
SHAOJIE TANG JIE WU
TEMPLE UNIVERSITY
Examples of WSNs

- Wireless Sensor Networks (WSNs) are widely used to monitor the physical environment.
Comparison with Traditional Networks

- Unlike traditional networks, wireless sensor networks are often resource limited
 - Limited power supply
 - Limited computational capability
 - Limited communication capability

- Developing an effective sensor network must take into account its Quality-of-Monitoring (QoM)
 - Avoid redundant sensor readings
 - Leverage the statistical correlations among sensor nodes
System Overview

Quality of Monitoring

- Sensing rate allocation
- Routing plan

Sensing

Networking
The readings among neighboring nodes are often spatially correlated.

- The degree of correlation depends on the internode separation
- Those sensors with similar readings naturally form a component or cluster.
Correlation Model

- A correlation component is a subset of sensors where the sensor nodes within one component have similar sensing values.

- Communication graph and correlation components.
How to Represent Quality of Monitoring?

- We define a general **submodular** function to quantify the Quality-of-Monitoring (QoM) under different sensing rate allocations.

We say a function is submodular if it satisfies a natural “diminishing returns” property:

\[
\begin{align*}
U_i(\emptyset) &= 0, \\
U_i(S_1) &\leq U_i(S_2), \text{ if } S_1 \subseteq S_2, \text{ and} \\
U_i(S_1 \cup A) - U_i(S_1) &\geq U_i(S_2 \cup A) - U_i(S_2), S_1 \subseteq S_2
\end{align*}
\]
How to Represent Quality of Monitoring?

- We define a general **submodular** function to quantify the Quality-of-Monitoring (QoM) under different sensing rate allocations.

We say a function is submodular if it satisfies a natural “diminishing returns” property.
How to Represent Quality of Monitoring?

- We define a general **submodular** function to quantify the Quality-of-Monitoring (QoM) under different sensing rate allocations.

Let p_j be the probability that the sensor v_j will detect a certain event happened at a component. Then the utility function gained from that component can be defined as

$$U_i(S) = 1 - \prod_{v_j \in S}(1 - p_j)$$
How to Represent Quality of Monitoring?

The overall utility is defined by summing utilities over all correlation components:

$$U = \sum_{c_i \in C} U^{c_i} = \sum_{c_i \in C} U(\sum_{v \in c_i} s_v)$$
Problem Formulation

- We assume that there is a set of sensor nodes deployed over a two-dimensional area.
- In addition, there is one sink node to collect all sensing data from the network.

Problem: QoM-aware Rate Allocation

Objective: Maximize \(U = \sum_{c_i \in C} U(\sum_{v \in c_i} s_v) \)

subject to:

1. \(s_u + \sum_{v \in N_u} f_{vu} = \sum_{v \in N_u} f_{uv}, \forall u \neq \text{sink} \)
2. \(\sum_{v \in N_u} f_{vu} \delta_r + \sum_{v \in N_u} f_{vu} \delta_t + s_u \delta_s \leq B_u, \forall u \neq \text{sink} \)
3. \(f_{uv} \geq 0, \forall u, v \in \mathcal{V} \)
System Flow

Initial Input & Final Output
- Communication Graph
- Correlation Component

Intermediate Stage
- Communication-Correlation Graph
- QoM-aware Rate Allocation
- Fair Rate Allocation
Two-layered Communication-Correlation Graph

- Two-layered Communication-Correlation Graph based on the example in Figure 2.
Let s_c represent the total sensing rate from component c.

Therefore, the overall utility function can be rewritten as:

$$U = \sum_{c \in C} U(\sum_{v \in c} s_v) = \sum_{c \in C} U(s_c)$$
The new problem formulation is similar to the original one, except for some additional constraints on the virtual node.

Problem: QoM-Aware Rate Allocation based on CCG

Objective: Maximize $U = \sum_{c \in C} U(s_c)$

subject to:

\[
\begin{align*}
(1) \quad s_c &= \sum_{v \in N_c} f_{cv}, \quad \forall c \in C \\
(2) \quad \sum_{u \in N_v} f_{uv} + \sum_{c: N_c \ni v} f_{cv} &= \sum_{u \in N_v} f_{vu} \\
(3) \quad \sum_{c: N_c \ni v} \delta_s + \sum_{v' \in N_v} f_{vu} \delta_t + \sum_{u \in N_v} f_{uv} \delta_r &\leq B_v \\
(4) \quad f_{vu} &\geq 0, \quad \forall v, u \in V
\end{align*}
\]
Optimal Fair Rate Allocation

- *Fair rate allocation* problem seeks a rate allocation which can maximize the minimum sensing rate among all components.
- We show that both problems share the common optimal solution under some settings.

Definition 3 (Fair Rate Allocation). Given two feasible sensing rate allocations S_a and S_b, we sort them in non-decreasing order, and obtain two non-decreasing rate vectors Q_a and Q_b. Let Q^i_a and Q^i_b represent the i-th rate in Q_a and Q_b, respectively. We define $S_a = S_b$ if, and only if, $Q_a = Q_b$; $S_a > S_b$ if, and only if, there exists an i such that $Q^i_a > Q^i_b$ and for all $j < i$, $Q^j_a = Q^j_b$. We say a rate allocation S is an optimal fair rate allocation if, and only if, there exists no other rate allocation S' such that $S' > S$.
Optimal Fair Rate Allocation

- We modify a classic two phase approach to solve this problem

 1. Maximum Common Rate Computation: compute a maximum common rate \(s \) that satisfies all energy constraints and flow conservation; and

 2. Maximum Individual Rate Computation: calculate the maximum rate for each component by assuming the sensing rate of all the other components is \(s \).
To compute the maximum common rate, we formulate it as a linear programming problem.

