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Abstract—The recent proliferation of smartphones has been
the primary driving factor behind the booming of voice-based
mobile applications. However, the human voice is often exposed
to the public in many different scenarios, and an adversary can
easily steal a person’s voice and attack voice-based applications
with the help of state-of-the-art voice synthesis/conversion soft-
wares. In this paper, we propose a robust software-based voice
liveness detection system for defending against voice spoofing
attack. The proposed system is tailored for mobile platforms
and can be easily integrated with existing mobile applications.
We propose three approaches based on leveraging the vibration
of human vocal cords, the motion of the human vocal system,
and the functionality of vibration motor inside the smartphone.
Experimental results show that our system can detect a live
speaker with a mean accuracy of 94.38% and detect an attacker
with a mean accuracy of 88.89% by combining three approaches
we proposed.

Index Terms—Voice authentication, liveness detection.

I. INTRODUCTION

The recent proliferation of smartphones coupled with the
demand for a convenient and non-intrusive way of com-
municating and controlling have been the primary driving
factors behind the booming of voice-based mobile applica-
tions. In addition to traditional voice over IP (VoIP) applica-
tions, e.g., Skype, which allows users to make voice calls to
contacts, voice-based mobile applications have also become
mainstream. These applications all provide a voice input
interface, which allows users to submit their voices and receive
information from that voice. For example, WeChat provides
“Voiceprint” [22] authentication interface, which allows users
to log into their accounts by speaking passphrases. Besides,
SayPay [14] offers a solution that fuses mobile payments
with the human voice. These voice-based mobile applications
can be quickly developed and implemented for existing smart
devices as they require only a microphone, which is small and
inexpensive [9].

However, unlike other human biometrics, the human voice
is often exposed to the public in many different scenarios, e.g.,
people making a presentation in public, answering phone calls,
talking loudly in a restaurant. As such, with the availability of
high quality and low-cost handy recorders and other recording
devices (e.g., smartphones), a malicious user can easily steal a
person’s voice without being noticed. Several security issues
are therefore caused by the leakage of people’s voices and
pose a severe threat to voice-based applications [10, 15, 24].
For instance, with state-of-the-art speech synthesis techniques

(e.g., Adobe Voco [13]), an adversary could impersonate the
victim to spoof the voice-based authentication system once
they acquire enough victim’s voice samples. Since voice is
considered as a unique biometrics of a person, and thereby, it
is characterized as a basis for personal authentication [4], these
voice-spoofing attacks would result in severe consequences
harmful to victim’s safety, reputation, and property.

The traditional technique for defending against voice-
spoofing attacks is to implement an automatic speaker veri-
fication (ASV) system, which has already been deployed in
many popular mobile applications like WeChat. The ASV
systems employ unique vibration patterns of a user’s vocal
chords and the sound-based feature created by other physi-
cal components (e.g., mouth) to assign a unique fingerprint.
However, spoofing techniques against these systems have also
progressed drastically [7, 10, 24]. Moreover, when detecting
the attack, current ASV systems require prior knowledge of
specific voice spoofing techniques used by the attacker [6],
which is unrepresentative of the practical scenario. Therefore,
the development of a generalized defense system for voice-
spoofing attacks is of the utmost importance. Recently, many
liveness detection systems are proposed to fight voice-spoofing
attacks by studying the differences between the human vocal
system and loudspeakers. VoiceLive [26] can fight replay
attack by capturing time-difference-of-arrival (TDoA) changes
in a sequence of phoneme sounds to the two microphones of
the phone. However, it needs the same relative location of
user’s mouth during authentication, which is hard to satisfy in
practice. A liveness detection system is proposed in [25] and
can detect a live user by leveraging the unique articulatory
gestures of the user when speaking a passphrase. However, it
cannot work if the attacker performs a jamming attack using
high-frequency audio.

Considering the limitations of current solutions, we propose
a robust software-based voice spoofing defense system which
is tailored for mobile platforms and can be easily integrated
with existing voice-based mobile applications. Our solutions
use the unique vibration of human vocal cords and the
movement of throat as key differentiating factors for liveness
detection. Compared with existing ASV system, our solution
does not assume any prior knowledge of the attacking method
and is easy to operate. Moreover, our pure software solution is
ready to use and can be seamlessly deployed on off-the-shelf
smartphones.

