Maximizing the User's Benefit in Mobile Cloud Computing

MULTIN MITTIT

Ning Wang and Jie Wu Temple University

Mobile Cloud Computing

- Concept of Mobile Cloud Computing (MCC):
 - Offload the computation complexity task from mobile devices to the cloud
 - Combination of cloud computing, mobile computing, and wireless networks to bring rich computational resources to mobile users

Mobile Cloud Computing

- Different computation abilities
 - Cloud (e.g., Amazon EC2, Azure):
 Rich computation resource --- short processing delay
 Omitted in most scenarios
 - Mobile devices:
 - Limited computation resource --- long processing delay
 E.g., natural language processing, face recognition
- Cost of cloud computing
 - extra offloading/transmission delay
 - Cellular networks (low bandwidth, high energy consumption)
 - Wi-Fi (high bandwidth, low energy consumption)

Mobile Cloud Computing

- Task finishing time
 - Task utility decay (reward for finishing the task)
 - E.g. hot news spreading, Siri
 - \Box Linear decay model in this paper, $U_t = U_0 wt$
- Trade-off in the MCC:
 - Smaller task-finishing time
 - More energy consumption is possible

• Challenge

- Maximize the gained utility with the given energy budget

Problem Formulation

Network Model

- Limited battery of the mobile device
- Non-preemptive task
 - Cannot be interrupted once it is scheduled

Scheduling problem

- Given the arrival time, local processing time, transmission time of each task, and the battery constraint of the smartphone, find a scheduling so that the utility gain is the maximum
- NP complete

Challenges

A motivational example

- Every second, a new task arrives, $U_t = 10 2t$
- Each task consumes 1 energy unit in local or 2 units to transmit
- The energy budget is 4 units

- How can we optimize the mobile device and the cloud scheduling jointly?
 - Traditional approaches will lead to a bad performance in certain scenarios

- Simple greedy scheduling does not have a performance bound
 - Cost effective

Unbalanced task assignment

- Balance the finishing time
 - □ Low energy usage efficiency

 We propose an approximation algorithm with a good performance bound!

Solution

- LP Rounding algorithm
 - Assume tasks can be interrupted
 - $\hfill \mathbf{y}_{ijt}$, task i is scheduled at j at time t
 - $\hfill \square$ Problem reduces into the linear programming

Solution

- LP Rounding algorithm
 - Calculate the LP rounding result
 - Assign the task i to j at time t with a probability based on y_{ijt}.
 - Each job is assigned at the earliest feasible time

Theorem: the LP rounding algorithm has a 2approximation ratio on expectation

Experimental Setting

- Task arrival time
 - Average data size is 2 MB, 1 to 3 MB.
 - Follows the updates in Sina Weibo trace
 - Power-law task arrival time
- Smartphone

- Processing time/energy is 1 MBps, 500 mW.
- Transmission bandwidth/energy 2 MBps, 2000 mW.
- 100 mWh energy budget

Algorithm Comparison

• Algorithms:

- Cloud-only (CO) algorithm, which only utilizes the cloud for computation, referred to as the AllServer algorithm in [5]
- Smartphone-only (SO) algorithm, which only utilizes the smartphone for computation, and is referred to as the AllMobile algorithm in [5]
- Random (RD) algorithm, which randomly assigns the new task to a device
- Proposed LP rounding algorithm

Simulation Result

SO and CO algorithms only achieve a good performance in certain scenarios. The proposed LP algorithm achieves a good performance or the best performance in a wide scenario. The rounding algorithm leads to a bad performance.

- We investigate mobile cloud offloading in a general scenario, where both mobile and cloud are used to maximized the gained utility
- An LP rounding algorithm is proposed with the performance bound

- Future Work
 - Online scheduling, real testbeds.

Thank you!

Ning Wang ning.wang@temple.edu