Problem: Maximum Common Rate Computation

Objective: Maximize \bar{s}

subject to:

1. $\bar{s} = \sum_{v \in N_c} f_{cv}, \forall c \in C$
2. $\sum_{u \in N_v} f_{uv} + \sum_{c : N_c \ni v} f_{cv} = \sum_{u \in N_v} f_{vu}$
3. $\sum_{c : N_c \ni v} \delta_s + \sum_{u \in N_v} f_{vu} \delta_t + \sum_{u \in N_v} f_{vu} \delta_r \leq B_v$
4. $f_{vu} \geq 0, \forall v, u \in V$
Maximum Individual Rate Computation

- Compute the maximum individual sensing rate that can be achieved for each component by assuming all the other components take the same sensing rate.

Problem: Maximum Individual Rate Computation

Objective: Maximize s_c

subject to:

1. $s_c = \sum_{v \in N_c} f_{cv}$;
2. $s_c' = \sum_{v \in N_c'} f_{c'v} = \bar{s}, \forall c' \in C \setminus \{c\}$
3. $\sum_{u \in N_v} f_{uv} + \sum_{c : N_c \ni v} f_{cv} = \sum_{u \in N_v} f_{vu}$
4. $\sum_{c : N_c \ni v} f_{cv} \delta_s + \sum_{u \in N_v} f_{vu} \delta_t + \sum_{u \in N_v} f_{uv} \delta_r \leq B_v$
5. $f_{vu} \geq 0, \forall v, u \in V$
Optimal Fair Rate Allocation

- This algorithm returns the optimal fair rate allocation.

Algorithm 1 Optimal Fair Rate Allocation (FRA)

Input: CCG and associated energy constraint & flow conservation.
Output: Sensing rate for each component and flow assignment on each link.

1: while $C \neq \emptyset$ do
2: Compute the maximum common sensing rate \bar{s} in C;
3: for each component c in C do
4: Compute the maximum individual sensing rate s_c by assuming the sensing rate of all other components is \bar{s};
5: if $s_c = \bar{s}$ then $C \leftarrow C - c$
6: return the rate allocation.
QoM-aware Rate Allocation

- If the per unit data sensing cost is no less than the per unit data receiving cost, then the optimal fair rate allocation is also an optimal QoM-aware rate allocation.
QoM-aware Rate Allocation

- Given any feasible rate allocation, in order to increase the sensing rate of some component by c, we only need to decrease the total sensing rate of the other components by at most c.
 - This can be shown through construction.
 - For any given feasible rate adjustment, we can always modify it to achieve this goal without violating the energy budget constraint.
QoM-aware Rate Allocation

- Given any optimal fair rate allocation, we cannot increase the sensing rate of a correlation component without reducing the sensing rate of another component with a lower sensing rate.
- this can be shown through contradiction
QoM-aware Rate Allocation

- Any optimal QoM-aware rate allocation must also be an optimal fair rate allocation if the sensing cost is no less than the receiving cost.

 - Given any feasible rate allocation, in order to increase the sensing rate of some component by c, we only need to decrease the total sensing rate of the other components by at most c.

 - Given any optimal fair rate allocation, we cannot increase the sensing rate of a correlation component without reducing the sensing rate of another component with a lower sensing rate.
QoM-aware Rate Allocation

- If optimal fair rate allocation is not an optimal QoM-aware rate allocation, we can increase the sensing rate of some component while decreasing the total sensing rate of some other components with a higher rate by at most the same amount.

- This leads to a better QoM-aware rate allocation due to its submodularity.
 - It contradicts to the assumption that the original rate allocation is optimal.
QoM-aware Rate Allocation

- This algorithm also returns the optimal QoM-aware rate allocation.

Algorithm 1 Optimal Fair Rate Allocation (FRA)

Input: CCG and associated energy constraint & flow conservation.
Output: Sensing rate for each component and flow assignment on each link.

1: while $C \neq \emptyset$ do
2: Compute the maximum common sensing rate \bar{s} in C;
3: for each component c in C do
4: Compute the maximum individual sensing rate s_c by assuming the sensing rate of all other components is \bar{s};
5: if $s_c = \bar{s}$ then $C \leftarrow C - c$
6: return the rate allocation.
Experimental Results

- We adopt the TelosB Mote with a MSP430 processor and CC2420 transceiver.
- Each mote is equipped with 2 AA batteries.
Experimental Results

![Graph showing the relationship between the number of correlation components and the dissimilarity threshold. The x-axis represents the dissimilarity threshold (m) ranging from 0 to 2, and the y-axis represents the number of correlation components ranging from 0 to 70. The graph includes points at (0.1, 68), (0.2, 34), (0.3, 22), (0.6, 11), (0.9, 7), (1.2, 5), (1.5, 4), and (1.8, 3).]
Experimental Results
Experimental Results
Future Work

- The per unit data sensing cost is less than the per unit data receiving cost.

- The utility function $U()$ is heterogeneous to different correlation components.

- Taking wireless interference into account.

- Distributed implementation.
• Thanks!