform other privileged operations.

There are usually three different parts to a chrome
package, although they are all optional. Each part is
stored in a different directory. These three sets are the
content, the skin, and the locale. A particular package
might provide one or more skins and locales, but a
user can replace them with their own. In addition, the
package might include several different applications,
each accessible via different chrome URLs. The
packaging system is flexible enough so that you can
include whatever parts you need, and allow other
parts, such as the text for different languages, to be
downloaded separately.

This chrome package registration is the way Firefox
extensions are able to add features to the browser.
The extensions are small packages of XUL files,
JavaScript, style sheets and images packed together
into a single file. This file can be created by using a ZIP
utility. When the user downloads it, it will be installed
onto the user’s machine. It will hook into the browser
using a XUL specific feature called an overlay which
allows the XUL from the extension, and the XUL in
the browser, to combine together. To the user, it may
seem like the extension has modified the browser, but
in reality, the code is all separate, and the extension
may be uninstalled easily.

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–13 (2009)
DOI: 10.1002/sec

SSL-ENABLED TRUSTED COMMUNICATION 9

6.2. Design considerations for implementation
of ADSI

In essence, there are four main steps to look into in the
implementation of ADSI.

Firstly, the image is displayed at a random
place in the chrome area of Mozilla when the web
document request is of https request. Originally,
it is considered menu-bar, navigator
toolbar, and status-bar to display the
image. But, as the program progresses, it is found
that ADSI is inaccurate when displaying image
at status-bar. It is because the images is
deformed when shown at status-bar. At last,
we decide 9 random places to display image, which
are before or after menubar-items, before the
back-forward-button, reload-button,
stop-button, home-button,
urlbar-container, search-container,
and after search-container.

Secondly, we choose which image to be displayed
at the random place. At this stage of infancy, we get 1
among 10 images by using random algorithm. In order
to show the image, we add a toolbar button to a Toolkit
application using overlays, and assign myImage as
the id to this button. XUL elements in the mozilla
chrome are assigned an id for easy accessibility by
other elements.

Thirdly, after the browser requested page have been
loaded, we grab the image, which is displayed at the
certain place of the browser chosen at the first step.

Finally, we compare these two images, one is the
source image which is chosen at the second step, and
another is grabbed at the third step. If these two images
are the same, ADSI will do nothing, otherwise, it will
report an alarm.

6.3. GUI implementation

We add the button myImage at the chrome area
of mozilla 3.5. It can be accomplished by adding
myImageoverlay.xul. If the web document
request is of https, the button myImage is
displayed at a random place of the chrome area,
otherwise the button myImage is removed from
chrome.

We can receive the message when the
browser makes any request by using a function
window.addEventListener(). When the
mozilla makes a https request, the location of
the button myImage is replaced, and the image is
changed. These behaviors are written into browser-
internal JavaScript code, which is read by the XUL

Fig. 3. Logon page of an Internet banking system with
embedded myImage on the menu-bar generated by ADSI

Fig. 4. Logon page of an Internet banking system with
embedded myImage (beside the home-button) on the

navigator toolbar generated by ADSI

file where the button GUI code resides. To change the
attribute of myImage, we also modify the run time
code in http.js, which is described in the CSS file
myImage.css.

We can find that the URL of
list-style-image is NULL, because the
image changes as https request is sent. After the
page that has been requested is loaded, the http.js
in ADSI will decide where and which image is to be
displayed on the chrome randomly. Two screen shots
of the end result of two HTTPS requests that have
been sent are shown in Fig.3 and Fig.4.

