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a b s t r a c t 

In cloud computing environments, resources stored on the cloud servers are transmitted in 

the form of data flow to the clients via networks. Due to the real-time and ubiquitous re- 

quirements of cloud computing services, how to design a sophisticated transmission model 

to ensure service reliability and security becomes a key problem. In this paper, we first 

propose a Comprehensive Transmission (CT) model, by combining the Client/Server (C/S) 

mode and the Peer-to-Peer (P2P) mode for reliable data transmission. Then, we design a 

Two-Phase Resource Sharing (TPRS) protocol, which mainly consists of a pre-filtering phase 

and a verification phase, to efficiently and privately achieve authorized resource sharing in 

the CT model. Extensive experiments have been conducted on the synthetic data set to 

verify the feasibility of our protocol. 

© 2016 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Cloud computing as a promising computing paradigm, allows users to enjoy user-controlled services transparently and

seamlessly. In cloud computing, everything is a service (XaaS). That is, computer resources (e.g., hardware, software, and

data) are delivered as services that can be subscribed and unsubscribed by customers over the Internet in a pay-as-you-go

fashion. In the NIST cloud definition framework [1] , cloud computing offers three kinds of service models, i.e., Software as

a Service (SaaS) that allows the cloud customers to control only application configurations, Platform as a Service (PaaS) that

allows the cloud customers to control the hosting environments, and Infrastructure as a Service (IaaS) that allows the cloud

customers to control everything except the hardware infrastructure. 

Fig. 1 shows a typical cloud computing environment, where all of the resources stored on the cloud servers will be

transmitted in the form of data flow to the clients. The users can access any desired resources on demand, anytime and

anywhere, using various kinds of devices connected to the Internet. Cloud computing, as an evolved paradigm of distributed

computing, parallel computing, grid computing, and utility computing, has a lot of merits such as fast deployment, pay-for-

use, high availability, high scalability, rapid elasticity, low costs, and so on. However, its unique features bring new challenges

to service reliability [2,3] . 
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Fig. 1. A typical cloud environment. The clients held by the user are network-connected devices such as cell phones and laptops; the cloud servers 

maintained by the Cloud Service Provider (CSP) are regular personal computers; and the networks managed by the Network Operator support various 

kinds of network access methods, e.g., WLAN, 4G, etc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First of all, cloud computing requires high real-time services. In cloud computing environments, resources are dynami-

cally scheduled over networks in a block-streaming way. The delay or lack of a single block during data transmission will

cause the failure of the service delivery. Secondly, cloud computing requires ubiquitous services. The users are promised to

enjoy services at anytime and at any place using any type of device. In certain circumstances, the time delay for data trans-

mission between the cloud servers and the clients may be intolerant. Such examples include the cloud servers becoming

overloaded or the clients having low-speed Internet access. To ensure the quality of the service, an alternative solution is to

establish a peer-to-peer connection between nearby clients for direct data transferring. 

In this paper, we propose a Comprehensive Transmission (CT) model to ensure service reliability in cloud environments.

The CT model, which combines the Client/Server (C/S) mode and the Peer-to-Peer (P2P) mode for data transmission, allows

the clients to access resources from the cloud servers in the C/S mode or other clients in the P2P mode. The CT model

makes full use of the advantages of both modes: On one hand, the centralized resource management in C/S mode is in

favor of access control and system security; On the other hand, P2P resource sharing can reduce the workload on the cloud

servers, which mitigates the risk of a single point of failure [4–6] . 

However, different users have different access rights for various resources in cloud computing environments. Although

the C/S mode can easily achieve fine-grained access control under the cloud servers’ centralized control, efficiently and

privately achieving authorized resource sharing in the P2P mode becomes a problem. For efficiency, we should ensure that a

client can quickly find appropriate resources. For privacy, we should protect the privacy of a client while searching resources

(i.e., which resources it is authorized to access). For authorized resource sharing, we should ensure that a client can access

resources only after obtaining authorization from the cloud servers. 

To this end, we design a Two-Phase Resource Sharing (TPRS) protocol, which mainly consists of a pre-filtering phase and a

verification phase. In the TPRS protocol, the clients are further classified as requesters and providers for certain resources. The

pre-filtering phase applies the Secure Dot-Product (SDP) protocol [7] to let a requester efficiently and privately find candidate 

providers. Then, the verification phase applies the Fuzzy Vault (FV) [8] and Attribute-Based Encryption (ABE) [9] techniques

to let each party privately verify the authenticity of the results in the pre-filtering phase for authorized resource sharing.

