

Time-Sensitive Utility-Based Routing in Duty-Cycle Wireless Sensor Networks with Unreliable Links

Mingjun Xiao^{a,b}, Jie Wu^b, Liusheng Huang^a

University of Science and Technology of China
 Temple University

SRDS 2012

Introduction: utility-based routing

- Concept: Utility-based routing
 - Utility is a composite metric

Utility (u) = Reliability (p) * Benefit (b) – Cost (c)

Benefit is a reward for a routing

succeed: a positive reward

fail: 0 reward

- Cost is the total transmission cost for the routing
- Benefit and cost are uniformed as the same unit
- Objective is to maximize the utility of a routing

Introduction: utility-based routing

- Motivation of Utility-based Routing
 - Valuable package: Fedex (more reliable, costs more)
 - Regular package: Regular mail (less reliable, costs less)

Introduction: duty-cycle WSN

- Duty-cycle WSN
 - Each node has two working states:
 - active: all functions (send/receive, etc.).
 - dormant: can be waked up by a timer to send packets.

- Each sensor schedules its working states periodically
- There is a non-negligible delivery delay.

Introduction: duty-cycle WSN

Any duty-cycle WSN can be converted to a direct weighted graph

(p (reliability), t (delay), c (cost)

A duty-cycle WSN: $\langle V, W = \{\langle p, t, c \rangle\} \rangle$

Motivation

Utility-based routing

Duty-cycle WSN

delivery delay is an important factor for the routing design

Time-sensitive utility-based routing

Time-sensitive utility model

Benefit: a linearly decreasing reward over time

$$b(t) = \begin{cases} \beta - t \cdot \delta, & successful delivery \\ 0, & failed delivery \end{cases}$$

- Utility: u = b(t) c
- Remaining benefit b & Expected utility u(b)

Problem

Time-sensitive utility-based routing

- duty-cycle network $G = \langle V,W \rangle$,
- source s, destination d, initial benefit β , benefit decay coefficient δ
- Objective: maximize $u_s(\beta)$.

benefit	path	
50-Z	$s \rightarrow 1 \rightarrow d$	
40-2	$s \rightarrow 2 \rightarrow d$	
30-0.1 <i>t</i>	$s \rightarrow 2 \rightarrow 1 \rightarrow d$	

Expected utility for a single path

$$\beta=45$$
, $\delta=1$ $s \xrightarrow{(0.8,5,10)} \emptyset$

	benefit	cost
Succeed (p):	<i>45</i> –1* <i>5</i> = <i>40</i>	10
Fail (1- p):	0	10
Expected	0.8*40+0.2*0	10

- Expected utility: 0.8*40 - 10 = 22

$$U_s(\beta) = p_{s,d} * (\beta - \delta * t_{s,d}) - c_{s,d}$$

Expected utility for a single path

–A general formula (Theorem 1)

$$\mathbf{\textit{u}}_{s}(\beta) = \prod_{i=0}^{n-1} \mathbf{\textit{p}}_{i,i+1} \left(\beta - \delta \sum_{i=0}^{n-1} \mathbf{\textit{t}}_{i,i+1}\right) - \sum_{i=0}^{n-1} \mathbf{\textit{c}}_{i,i+1} \prod_{j=0}^{i-1} \mathbf{\textit{p}}_{j,j+1}$$

Require the global information inefficient for multiple paths

Local iterative formula (Theorem 2)

Forward:

$$b_j = b_i - \delta^* t_{i,j}$$

Backward:

$$u_{i}(b_{i}) = p_{i,j} * u_{j}(b_{j}) - c_{i,j}$$

Local iterative formula (Theorem 2)

- 1. The number of b_i needs to be calculated is limited. Especially for a well scheduled duty-cycle WSN, the number is a small value (an example in paper).
- 2. When we compute b_i and u_i (b_i) for the largest β , the b_i and u_i (b_i) for other β are also calculated.

– Example:

benefit	β=50, δ=1
directly computation	u_s =0.8×0.8×(5 0 -1×(5+5))-(1 0 +1 0 ×0.8) = 7.6
	$b_s = 50$, $b_1 = 45$, $b_d = 40$
iteratively computation	$u_d(b_d) = b_d = 40$
	$\mathcal{U}_{1}(b_{1}) = P_{1,d} \times \mathcal{U}_{d}(b_{d}) - C_{1,d} = 0.8 \times 40 - 10 = 22$
	$\mathcal{U}_{S}(b_{s}) = P_{s,1} \times \mathcal{U}_{1}(b_{1}) - C_{s,1} = 0.8 \times 22 - 10 = 7.6$

– Example:

path benefit	50-Z	40-2	30 -0.1
$S \rightarrow 1 \rightarrow d$	7.6	1.2	0.5 6
$s \rightarrow 2 \rightarrow d$	4	1.5	1.25
$s \rightarrow 2 \rightarrow 1 \rightarrow d$	2.5	-1.5	1.7
$s \rightarrow 1 \rightarrow 2 \rightarrow d$	1.6	-2.4	0.8

Settings

Parameter name	Default value	Range
Deployment area S	$100m \times 100m$	-
Number of nodes V	_	200-600
Transmission probability	_	0.3-0.9
Transmission cost	_	1-10
Scheduling cycle	20	_
Initial benefit	100	10-100
Benefit decay coefficient	0.02	0.02-0.2
Number of messages	10,000	-

- Algorithms in comparison
 - MinDelay
 - MaxRatio
 - MinCost
- Metrics
 - Average utility
 - Average delivery delay
 - Average delivery ratio
 - Average delivery cost

- Results
 - Average utility vs. initial benefit

Results

Average utility vs. benefit decay coefficient

- Results
 - Average utility vs.
 initial benefit & benefit decay coefficient

- Results
 - Average delay vs.
 initial benefit & benefit decay coefficient

- Results
 - Average ratio vs.
 initial benefit & benefit decay coefficient

- Results
 - Average cost vs.

initial benefit & benefit decay coefficient

Conclusion

- Our proposed algorithm outperforms the other compared algorithms in utility.
- The larger the initial benefit and the smaller the benefit decay coefficient are, the larger the average utility would be.
- Our proposed algorithm has achieved good performances with reliability, delay, and cost at the same time.

Thanks!

Q&A