We solve two challenges in the design of our system.



First, in order to capture the vibration of vocal cords and the
movement of the throat simultaneously, we need to use both
the prime microphone (at the bottom) and front microphone.
Since different people have different speaking habits and use
different languages, it is difficult to extract a common pattern
that can be used to detect the liveness of a speaker. To solve
this problem, we perform spectrum subtraction of two audio
signals and utilize the energy differences of different time
slices and frequency band as a unique feature. Second, the
sampling rate of the accelerometer-equipped on smartphones
is only 50 Hz, which is not good enough to fully recover
the human throat movement. To address this issue, we extract
multiple features from the acceleration readings to build a
robust classification model and use it to determine if the
captured data is generated by human throat movement.

We summarize our contributions as follows:
• We propose a robust software-only solution for defending

against voice-spoofing attacks on smartphones with high
accuracy.

• We select and combine advanced acoustic signal process-
ing, mobile sensing, and machine learning techniques and
apply them in detecting the unique vibration pattern when
speaking.

• We develop a prototype and conduct comprehensive
evaluations. Experimental results show that our spectrum-
based approach can achieve both 100% true acceptance
and rejection rates. Our motion-based approach can
achieve mean accuracy of 96.8% and mean true rejection
rate of 88.89%. Our random vibration-based approach can
detect and locate the vibration with an accuracy of 97.5%.
By combining three approaches we proposed, our system
can detect a live speaker with a mean accuracy of 94.38%
and detect an attacker with a mean accuracy of 88.89%.

The remainder of this paper expands on above contributions.
We first introduce our attack model and key insights in Section
II and present our solutions in Section III. We conduct various
experiments to evaluate proposed solutions in Section IV and
discuss the usability and limitations of our system and related
work in Sections V and VI.

II. PRELIMINARIES
A. Attack model

The voice-spoofing attacks aim to attack the biometric
identification of the normal user. In our attack models, an
attacker is able to access victim’s smartphone and record the
voice of the victim without being noticced. Also, an attacker
can be equiped with one or more high-quality loudspeakers.
Based on collected audio signals, an attacker can launch
various attacks like replay attacks. The voice-spoofing attacks
considered in our work can be divided into two categories.

A simple replay attack. In this type of attack, an attacker
can use high-quality loudspeakers to replay collected victim’s
voice or morphed voice, so that the attacker can impersonate
the victim at a high degree of similarity. We assume that an
attacker can access victim’s smartphone in the case of not
being noticed.

Vocal cords
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(a) Human vocal structure (b) Speaker’s structure
Fig. 1. The differences between the human vocal system and a loudspeaker

A strong replay attack. In this type of attack, we assume
that the attacker can capture more information besides the
victim’s voice at the mouth. For example, the attacker can
attack the database of current ASV system and fetch the voice
signals at both victim’s mouth and throat. An attacker can
leverage multiple loudspeakers to replay two audio signals to
two microphones and imitate the human vocal systems better.

B. Background knowledge

In order to achieve robust liveness detection, we need
to understand the structural differences between the human
vocal system and loudspeakers. As shown in Fig. 1(a), the
mechanism for producing the human voice can generally be
subdivided into three parts: the lungs, the vocal folds, and
the articulators. The lung first produces adequate airflow and
air pressure to vibrate vocal folds. The vocal cords vibrate
and chop up the airflow from the lungs into audible pulses
that form the laryngeal sound source. Then, the length and
tension of the vocal cords are adjusted to produce ‘fine-tune’
pitch and tone. The articulators consisting of tongue, palate,
cheek, lips further filter the sound generated from the larynx
to strengthen it or weaken it. The vocal folds (vocal cords)
are the primary sound source to produce voiced phoneme
in the human vocal system. Besides voiced phoneme, there
exist other sound production mechanisms produced from the
same general area of the body, involving the production of
unvoiced consonants, clicks, whistling, and whispering. The
only difference between voice and unvoiced phonemes is that
there is no vibration of the vocal cords for unvoiced phonemes.
This fact suggests that the audio signals collected near the
throat and the mouth can be different, and this difference can
only be produced by the human speaker.