The main contributions of our work are as follows: 

• To achieve reliable and secure services in cloud computing environments, we propose a CT model by combining the C/S

mode and the P2P mode for data transmission. 
• We are among the first to consider the problem of efficient, private, and authorized resource sharing in cloud computing

environments. We design a TPRS protocol, which consists of a pre-filtering phase and a verification phase. 
• Extensive experiments have been conducted on the synthetic data set to verify the feasibility and effectiveness of the

proposed protocol. 

Paper organization. We provide our models and definitions in Section 2 before introducing technique preliminaries in

Section 3 . We present the pre-filtering phase in Section 4 before illustrating the verification phase in Section 5 . Then, we

analyze the security of the proposed protocol in Section 6 . After providing an evaluation in Section 7 , we introduce related

works in Section 8 . Finally, we conclude this paper in Section 9 . 

2. Models and definitions 

2.1. Comprehensive transmission model 

The CT model mainly consists of two kinds of entities: the cloud servers and the clients, as shown in Fig. 2 . In the

CT model, we mainly consider wireless networks, where many Access Points (APs) are deployed for data transmission. We

assume that the clients close to an AP form a group . 
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Fig. 2. The CT model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In cloud computing, services are delivered over networks in a multi-tenancy fashion, where application programs and

data resources are shared across a number of tenants. Therefore, it is convenient for a client to request resources from

nearby clients. As a trade-off between service reliability and security, the CT model allows a client to cache resources for a

certain period of time, t , other than one-time-use . During t , the client can be viewed as an authorized provider to provide

resources to other clients (referred as to requesters ) in a group. 

In the CT model, resource sharing is based on time, thus we split time into time periods of length t , with t i denoting the

i -th time period. Each time period is further divided into N time slices, with T i, j denoting the j th time slice of t i for 1 ≤ j

≤ N . Suppose that the set of universal resources in the system is R = { a 1 , a 2 , . . . , a d } . Each client, u , identified by a unique

identity, ID u , is associated with a resource coordinate , RS u = { a u 1 , a u 2 , . . . , a um 

} , where RS u ⊆ R denotes a set of resources,

which u has the right to access. Let | · | represent the cardinality of a set. Therefore, we have |R| = d and | RS u | = m . 

To access the desired resources, client u first sends its resource coordinate RS u to the cloud server, which will determine

whether u is authorized to access resources in RS u or not. If so, the cloud server will provide resources to u directly or

authorize u to request resources from other clients. For the former case, the cloud server will generate a set of time-based

proofs , { pr f 
t i 
a } a ∈ RS u at the end of transmission. Here, pr f 

t i 
a denotes u is authorized to provide resource a to other clients

during time period t i . For the latter case, the cloud server first determines the time slice T i, j , during which u is authorized

to access resources from other clients. Then, it generates a set of time-based tokens , { ( T K 

T i, j 
u,a , T K 

T i, j+1 
u,a ) } a ∈ RS u , and a set of

time-based decryption keys { dk 
T i, j 
u,a } a ∈ RS u for u . Here, the time-based tokens are used to construct a time-based fuzzy vault

FV T i, j 
μ for authenticating the providers’ identity, and the time-based decryption keys are used to recover message M for

confirming the authenticity of RS μ to the providers. After obtaining authorization from the cloud server, u runs the TPRS

protocol to achieve authorized resource sharing in an efficient and private way. 

2.2. Threat model 

In the threat model, the cloud server is a trusted entity responsible for generating system parameters and keys. The

clients can be divided into requesters and providers, which may be trusted or untrusted. For the cloud server, we should

ensure authorized resource sharing. That is, requester μ possesses time-based token, { ( T K 

T i, j 
μ,a , T K 

T i, j+1 
μ,a ) } , and time-based

decryption key, dk 
T i, j 
μ,a , only after μ is authorized by the cloud server to access resource a at time slice T i, j . In brief, requester

μ cannot forge its resource coordinate RS μ to access unauthorized resources at any time. 

For client u , associated with RS u , its collaborator and close collaborator can be defined as follows: 

Collaborator and close collaborator. Client v , associated with RS v , is u ’s collaborator if | RS u ∩ RS v | > 0; v is u ’s close collab-

orator if | RS u ∩ RS v | ≥ θ , where θ ∈ [1, m ] is a threshold value predetermined by u , and RS u ∩ RS v denote a set of common

resources in both RS u and RS v . 

For trusted clients, we need to protect the privacy of their resource coordinates from those that are not their collabo-

rators. That is, we should ensure that the intersection RS u ∩ RS v is disclosed to u and v only when they are collaborators.