After myImage is displayed on chrome, ADSI

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–13 (2009)
DOI: 10.1002/sec

10 F. QI ET AL.

doesn’t stop its work. ADSI will grab the button
myImage as soon as the image has been displayed.
Mozilla divides things into two sets of trees, the
content tree, and the layout tree. The content tree
stores the nodes as they are found in the source
code. The layout tree holds a different tree of nodes
for each individual component that can be displayed.
The layout tree holds the structure as the nodes are
expected to be displayed. The document object model
(DOM) is generally used only to get and modify
information pertaining to the content or structure
of the document. It’s relatively simple to determine
what kind of content tree node is created for a
given element. A XUL element, for example, has a
XULElement type of content node. XUL provides
box objects, which can provide some layout related
information. As the name implies, they are available
for all box-based elements. The box object provides
four properties, x, y, width, and height, for determining
the position and size of an element. So we can use
document.getElementById("myImage").
boxObject to get the button myImage’s coordinate
and size. Since Mozilla allows users to use canvas
to draw graphs, and make photo compositions, our
software ADSI can draw image of this area name
grabbedImage. Our software ADSI can get a
picture where size and pixel data is the same as the
image myImage’s. If phishing attacks do not happen,
the grabbed picture is the same as the source image
which only knows by program code, which is named
as sourceImage, otherwise, these two images are
different.

The CanvasPixelArray object can be accessed
to look at the raw pixel data. Each pixel is represented
by four one-bytevalues (red, green, blue, and alpha,
in that order). Each color component is represented
by an integer between 0 and 255. Each component
is assigned a consecutive index within the array,
with the top left pixel’s red component being at
index 0 within the array. Pixels proceeds from left
to right, then downward, throughout the array. The
CanvasPixelArray contains height× width×
4 bytes of data, with index values ranging from 0 to
(height× width× 4)− 1. We can get the value of
each pixel of grabedImage and sourceImage,
then compare two values. If all the pixels of the two
images are the same, ADSI keeps silence and the new
SSL session can be regarded as a secure session.

If the spoofing attacks don’t happen, the grabbed
picture is the same as the source image. As the
attacks happen, which is presented in section 4, the
attack on trusted communication can fake a new bogus

window, and its method. The adversary uses browser
features to make it appear as if the browser displays
the SSL-protected victim web page, while in fact it
is displaying a cloned page. If this spoofing attack
happens, ADSI will popup a window with alarm.

The adversary uses browser features to make it
appear as if the browser displays the SSL-protected
victim web page, while in fact it is displaying a
cloned page. If this spoofing attack happens, ADSI
will popup a window with sound alarm to attract the
user that s/he is suffering from spoofing attacks. In
fact, it turns out that many existing web sites such
as Citibank require sensitive information such as
user ID and passwords. For example, the attacker
clones Citibank login screen, which is in front of
a larger one, that is simply the regular Citibank.
It is assumed that the attacker does not use our
implementation of ADSI. ADSI is triggered and the
window with sound alarm is popped up. The screen
shot of this situation is shown in Fig.5. It is showed
that there isn’t myImage button on chrome (either
on menu-bar or navigator toolbar), and the real web
page, which has the button myImage, is behind of
the spoofing page. As the attacks happen, which is
presented in section 4, the bogus reference window
will overlay the original reference window. Although
that myImage.xpi can be downloaded from a web site
and the source code can be read by any adversary, the
image gallery of myImage.xpi can be integrated into
the software or substituted by the user, and the choice,
places of displaying image are also computed using
the random algorithm. The potential attack can be
defended effectively with the use of the customization
and random algorithms.

6.4. Installation

Because the mozilla browser allows the user to
make a custom toolbar button, the installation of
myImage requires that the user having at least 9
random places to display image. It can be installed on
Mozilla just dragging myImage.xpi (available on
http://trust.csu.edu.cn/faculty/

˜csqifang/software.html) into browser win-
dow.

7. Discussion

7.1. Automatic detection

As its most important property, ADSI automatically
detects and recognizes the web-spoofing for SSL-
enabled communication . ADSI takes into account the

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–13 (2009)
DOI: 10.1002/sec

SSL-ENABLED TRUSTED COMMUNICATION 11

Fig. 5. Logon page of an Internet banking system and
spoofing page with sound alarm generated by ADSI

limited skills for a user to detect a browser’s spoofing
attack. Previous research has shown that even under
normal conditions, it is difficult for average users to
determine whether a browser connection is secure [15]
[19]. It is indicated that intentional spoofing attacks
make this an even more challenging task for users.