Strong attackers usually use high-quality loudspeakers for
spoofing attacks. As shown in Fig. 1(b), the loudspeakers
usually use an electromagnet to translate an electrical signal
into an audible sound. The electromagnet is a metal coil that
creates a magnetic field when there is an electric current flows
through it. When electrical pulses pass through the coil of the
electromagnet, the direction of the magnetic field is frequently
changed. Also, there is a permanent magnet fixed firmly into
the loud speaker. With rapidly changed magnetic filed, the coil
is attracted to and repelled from the permanent magnet. As a
result, the cone attached on the coil will vibrate back and forth,
pumping sound waves into surrounding air and smartphone’s
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Fig. 2. The spectra of audio signals collected from two microphones near
the mouth, the throat, and the loudspeaker

speaker, which means the two microphones of a smartphone
around the loudspeaker will capture very similar audio signals.

C. Key insights

In order to resist two types of attacks we considered, we
need to leverage the structural differences between human
vocal systems and loudspeakers discussed in Section II-B.
We observe that human voice can be divided into the voiced
and unvoiced part. During voiced part, the vocal cords keep
vibrating and generate low-frequency audio signals at the
throat. The vocal cords stop vibrating during unvoiced part,
while the other parts of the human vocal system generate
different sounds. We collect voice signals when a user says
“Six” at two locations (the throat and the mouth) using two
microphones, and the results are illustrated in Fig. 2. It is
clear that the audio signal collected near mouth reserves the
information of unvoiced parts, but most information of the
unvoiced part is lost in the audio signal collected near the
human throat. Also, both audio signals reserve the information
of voiced part, while the audio signal collected near throat only
contains the information at the low-frequency part. Different
from human vocal systems, the cone keeps vibrating for both
voiced and unvoiced parts in order to generate sounds. We use
a loudspeaker to replay the voice of the user and collect the
audio signals in the same way. Fig. 2 also shows the spectrum
of the same audio signal played by a loudspeaker and captured
by the prime microphone. We can observe that the spectrum
contains much more information of unvoiced parts than that
collected near the human throat.

When a person is speaking, the vocal cords vibrate at
a relatively high frequency, and the throat also moves up
and down in a relatively low frequency. Opposite to this,
loudspeakers do not have the same movement pattern. If we
put a motion sensor next to a human throat, the vibration of
vocal cords and movement of a throat generate two different
influences on the readings. Based on this observation, we argue
that the influences generated by vocal cords and throat are hard
to be imitated by loudspeakers. We will discuss the liveness
detection using acceleration signals in Section III-D.

The front microphone

The prime microphone

Fig. 3. The use case of our liveness detection system

D. Use case

In order to successfully defend users from spoofing attacks,
our system requires users to put the bottom side of the smart-
phone on the throat while using the normal voice authorization
systems, as shown in Fig. 3. We leverage two microphones
that are available on most current smartphones. The prime
microphone is used to capture the low-frequency voice cased
only by the human throat, and the front microphone is used
to record human voice on the whole frequency band. Two
audio signals are well synchronized by smartphones operating
systems. The distance between the human throat and the prime
microphone must be zero, and the distance between human lips
and the front microphone is about 6cm. Since the distance is
pretty short, the time delay between two audio signals is less
than 8 samples when the sampling rate is 44,100 samples per
second. While speaking the passphrase, the user should put
the bottom side of the smartphone on the throat. During this
process, the user should be in stationary postures, like sitting
and standing.

E. Challenges

Although we get insights in Section II-C, it is still challeng-
ing to perform liveness detection on a smartphone using only
audio signals and accelerations readings. The first challenge
is how to extract useful information from audio signals in two
channels. Since different people have different speaking habits
and use different languages, it is extremely hard to extract a
common pattern that can be used to determine if the source is
a real person. To solve this problem, we compute the STFT
of two audio signals and get their spectrum subtraction. The
spectrum subtraction is then treated as a picture, and the color
represents the energy in corresponding time frequency band.
We use an image classification algorithm to determine the
liveness of the speaker.