Furthermore, we should ensure that u will share resources with v only when they are close collaborators . 

We assume that the communication channels are secured under existing security protocols, e.g., SSL and SSH, during

information transferral. Our protocol is considered to fail if any of the following cases is true: 

Case 1. The client u can forge its resource coordinate RS u by colluding with other untrusted clients to access unauthorized

resources at time slice T i, j . 

Case 2. The client u ’s resource coordinate RS u is disclosed to those which are not u ’s collaborators. 

Case 3. The client u accesses resources from those which are not u ’s close collaborators. 
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Fig. 3. The SDP protocol and the pre-filtering protocol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Technique preliminaries 

3.1. Secure dot-product protocol 

The SDP protocol proposed by Ioannidis et al. [7] allows two parties to compute the dot-product of two vectors without

directly exposing the vectors to each other. Suppose that Alice has a d -dimensional vector w and Bob has a d -dimensional

vector v , and only Alice is interested of the result of the dot product of v and w , denoted as w ◦ v . 

The working process of the SDP protocol is shown in Fig. 3 (a): 1) Bob generates a fuzzy matrix X by adding some

random noises to v , and then generates a random matrix Q and some random noises R , based on which he calculates Q · X

and auxiliary information b , g and c ′ . The random noise R and the auxiliary information b will be kept secret. The message

from Bob to Alice is V ∗ = { Q · X , g , c ′ } . 2) Alice generates a fuzzy vector w 

′ by adding a random noise α to w , and then

computes the intermediate results, ā and h , based on V 

∗ and w 

′ . The random noise α will be kept secret. The message from

Alice to Bob is W 

∗ = { ̄a , h } . 3) Bob calculates and sends β to Alice, based on W 

∗, auxiliary information b , and random noises

R . 4) Alice calculates β − α to obtain w ◦ v . By using linear algebraic technique, the SDP protocol provides a powerful tool

for secure dot-product calculation, and incurs a low overhead [10] . 

3.2. Fuzzy vault 

FV was proposed by Juels et al. [8] , where Alice places a secret value κ in a fuzzy vault and locks it using a set A of

elements, so that Bob can unlock the vault to obtain κ using a set B of elements only when A and B overlap substantially. The

hardness is based on the polynomial reconstruction problem, a special case of the Reed-Solomon List Decoding problem [11] .

Specifically, to lock κ under set A , Alice selects a polynomial p in a single variable x , such that p encodes κ in some way.

Then, she computes evaluations of p on the elements of A , by treating the elements of A as distinct x -coordinate values, to

form R A = { x i , y i } x i ∈ A ∧ y i = p(x i ) 
, and creates a number of random noises that do not lie on p to form R N = { X i , Y i } X i �∈ A ∧ Y i � = p(X i ) 

.

Alice will send R = R A ∪ R N to Bob. If B overlaps substantially with A , Bob can identify many points in R that lie on p , thus

reconstructing p exactly and recovering κ . 

It is worth noticing that FV is vulnerable to the cross-matching attacks [12] . If the attacker has access to multiple vaults

locked by the same set A he can easily identify the randomness. Cryptography solutions can address the cross-matching

attack issues in the fuzzy vault, and yet they will involve the issue of unlocking key storage and management. In the field

of bio-cryptography, PinSketch with a biometrics-key binding mechanism can address the cross-matching problems without 

dependence on the unlocking key. Interested readers are referred to following references [13–15] for the latest developments

on this topic. 

3.3. Attribute-based encryption 

In ABE [16,17] , users are identified by a set of attributes , and a ciphertext, associated with an attribute-based access struc-

ture , can be decrypted by the users whose attributes satisfy the access structure. For example, given an access structure

A = (a 1 ∧ a 2 ) ∨ a 3 , either users with attributes a 1 and a 2 , or users with attribute a 3 can decrypt the ciphertext. 