In subsection 6.2, it is shown that the implementa-
tion of creating the random indicator, embedding the
random indicator and detecting the random indicator
are all automatic. The choice of random image
and displayed random place are all performed by
the source code of myImage.xpi. The following
process of performing matching operation to compare
the grabbed images and the indicator is also performed
by the source code of myImage.xpi automatically.
If the captured image is not in concert with the
indicator, the source code of myImage.xpi will
report an alarm with a speaker or institutive sequence.
Our solution implements automatic detection. The
user only needs to install the myImage.xpi. ADSI
relaxes the burden of the user effectively.

7.2. Ease of use

Some previous schemes (e.g., [12]) disable Java
Script, pop-up windows, and configuration of the
status bar so as to prevent web-spoofing. These
schemes are simple and effective but sacrifice some
important properties of web applications. In addition,
it is not easy to expect the naı̈ve users to understand
the functions and configuration of a web browser’s
status bar, location bar, and so on. We believe most

users can be reminded by the sensitive alarm report
or warning sequence. After displaying the alarm
information, ADSI allows users to verify whether the
used web page is trustworthy of not. In addition, our
scheme has little intrusiveness on the user when the
page is authentic, while others may change the GUI
interference in a non-friendly way (e.g., [12] [15]).
The implementation of the dynamic security skin [15]
is based on the secure remote password protocol,
which is a drawback, because its implementation
requires the integrating Secure Remote Protocol
with SSL/TLS to the web server. The change of
the web server represent an obstacle to widespread
deployment. Our scheme need not do any change of
the web server.

7.3. Machine-independent

Some previous countermeasures need to configure
the computer, or require the personal image or
image database on the personal PC, but ADSI can
be executed in any trusted computer. Clearly, it is
inappropriate to require user only using personal PC,
since a personal image or image database is not always
available on those PCs such as in Internet Cafe or
airports.

7.4. Protected Paths

Based on the trust model in Fig.1, there are
several sub-paths in the communication. Different
countermeasures may be deployed in different paths.

TCA [10] protecting Sub-path 4 in our trust
model, depends on a trusted third party called
Logo Certification Authority (LCA), to visualize the
authenticity of a web server by means of extended
graphical credentials (e.g. brand logos, icons. seals).
Apparently, this requirement level is strict, and
the overhead of “certification” load is significant
compared with the other two solutions. Besides its
costs, it has distinct leakages. Some attackers can have
gone through the effort of registering a real certificate
for their logos of rogue spoofing sites, to imitate the
original web sites. In this case, users usually feel
confused by alike logos, and can not rely simply on
the presence of a TCA certificate.

Personal Authentication solution [11], as in Sub-
path 3 of our trust model, requires that PCs have
personal folders with individually chosen background
bitmaps. This is not inappropriate for users using a
PC at an Internet Cafe. However, the requirement of
users’ creating and remembering all the individual

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–13 (2009)
DOI: 10.1002/sec

12 F. QI ET AL.

images for web servers imposes mandatory effort of
the users. Our solution selects to automate this process
of detection and recognition to remove the burden
from the users.

Our ADSI solution defends against spoofing attacks
on SSL-enabled web servers in Sub-path 2 of our trust
model. ADSI can defend against the browser spoofing
attack with the lowest secure requirement level, which
only requires the PC is trusted. Our solution requires
neither Logo Certification Authority, nor the personal
folders with individually chosen background bitmaps.
Our solution can fully defend the attacks described in
Section 4.

7.5. Extension

Since ADSI may randomly choose a picture, and
embed it into the current web browser at the random
place, an adversary cannot predict it, thus the attacker
can not spoof the randomly embedded indicator.
Compared with a familiar image of the user [11],
a randomly embedded image is not quite attractive
to the user. The ignorance of the user can be
compensated by the automatic checking mechanism
of our ADSI, as it will alarm the user in any way
upon detecting a mismatch. To this end, we propose
a simple and effective way in protecting naı̈ve users
from pop up browser spoofing attacks. As the spoofing
techniques evolve, and are used jointly, we can see
that our method can not defend against them without
accommodating other security mechanisms such as
personal image [11] and TCA [10]. Fortunately,
aforementioned ADSI does not conflict with any other
security means, but compensates with them. Recall the
trust model of Section 3.We secure the trust path from
PC to Browser, while [11] secures it from browser
to web content, and [10] from web content to web
server. Together, they may form an integrated solution
providing strong security.