The second challenge is that current smartphones only
provide acceleration reading at a sampling rate of 50 Hz. Since
voice-based authentication only lasts for about 3 seconds,
it is hard to extract human throat movement from limited
acceleration readings (about 150 samples). To address this
issue, we extract multiple features that describe acceleration
signal in different aspects. The features are then used to build
a robust classification model and determine if the acceleration
reading is affected by human throat movement.
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III. SYSTEM DESIGN

A. Approach overview

The key idea underlying our liveness detection system is
to fully leverage the nature of human vocal system in order
to detect the liveness of the speaker. When a live speaker
speaks a passphrase as we asked in Section II-D, the primary
microphone only records the voice produced by the vibration
of the vocal cords, while the front microphone records the
voice produced by the whole vocal system. Based on this
observation, we study the spectrum property of audio signals
and propose a spectrum-based approach to determine if the
input audio is from a real user in Section III-C. Moreover,
human throat will move up and down, and vocal cords will
vibrate in high frequency. Both movements generate different
influences on the accelerator embedded in the smartphone. A
motion-based approach is designed in Section III-D to find
proper features and classification model to determine if an
acceleration sequence is from a normal user. An attacker, who
wants to perform replay attack, cannot imitate the human
vocal system well and cannot get the same pattern on the
audio spectrum and acceleration sequence. Furthermore, in
case that an strong attacker can steal victim’s raw audio files
from database, we design a random vibration-based approach
to inject a random noise in the collected audio signals. By
analyzing the number of injected vibrations, our system can
recognize if the input audio signal is new or stolen from the
victim.

B. System pipeline

The pipeline of data collection and processing is shown in
Fig. 4. Our system captures audio signals in two channels and
collects acceleration reading at the same time. The acceleration
reading is further processed and analyzed to validate if the
smartphone is touching human throat during data collection.
A classification model is trained based on support vector
machine (SVM) using proper features. The raw audio signals
are processed by short-time Fourier transform (STFT) to get
the spectra. We compute the subtraction of two spectra and
use it as an input to match existing patterns. If the spectrum
subtraction matches the existing patterns, the spectrum-based
classification model will regard the user as a real person. In
case that the attacker steals user’s voice recording from other
databases, we inject a random and short vibration during data
collection. The random vibration is then used to evaluate if
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Fig. 5. The spectra difference

the input is a new recording or a stolen recording. Then, three
results are combined together to get the final validation results.
A user is recognized as a real person if and only if all three
decision components give positive results.

C. Spectrum-based approach

To distinguish if the voice is from a live speaker or a loud-
speaker, we need to find features to represent the relationship
and differences between two audio samples collected from two
microphones. In order to capture features on both frequency
domain and time domain, we perform Short-Time Fourier
Transform (STFT) on two audio samples with a window size
of 46ms based on:

X(τ, ω) =

n=+∞∑
n=−∞

x[n]w[n− τ ]e−jωn (1)

where τ is the time axis, ω is the frequency axis, x[n] is the an
audio sample, and X(τ, ω) is a complex function representing
the phase and magnitude of the signal over time and frequency.
Then, the spectrogram of the complex function X(τ, ω) is
computed based on:

spectrogram{x[n]}(τ, ω) ≡ |X(τ, ω)|2 (2)

Fig. 2 illustrates the spectra of two audio samples when a
user speaks “Six” to a smartphone, and we can find following
observations that can help us detect the liveness of the speaker:
1) Since the vocal cords do not vibrate during producing
unvoiced voice, the prime microphone loses most information
for unvoiced part, while the front microphone can capture this
information; 2) For the voiced part, the prime microphone
can only capture voice information at low frequency band.
If the voice is from a live speaker, the differences of two
spectra should contain most information of the voice except
that in the low frequency band of voiced part, as shown in
Fig. 5. Based on these observations, we compute the difference
between two spectra and leverage its energy distribution as the



0 1 2 3

Time (s)

-0.15

-0.1

-0.05

0

0.05

0.1

A
c
c
e
le

ra
ti
o
n
 (

m
/s

2
)

(a) User’s acceleration waveform
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(b) Attacker’s acceleration waveform

Fig. 6. Filtered acceleration waveforms from a normal user and an attacker
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Fig. 7. CDF of distances between acceleration sequences of normal users
and the attacker

feature to detect the liveness of a speaker. Due to unpredicted
noise and speaking volumes of the speakers, it is hard to
robustly extract the shape of energy distribution. To solve
this problem, we treated the spectra difference as an image,
and its energy represents the color. Considering the diversity
of energy distribution due to various speaking manners of
different people, all energy values (pixels in the image) are
used to build the classifier. To eliminate the influence of
different speaking time, we resize the spectra difference (the
image) and convert them to vectors. The resulted vectors are
used to build a binary Support Vector Machine (SVM) with
nonlinear kernel function to determine if the input spectra
difference satisfies the two observations we find.

