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ABSTRACT
The increasing task computation complexity and limited
battery has become a serious concern for smartphones. To
reduce the task computation delay and save the smartphone
battery usage, there have been many e↵orts to o✏oad the
tasks from the mobile device to the remote cloud with a
much higher computation ability. However, o✏oading tasks
to cloud will cause extra transmission delays and energy con-
sumption. In reality, timely task execution is very impor-
tant because the task’s utility decays with time. Therefore,
there exists a delay-energy trade-o↵. This paper addresses
the aforementioned challenge. The smartphone should take
advantage of the cloud in high computation speed so that the
smartphone can achieve the maximum utility with limited
battery. We get a 2-approximation schedule on expectation
by using a LP rounding algorithm. The real trace experi-
ments show the e↵ectiveness of the proposed algorithms.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design studies; D.4.1
[Process Management]: Scheduling; C.2.2 [Network Pro-

tocols]: Routing protocols

1. INTRODUCTION
Mobile cloud computing (MCC), which o✏oads the com-

putation complexity tasks from mobile devices to the cloud,
has received a substantial amount of research attention in
recent literature. However, o✏oading tasks to the cloud is
not free. Though o✏oading tasks to the cloud can reduce the
computation delay of the task, it creates transmission delay
and will consume transmission energy. When the data in-
put/output size is large or the mobile signal is weak, cloud
o✏oading will become energy-intensive. From the viewpoint
of the user or the service provider, the task finishing time
is an important metric [6]. It is because the usefulness of
the data decays with time. Computation o✏oading may be
instrumental in a wide variety of mobile applications, from
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Figure 1: An illustration of the problem

natural language processing, e.g., Apple’s Siri, face recogni-
tion applications, to augmented reality.

As long as a task arrives, the smartphone has to either
execute it in the local smartphone or transmit it into the re-
mote cloud. The task utility decays along with the finishing
time. A fundamental problem is to find a strategy which
can fully use the limited battery of smartphone, so that the
user’s benefit, i.e., utility, can be maximized. Tasks arrive
along with the time.

The proposed problem is non-trivial. An example is shown
in Fig. 1. In this example, we assume that at the beginning
of every second, a new task arrives. The tasks are identi-
cal. Each task has an initial utility of 10, and its utility
decays 2 units per second. The overall energy budget of the
smartphone is 4 units. If the smartphone executes a task lo-
cally, it consumes 1 energy unit, and the computation time
is 2s. If the smartphone sends a task to the cloud, it con-
sumes 2 energy units, and the transmission time is 1s. There
are three scheduling strategies. Schedule (1) only uses the
smartphone to execute the tasks and the overall utility that
the user can get is 12. Schedule (2) only transmits the tasks
to the cloud and the overall utility that the user can get is
16. Schedule (3) jointly uses the cloud and smartphone to
execute the tasks and the overall utility that the user can
get is 20. However, if the task utility decays 1 per second,
these three schedules will earn 26, 18, 25, respectively. The
optimal schedule changes.

The contributions of this paper are twofold:

• To the best of our knowledge, we are the first to con-
sider the user’s benefit maximization in MCC with en-
ergy constraints and task utility decays.

• An LP rouding algorithm with a 2-approximation per-
formance ratio is proposed.
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Figure 2: An example to illustrate the energy delay

trade-o↵

2. PROBLEM FORMULATION

2.1 Model
In this paper, we assume that a smartphone has a certain

battery budget B, e.g., 1000 mAh. Due to the limited band-
width between the smartphone and the cloud, computation
o✏oading (i.e., transmitting data to the cloud) will cause
a certain data transmission delay. In reality, the cloud’s
computation ability is much higher than that of the smart-
phone’s. Therefore, we ignore the task processing time in
the cloud.

Once a task has arrived, the smartphone has to either
execute it in the local smartphone or transmit it into the re-
mote cloud until the battery of the smartphone is exhausted.
The smartphone can only execute or transmit a task one at
a time. If the computation or the transmission interface is
busy, the task is put into the waiting queue. We assume
all tasks are non-preemptive, i.e., once a task is assigned, it
cannot be interrupted.

Let us use J to denote all the tasks that are executed, aj

and fj denote the arrival time and the finishing time of task
j, respectively. Task j’s utility decays wj per second until
it reaches the zero. Initially, task i’s utility is Uj . For each
task, there are two execution options: (1) local execution
or (2) cloud execution. Let use xij to denote task j’s exe-
cution option, where i = 1 and i = 2 means that the task
is executed at the local smartphone and the cloud device,
respectively. In addition, let us denote pij as the process-
ing time of a task (execution time and transmission time)
at the smartphone and the cloud, respectively. eij is the
corresponding energy consumption that is used for task j to
be executed on device i, respectively. Note that the waiting
time for a task is not included in the processing time.

2.2 Problem Formulation
Based on the model in the Section 2.1, the proposed prob-

lem can be formulated in the following:

max
X

j2J

Uj �
X

i2J

wj(fj � aj)

2X

i=1

X

j2J

xij = 1,

2X

i=1

X

j2J

xij · eij  B, xij 2 {0, 1},

(1)

where the first constraint means that each arrival task must
be executed and the second constraint means that the over-
all energy cannot exceed the energy constraint. There is
a delay-cost trade-o↵. O✏oading tasks to the cloud might
lead to a smaller delay but will cost more energy. An illus-
tration of the trade-o↵ in the proposed problem is shown in
Fig. 2. When the task arrival rate is low, the task can be ex-
ecuted in the local smartphone and it will not lead to a large
utility decay, since there are not many queued tasks. The
extra energy can be used to execute more tasks. However,
when the task arrival rate is high, this schedule executes the
maximal number of tasks, but the overall utility is smaller
than transmitting all the tasks to the cloud. The target of
this paper is to find a proper scheduling method which can
always achieve high overall utility in di↵erent scenarios.