8. Conclusion

In this paper, we analyzed the problems in web-
spoofing. Spoofing vulnerabilities were known years
ago, yet no suitable solutions proposed were efficient
enough for protecting the non-cautious users. As
analyzed in our trust model, different security
mechanisms are designed to defend against special
kinds of spoofing attacks. The attackers tend to
use their attacking skills for launching complex
attacks with advanced strategy. To battle against them,
security designers must work together on providing

syndicated systematical defending technologies to
benefit the users.

We proposed the countermeasure called ADSI,
an automatic anti-spoofing tool that can not only
function independently, but also combine other
anti-spoofing techniques to form more powerful
defences. ADSI relaxes user burden by automating
the process of detection and recognition of the
web-spoofing for SSL-enabled communication. Our
solution decreased intrusiveness on the browser, while
other countermeasures may disable Java Script, pop-
up windows or change the color of the boundaries.
Our solution can defend the browser spoofing attacks
with the lowest secure requirement level, which only
requires the PC is trusted, which is described in
our trust model. Our solution requires neither Logo
Certification Authority, nor the personal folders with
individually chosen background bitmaps. In our future
work, we must consider how to make the image gallery
of myImage.xpi more flexible. All the source codes
should be in stand alone rather than in the Mozilla’s
extension.

Acknowledgement

This work is supported by the National Natural
Science Foundation of China under Grant Nos.
90718034 and 60773013, Hunan Provincial Natural
Science Foundation of China No. 09JJ4031, the
Program for New Century Excellent Talents in
University (NCET-06-0686), and the Program for
Changjiang Scholars and Innovative Research Team in
University under Grant No. IRT0661.

References

1. Freier A.O., Kariton P., Kocher P.C. 1996. The SSL Protocol:
Version 3.0. Internet draft. Netscape Communications.

2. Felten E.W., Balfanz D., Dean D., Wallach D.S. 1997. Web
Spoofing: An Internet Con Game. Proceedings of the 20th
National Information Systems Security Conference, Baltimore,
USA

3. Tamara D. 2006. Why spoofing is serious: Internet fraud.
Communications of the ACM 49:1010, pp.77-82, Association
for Computing Machinery.

4. Wu M., Robert C. M., Little G. 2006. Web wallet: preventing
phishing attacks by revealing user intentions. Proceedings of
the second symposium on Usable privacy and security. pp.102-
113

5. Emigh A. 2005. Online Identity Theft: Phishing Technology,
Chokepoints and Countermeasure. ITTC Report on Online
Identity Theft Technology and Countermeasures. October 3.

6. Chou N., Ledesma R., Teraguchi Y., Boneh D. and Mitchell J.
2005. Client-side defense against web-based identity theft. In
Proc. 11th Annual Network and Distributed System Security
Symp. San Diego, CA, February 5-6, pp.119-128.

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–13 (2009)
DOI: 10.1002/sec

SSL-ENABLED TRUSTED COMMUNICATION 13

7. Jagatic T.N., Johnson N.A., Jakobsson M., and Menczer F.
Social phishing. Communications of the ACM, 2007

8. Florencio D., Herley C. 2007. Evaluating a trial deployment
of password re-use for phishing prevention. Proceedings of the
anti-phishing working groups 2nd annual eCrime researchers
summit. Pittsburgh, Pennsylvania,ACM.

9. Ye Z.S., Smith S., Anthony D. 2005. Trusted Paths for
Browsers. ACM Transactions on Information and System
Security (TISSEC). Volume 8, Issue 2, pp.153-186.

10. Herzberg A. and Gbara A. 2004. TrustBar: Protecting
(evenNaive) Web Users from Spoofing and Phishing Attacks.
Cryptology ePrint Archive: Report 2004/155.

11. Adelsbach A., Gajek S., and Schwenk J. 2005. Visual Spoofing
of SSL Protected Web Sites and Effective Countermeasures.
Proceedings of Information Security Practice and Experience
’2005, LNCS 3469, pp.204-216.

12. Li T.Y., Wu Y.D. 2003. Trust on Web Browser: Attack
vs. Defense. Proceedings of the International Conference on
Applied Cryptography and Network Security, LNCS 2846,
pp.241-253.