D. Motion-based approach

When a user speaks a passphrase to the smartphone in our
system, there are two kinds of movements involved. First,
the throat will move up and down in a low frequency. In
addition, the vocal cords will vibrate in high frequency for
voiced phonemes. These two movements will generate differ-
ent influences on the acceleration readings in the smartphone.
To understand the influences of human speaking activity on
the acceleration readings, we first collect the acceleration
waveforms from normal users. Then, raw acceleration data
is smoothed using a moving average filter with window size
of 10. Fig. 6(a) illustrates the filtered acceleration waveforms
under the influences of the human speaking activity. We can
see that low-frequency throat movements generate 7 significant
pulses by moving up and down. Also, vocal cords vibration
affects the acceleration reading in high frequency, which is
shown as small spikes across the whole waveform. We further
study the influence of a loudspeaker on the embedded acceler-
ator and find that it is hard for an attacker to perform attacks
using a loudspeaker. Fig. 6(b) shows the filtered acceleration

Cased by the vibration of the smartphoneCased by human voice

Fig. 8. The spectrum of the audio signal with random vibration injected
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waveforms under the influences of a loud speaker. We can
see that the waveform contains much more significant spikes
whose magnitudes are mainly within [−0.05, 0.05]. Dynamic
Time Wrapping (DTW) is an efficient way to measure the
similarity between two temporal sequences. However, it is
hard to determine if an acceleration sequence is collected from
a loudspeaker using only DTW algorithm. Fig. 7 shows the
distributions of distances of acceleration sequence calculated
by DTW between normal users and between a normal user
and an attacker. We can see that two distributions are very
similar. The distances between a user and and an attacker
are even smaller than those between normal users in some
cases. To address this issue, we select 7 features to represent
an acceleration sequence: (1) Variance; (2) Minimum; (3)
Maximum; (4) Mean; (5) Skewness; (6) Kurtosis; (7) Standard
deviation. We select the features based on Principal component
analysis (PCA) and use selected features to train a SVM-based
classification model. The model is then used to determine if
an acceleration signal is from a live speaker or not.

E. Random vibration-based approach

Even if our spectrum-based approach and motion-based
approach can fight spoofing attacks effectively, we argue that
there are stronger attackers who can hack the database and
steal the voice at victim’s throat. Also, we assume that the
strong attacker can leverage multiple speakers and imitate
human vocal system perfectly with a high cost. In this case, our
spectrum-based approach and motion-based approach cannot
ensure good performance. To address this problem, we further
introduce a random vibration strategy so that the strong
attacker cannot fool our system even if the attacker can steal
the raw audio file and imitate victim’s vocal system perfectly.
Current smartphone operating system provides us the privi-
lege to operate the vibration motor and define the vibration
pattern. We fully leverage the vibration motor embedded in
most smartphones. While recording, our system will randomly



trigger the vibration moto for a given constant time t. Then,
our system will detect the number of random vibrations in the
received audio signals. If the number is larger than 1, the audio
signal is classified as “stolen audio file” and the validation is
rejected.

To effectively detect this attack, we need to locate the
vibration accurately and determine what value of t. Here is
a trade-off of determining the value of t. If t is too small,
the intensity of the vibration may not be strong enough to
be detected. If t is too large, the noise generated by the
vibration will influence the original validation process and
our system. Based on our experiment, t = 100 ms gives us
the best performance on two smartphones. Due to the high
sampling rate provided by the current microphone, we can
design a robust algorithm to detect the vibration of smartphone
based on the audio signal. Fig. 8 shows the spectrum of the
audio signal with injected vibration with the length of 100
ms at 1 second. We can see that it is hard to detect the
vibration under 15 KHz on the spectrum since the influence
caused by vibration is buried by that of the human voice
and background noise. However, the influence caused by
smartphone’s vibration dominates the high-frequency part of
the spectrum (17 KHz ∼ 20 KHz). Fig. 9 shows the single-
sided amplitude spectrum from 17 KHz ∼ 20 KHz. It is clear
that much more energy is in the given frequency band if there
is a vibration.