3. SOLUTION
The proposed problem is NP-hard, since it can be re-

duced into a classical scheduling problem. Therefore, in-
stead of solving the original problem in Eq. 1, we can relax
the proposed problem into the following linear programming
problem. In the relaxed linear programming problem, tasks
are preemptible, and a task may use the capacity of more
than one device at a time. To illustrate the preemption task
scheduling, let us use a new variable yijt that represents the
amount of time task j that is processed on device i with the
time interval (t, t+1]. Therefore, it is clear that

yijt
pij

fraction

of the task is being processed on device i within the time
interval (t, t+ 1]. The LP relaxation is as follows:

max
X

j2J

Uj �
X

j2J

wj(fj � aj)

s.t.
2X

i=1

TX

t=ai

yijt

pij
= 1, 8j,

X

j2J

yijt  1, 8i&t,

fj �
2X

i=1

TX

t=ai

(
yijt

pij
(
2t+ 1 + pij

pij
)) 8j,

fj �
2X

i=1

TX

t=ai

yijt 8j,

2X

i=1

X

j2J

eij
yijt

pij
 B

yijt � 0, 8i, j,&t.

(2)

The constraint (1) ensures that every task is fully pro-
cessed. The constraint (2) expresses that each time the
smartphone can execute or transfer at most one task at a
time until time T . For (3), consider an arbitrary feasible
schedule in which task j is being continuously processed be-
tween time fj � pij and fj on device i, which is a lower
bound. Then, the left-hand side of (3) corresponds to the
real finishing time if we assign the values to the LP variables
yijt; The right-hand side of (4) equals the processing time of
task j in the schedule and is therefore a lower bound on its
finishing time. The constrain (5) is the energy constraint.

Then, the LP rounding algorithm is as follow: first, we
calculate the solution of the LP relaxation problem by Eq.



2 4 6 8 10
Data size

0

500

1000

1500
U

til
ity

SO
CO
RD
LP

(a) data size

2 3 4 5 6
Cloud speed

0

500

1000

1500

U
til

ity SO
CO
RD
LP

(b) transmission cost

1 2 3 4 5
Utility decay speed

0

500

1000

1500

2000

U
til

ity

SO
CO
RD
LP

(c) decay speed

Figure 3: Performance comparison of our algorithm in Sina Weibo Dataset.

2. Then, we assign task j to a device-time pair (i, t), where
the device-time pair is chosen from the probability distri-
bution that assigns task j to (i, t) with probability

yijt
pij

.

We schedule each task on each device i that the tasks that
were assigned to it as early as possible in order of nonde-
creasing tj . The LP rounding algorithm has an expected
2-approximation ratio. The detailed proof is provided in [1].

4. PERFORMANCE EVALUATION

4.1 Experiments Setting
We use the real trace from the Sina Weibo [4] to demon-

strate the e↵ectiveness of the proposed algorithm. Based on
the real situation, we set the following experimental param-
eters in our experiments. The average data size is 2 MB.
The processing time for a task in smartphone is 1 MB per
second, the corresponding energy consumption is 500 mW.
The transmission bandwidth for smartphone is 2 MBps, and
the corresponding energy consumption is 2000 mW.

4.2 Algorithm Comparison
We propose three comparison algorithms: the Cloud-only

(CO) algorithm, which only utilizes the cloud for computa-
tion, referred the AllServer algorithm in [5]. Smartphone-
only (SO) algorithm, which only utilizes the smartphone for
computation, and is referred to as the AllMobile algorithm
in [5]. We further propose a Random (RD) algorithm, which
randomly assigns the new task to a device.

4.3 Experimental Results
The experimental results from theWeibo dataset are shown

in Fig. 3, the LP algorithm can always achieve best perfor-
mance in most scenarios, and it achieves more than 90%
the performance in all the scenarios. However, the SO and
SO algorithm can only achieve good performance in certain
scenarios. That is, the SO algorithm achieves a good perfor-
mance when the task utility decay speed is low. Conversely,
the CO algorithm achieves a good performance when the
task transmission cost is low. As for the random algorithm,
its performance is really poor in most of case, since it cannot
take advantage of smartphone or cloud execution.

5. RELATED WORKS
In the literature, there are many cloud o✏oading models

used in di↵erent scenario [2, 3]. However, many of them are

not general and the task finishing time matters in reality. A
common assumption behind them is that the cloud o✏oad-
ing is always benefit, so that we should try to use as much
as possible [8]. Another assumption is that the execution
delay of a task is always assumed to be a constant value [7].

6. CONCLUSION
The limited battery and the timely execution requirement

of the mobile device is an important requirement in the mo-
bile cloud computing. In this paper, we consider the limited
battery in the smartphone and the task utility decay sce-
nario in reality. These two practical characters in our model
distinguish our work from the existing works. We discuss
the corresponding problems and propose a LP rounding so-
lution. Real trace experiment results verify the e↵ectiveness
of the proposed algorithms.
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