13. Tygar J.D., Whitten A. 1996. WWW Electronic Commerce
and Java Trojan Horses. Proceedings of the Second USENIX
Workshop on Electronic Commerce.

14. Wang Y., Agrawal R., Choi B.Y. 2008. Light Weight Anti-
Phishing with User Whitelisting in a Web Browser. 2008 IEEE
Region 5 Conference

15. Dhamija R., Tygar J.D. 2005. The Battle Against Phishing
Dynamic Security Skins. Proceedings of the ACM Symposium
on Usable Security and Privacy, July 2005.

16. Lefranc S. and Naccache D. 2003. Cut and Paste Attacks
with Java. Proceedings of the 5th International Conference on
Information Security and Cryptology, LNCS 2587, pp.1-15.

17. Bauer, Anrej, Random Art,
http://gs2.sp.cs.cmu.edu/art/random/

18. Mozilla Chrome
http://www.mozilla.org/xpfe/ConfigChromeSpec.html

19. Friedman B., Hurley D., Howe D., Felten E., Nissenbaum H.
2002. Users’ Conceptions of Web Security: A Comparative
Study. CHI 2002 Extended Abstracts of the Conference on
Human Factors in Computing Systems, pp.746-747.

Authors’ Biographies

Fang Qi is a lecturer at Central South
University. She received a B.Sc. degree
from the National University of Defense
Technology. She received her M.Sc.
and Ph.D degrees from Central South
University. Her current research areas are
network security, mobile computing, and
wireless communications.

Zhe Tang is an associate professor at
Central South University. He received a
B.Sc. degree from the National University
of Defense Technology. He received his
M.Sc. and Ph.D degrees from Tsinghua
University. His research interests include
humanoid robotics, intelligent control
and computer networking.

Guojun Wang received B.Sc. in Geo-
physics, M.Sc. in Computer Science,
and Ph.D. in Computer Science, from
Central South University, China. He is
currently an Adjunct Professor at Temple
University, USA. Since 2005, he has been
a Professor at Central South University,
China. He is the Director of Trusted

Computing Institute of the University. He has been a Visiting
Scholar at Florida Atlantic University, USA, a Visiting
Researcher at the University of Aizu, Japan, and a Research
Fellow at the Hong Kong Polytechnic University, HK.
His research interests include trusted computing, mobile
computing, pervasive computing, and software engineering.
He has published more than 140 technical papers and
books/chapters in the above areas. He is an associate editor,
or on the editorial board of some international journals
including Security and Communication Networks, Journal
of Computer Systems, Networking, and Communications,
and International Journal of Multimedia and Ubiquitous
Engineering. He has also served as guest editor-in-chief or
guest editor for some international journals including IEICE
Transactions on Information and Systems, The Journal of
Supercomputing (Springer), Security and Communication
Networks (Wiley), and Journal of Computers (Academy
Publisher). He has also served as a general chair, program
chair, publication chair, publicity chair, session chair,
and program committee member for many international
conferences such as ICCCN, GLOBECOM, ICC, WCNC,
AINA, HPCC, ATC, ISPA, ICYCS, TrustCom, TSP, and
UbiSafe. He is a senior member of the China Computer
Federation (2005-), the academic committee member of
the YOCSEF of the China Computer Federation (2008-
2010), and the chair of the YOCSEF Changsha of the China
Computer Federation (2007-2008).

Jie Wu is chair and professor at the
Department of Computer and Information
Sciences at Temple University. He is
an IEEE Fellow. He is on the editorial
board of IEEE Transactions on Mobile
Computing. He was a distinguished
professor in the Department of Computer

Science and Engineering, Florida Atlantic University. He
served as a program director at US NSF from 2006 to 2008.
He has been on the editorial board of IEEE Transactions
on Parallel and Distributed Systems. He has served as
a distinguished visitor of the IEEE Computer Society
and is the chairman of the IEEE Technical Committee
on Distributed Processing (TCDP). His research interests
include wireless networks, and mobile computing and
wireless networks, parallel, and distributed systems, and
fault-tolerant systems.

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–13 (2009)
DOI: 10.1002/sec