Based on this insight, we design a vibration detection
algorithm to locate the vibration at the frequency domain and
validate the duration of each vibration. After getting the raw
audio signal from the front microphone, we cut the audio
sequence into frames with the equal size of 50 ms. Within each
time frame, we perform STFT and calculate the sum of energy
in the selected frequency band (17 KHz ∼ 20 KHz). If the
sum of the energy is higher than a threshold τ , a vibration is
detected at the current time frame. After vibration detection on
all time frames, we group the frames that contain a vibration
as long as they are neighbors with each other. Then, we check
the length of each group. The audio is recognized as collected
from a normal user if and only if there only exists one group
with the length of N . Otherwise, the sequence is recognized
as stolen. In our experiment, we find that in some cases the
vibration motor vibrates a little bit earlier than the random
starting time we generate, and the pre-start will generate a
vibration in the previous vibration. So, we set the N = 3 and
τ = −15300 in our system. Since people need at least 2.2
seconds to finish a 6-digit passphrase, the possibility that an
attacker can get the same vibration location of the original
audio signal is less than 4.3%.

IV. EVALUATION

A. Experiment methodology

Experiment setup In order to evaluate the effectiveness of
our system, we build a prototype on two smartphones with
different sizes (LG Nexus 5 and MOTO Nexus 6). Both of
the smartphones run on Android. The smartphones are used
to capture audio signals in two channels. We design a simple

Fig. 10. A simple graphical user interface
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Fig. 11. Performance of spectrum-based approach

graphical user interface (GUI), as shown in Fig. 10, to help
users collect audio signals. The application starts capturing
user’s voice in two channels as soon as the user presses
the button and stops data collection immediately when the
user releases the button. After data collection on smartphones,
audio signals are sent to a local server for further validation.
The server runs on a MacBook Pro with 2.9 GHz Intel Core
i5 processor and 8GB 1867 MHz DDR3 memory.

Performance Metrics In our experiments, we use the
following performance metrics to evaluate the validation per-
formance of our system. True acceptance rate is defined as
the rate at which a live speaker is correctly accepted by the
system and considered as a real person. True rejection rate is
defined as the rate at which an attacker is correctly rejected
by the system.

TABLE I
TYPES OF LOUDSPEAKERS

Maker Model Number of trumpets
Willnorn SoundPlus 2
Amazon Echo 2

TABLE II
USERS’ INFORMATION

Sex Age Height (cm) Average validation time (s)
Female 28 162 2.2616
Male 27 172 2.9977
Male 22 180 3.3551
Male 27 185 4.7149
Female 25 165 2.7279
Male 24 187 3.6396
Female 23 175 3.9321

B. Performance of spectrum-based approach

To evaluate the performance of our spectrum-based ap-
proach, we collect 350 raw audio waveforms from 7 different
users. These 7 users include 4 males and 3 females. Each user
is asked to speak to the smartphone using the same 6-digit
password as we ask in Section II-D for 50 times. For each
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user, 5 audio waveforms are used as training data, and the
remaining audio waveforms are used as validation data. Also,
an attacker uses two loudspeakers to replay victims’ voice. The
speakers we use are listed in Table I. During replay attack, the
relative location between the loudspeaker and the smartphone
should remain the same as we do for normal users.

We can observe that spectrum-based approach can achieve
100% true acceptance rate and true rejection rate for all users.
We further evaluate how many training instances we need
to build a strong classification model and if we can provide
good validation accuracy without collecting training instances
from the new user. Therefore, we only use the audio instances
collected from one user as training data and perform evaluation
on all users. Fig. 11 shows the evaluation results. We can
observe that, with no less than 4 training instances, our system
can accurately detect both live speakers and attackers with a
accuracy of 100%. Also, our spectrum-based approach does
not need to collect much training data from a new user, which
makes our system more practical.

C. Performance of motion-based approach

In this subsection, we evaluate the validation performance
of our motion-based approach. Similarly, we collect 350 raw
acceleration sequences from 7 different users. For each user,
5 acceleration sequences are used as training data, and the
remaining are used as validation data. Also, 20 acceleration
sequences collected from the attacker are used as negative
instances. Fig. 12 illustrates the true acceptance of our motion-
based approach. We can see that our system can achieve high
true acceptance rate of at least 93.33% for most users and
provides true rejection rate of 88.89%. To further improve the
true acceptance rate, we can add more instances only collected
from the new user. We argue that user can manually label
wrongly predicted results, and our classification model can
leverage new labeled data to build a better classification model
for user 1. Experiment results show that the true acceptance
rate can be improved to at least 95% after each user adds 5
more instances to the training set.

TABLE III
PERFORMANCE OF VIBRATION DETECTION

Locations Number of TAV Number of FAV
1 40 0
2 40 0
3 40 0
4 39 0
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Fig. 13. Influence of background noise

D. Performance of random vibration-based approach

In this study, we investigate the performance of our random
vibration-based approach when a strong adversary tries to fool
our system by using the collected audio profile of the victim
and imitating natural human voice using multiple speakers.
First, we examine how accurately our system can detect the
number of vibration in the audio signal. We let a user speak
in front of our system for 20 times. During each recording
process, our system generates two non-overlapped vibrations
and record the ground truth. We repeat the experiment in 4
different rooms, and the results are illustrated in Table. III.
The true accepted vibration (TAV) is the vibration generated
by the human vocal and correctly detected by our algorithm.
The false accepted vibration (FAV) is the vibration generated
by the background noise but wrongly detected. We can see
that our vibration detection algorithm can achieve an accu-
racy of 100% on detecting non-overlapped vibration for the
first three rooms. The fourth location is in a kitchen where
there may exist high-frequency noise produced by electrical
appliances. Several time frames could be wrongly recognized
as containing vibration due to the high-frequency noise, which
makes the duration of 4 vibrations longer than 150ms and be
rejected by our system. In this scenario, our system can still
identify all the vibrations with an accuracy of 97.5%.

E. Influence of ambient noise

To evaluate the influence of ambient noise on spectrum-
based approach, we place a loudspeaker at a distance of about
1 meter. We let the loudspeaker keep playing audio from
a talk show with different volumes. For each volume, we
collect 40 audio waveforms from a user. We use the same
classification model used in Section IV-B. We change the
number of positive instances to evaluate the true acceptance
rate, and the results are shown in Fig. 13. We can see that we
cannot perform validation with three positive instances when
there is background noise. When we increase the number of
positive instances to 5, we can get true acceptance rate of
82.5% in a low background noise environment. However, the
validation performance is deficient in a noisy environment with
a true acceptance rate of only 27.5%. This problem can be
solved by involving more positive instances or increasing the
weight of positive instances in the classification model. We
can see that our system can achieve a true acceptance rate of
100% when seven positive instances are involved.
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F. Influence of different passphrases

We also conduct an experiment to show the performance
for different passphrases. In our system, we select 8 different
passphrases, and a user is asked to repeat each passphrase
for at least 45 times. For each passphrase, 15 measurements
including audio and acceleration are used for training, and the
others are used for validation. We also let the attacker perform
replay attack for 45 times for each passphrase using recorded
victim’s voice and use them as negative training and validation
data. Fig. 14 shows the true acceptance rates for 8 passphrases.
We can see that our system can achieve a true acceptance rate
of at least 93.2% for all 8 passphrases. Also, we examine the
true rejection rate of our system on the selected 8 passphrases.
Experimental results show that our system can provide true
rejection rate for at least 86.7%.

G. Influence of different phones

To show that our system can be implemented to any
smartphone equipped with two microphones, we evaluate our
system on LG Nexus 5 and LG Nexus 6. The reason we
choose these two smartphones models is that the sizes of
these two smartphones differ a lot. We ask a user to speak
to these two smartphones for 45 times, respectively. Similarly,
five measurements on each smartphone are added to the pre-
trained model in Sections IV-B and IV-C, and the remaining
are used as validation data. Experimental results show that our
system can achieve a true acceptance rate of at least 95% on
the two smartphones and get an acceptable true rejection rate
of at least 88.75%.

V. DISCUSSION

A. Usability

Except for accuracy, validation time is also critical and
determines the usability. We further test the time our system
needs to process the raw signal and get the final validation
results. Experiment results show that our method can finish the
work within 500ms in all cases, which means our system can
respond to the user right after the user stops recording and does
not introduce too much overhead. Compared with existing
works, our system does not need user’s extra effort in operating
the smartphone, e.g., moving the smartphone around the audio
source. To further strengthen the usability of our system, we
adopt the same human-computer interaction methods used by
Wechat for recording, so that users can quickly get used to
using our system.

B. Limitations

Our system involves a limited number of participants, and
all users are university students. To better understand the
performance of our system, it will be necessary to engage
more participants with a more diverse background. Also, the
experiments are conducted within one month. Considering
that human behavior and habits may change, a long-term
evaluation can be conducted. Moreover, in our system, the
duration of each random vibration is set to 100ms to get
enough vibration intensity. However, the longer the random
vibration is, the more likely the attacker can get the similar
vibration location. The current Android operating system does
not allow for changing the power of vibration. If smartphone
operation system can release the permission on adjusting the
power of vibration in the future, the duration of each random
vibration can be further shortened to a significant degree in
our system, so that it is much harder for the attacker to get
the same vibration location.

VI. RELATED WORK

A. Voice-based Mobile Applications

With advances in modern smartphones, voice-based mobile
applications, i.e., mobile apps, have grown in popularity as
these applications provide an intrinsically efficient, comfort-
able interaction interface to users. These existing voice-based
mobile applications can be divided into two categories based
on its functionalities: i) voice communication ii) voice control.
For the first category, we have voice over IP (VoIP) apps,
by which people can make a voice call to anyone using
the Internet (e.g., Skype, Google Voice). In addition, many
voice instant messenger mobile apps have been developed in
recent years, such as WeChat, WhatsApp, TalkBox, Skout,
and iMessage. These apps allow users to record short voice
messages and directly send them to others. Hence, this offers
opportunities to attackers who are able to launch a voice-
spoofing attack by imitating a victims voice, tone, and speak-
ing style. This attack could harm victims reputation, safety, and
property. The attacker could scam victims friends and family
through fake phone calls and leave fake voice messages, etc.

B. Automatic Speaker Verification (ASV) System

An automatic speaker verification system is able to accept or
reject a speech sample submitted by a user for claiming certain
identity [18]. Recently, the development of ASV systems
has made a major progress as they are widely adopted by
smartphones and online commerces [8, 11]. Existing ASV
systems are divided into two types: text-dependent and text-
independent. Text-independent ASV systems are able to ac-
cept arbitrary utterances, i.e., different speaking habits and
languages from speakers [3]. As a matter of fact, the text-
dependent ASV is widely selected for authentication applica-
tions since it provides higher recognition accuracy with fewer
required utterances. The current practice of building an ASV
system involves two processes: offline training and runtime
verification. During the offline training phase, the ASV system
uses several speech samples provided by the genuine speaker



to extract certain spectral, prosodic [1, 16], or other high-level
features [5, 12] and uses them to create a speaker model. Then,
in the runtime verification phase, the ASV system uses the
trained speaker model to verify the incoming voice.

C. Voice-Spoofing Attacks

The voice-spoofing attacks aim to break the biometric iden-
tification of the victim. It can be divided into two categories:
voice replay attack and voice synthesis or conversion attack.
[19] shows that an attacker can overcome text-dependent ASV
systems by concatenating speech samples from multiple short
voice segments of the target speaker. Due to the simplicity
of voice replay attacks, a few research papers have been
published in developing relay attack countermeasures [19–21].
However, all these countermeasure systems suffer high false
acceptance rate (FAR) compared to respective baselines. In [2],
the authors demonstrate the vulnerabilities of ASV systems
for voice synthesis attack (generate artificial speech from text
input). [17] proposes the voice conversion attack in which the
attacker converts the spectral and prosody features of his or
her own speech and makes it resembles to the victim’s speech.
To detect voice synthesis and voice conversion attack, [23]
exploits artifacts introduced by the vocoder to discriminate
converted speech from original speech.

VII. CONCLUSION

In this paper, we propose a robust software-based voice
spoofing defense system, which is tailored for mobile plat-
forms and can be easily integrated with existing mobile
applications. We propose three approaches based on leveraging
the audio spectrum pattern, motion of the human vocal sys-
tem, and the functionality of vibration motor. Experimental
results show that our spectrum-based approach can achieve a
100% true acceptance and rejection rates. Our motion-based
approach can achieve mean accuracy of 96.8% and mean
true rejection rate of 88.89%. Our random vibration-based
approach can detection and location the vibration with an
accuracy of at least 97.5%. By combining the three approaches
we proposed, our system can detect a live speaker with a
mean accuracy of 94.38% and detect an attacker with a mean
accuracy of 88.89%.
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