In cloud computing, the resources associated with each user are equal to user attributes in ABE. In the verification phase,

the provider will utilize the hierarchical ABE scheme proposed in [9] (referred to as HABE) to authenticate the requester’s

resource coordinate. The HABE scheme, constructed based on the bilinear map, is proven to be semantically secure under

the random oracle model and the Bilinear Diffie-Hellman (BDH) assumption [18] . The access structure in HABE is expressed

as a disjunctive normal form (DNF). For example, access structure A = 

N ∨ 

i =1 
(C C i ) = 

N ∨ 

i =1 
( 

n i ∧ 

j=1 
a i j ) consists of N conjunctive clauses,

C C 1 , . . . , C C N , where the i th conjunctive clause CC i is expressed as a i 1 ∧ a i 2 ∧ . . . ∧ a in i . The users that possess all of the at-

tributes in CC i can decrypt the ciphertext. The main merit of the HABE scheme is that it requires only a constant number of

bilinear map operations for encrypting a message, and the length of the ciphertext is related to the number of conjunctive

clauses instead of the number of attributes in the access structure. 
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4. The pre-filtering phase 

In this section, we will illustrate the construction of the pre-filtering phase, which is based on the SDP protocol [7,10] .

Given a requester μ, associated with RS μ, and a provider ν , associated with RS ν , μ will know whether | RS μ ∩ RS ν | ≥ θ or

not at the end of the pre-filtering phase, without exposing their resource coordinates to each other. 

Suppose that the universal resources R = { a 1 , . . . , a d } , and that requester μ holds a vector w and provider ν holds v ,

both in d dimensions. Let w i and v i denote the i th element in w and v , respectively. w i ( v i ) will be set to 1 if resource a i ∈
RS μ ( a i ∈ RS ν ); otherwise, it is set to 0. Given a security parameter S ≥ 2 that controls the amount of randomness to hide

resource coordinates, the pre-filtering phase works as follows (see Fig. 3 (b)): 

1) Requester μ constructs a random S × S matrix Q , and constructs a (d + 1) -dimensional vector, w 

′ , where w 

′ 
i 
= w i for

1 ≤ i ≤ d and w 

′ 
d+1 

= 1 . Then, μ generates a S × (d + 1) matrix X . Let x i denotes the i th row of X . We have: 

x i = 

{
w 

′ , i = r 0 , 
k i , ∀ i � = r 0 , 

where r 0 ∈ [1, S ] is a random number, and k 1 , . . . , k r 0 −1 , k r 0 +1 , k S are S − 1 random (d + 1) -dimensional vectors. Then

compute: 

Q · X , c ′ = c + f · r 1 · r 2 

g = f · r 1 · r 3 , b = 

S ∑ 

i =1 

Q ir 0 

where c = 

∑ S 
i =1 ,i � = r 0 ( x i ·

∑ S 
j=1 Q ji ) , f is a random (d + 1) dimensional vector, and r 1 , r 2 , r 3 are random numbers. The

auxiliary information b and random noises { r 2 , r 3 } will be kept for calculating β1 in Step 3). The message from μ to

all its nearby clients is denoted as W 

∗ = { Q · X , c ′ , g } . 
2) Provider ν constructs a (d + 1) -dimensional vector v ′ where v ′ 

i 
= v i for 1 ≤ i ≤ d and v ′ 

d+1 
= α with α a random

value, and then chooses a random number ρ > 0 to compute ρ · v ′ . Based on the scaled vector, ν calculates: 

y = Q · X · (ρ · v ′ ) , z = 

S ∑ 

i =1 

y i 

ā 1 = z − c ′ ◦ (ρ · v ′ ) , h 1 = g ◦ (ρ · v ′ ) 

where y i denotes the i th element of vector y . Then, ν calculates γ = α + ρ · θ + σ, where 0 ≤ σ < ρ is a random

number and θ is the threshold value. The message from ν to μ is V ∗ = { ̄a 1 , h 1 , γ } . 
3) Requester μ computes: β1 = 

ā 1 + h 1 ·R 
b 

, where R = r 2 /r 3 . If β1 − γ > 0 , ν will be treated as a candidate provider , and will

enter the verification phase. 

Proof of correctness. Since γ = α + ρ · θ + σ, we have β1 − γ = β1 − α − ρ · θ − σ . Let T denote the dot product of w and

v . Provider ν scales the vector v ′ with a random number ρ , thus β1 − α = ρ · T and β1 − γ = ρ · T − ρ · θ − σ = ρ(T − θ ) −
σ . Since ρ > σ , β1 − γ ≥ θ implies T > θ . �

Security sketch. For the provider, the information they obtained from the requester is no more than that in the SDP

protocol [7] , and thus our protocol can preserve the same level of privacy. In addition, the requester will know γ = α + ρ ·
θ + σ . As proven in [10] , since γ is hidden by two random numbers ρ and σ , the probability of revealing α is essentially

low. �

5. The verification phase 

For quick reference, we provide a summary of the most relevant notations in Table 1 . Based on the FV technique [8] and

the HABE scheme [9] , we construct the verification protocol as follows: 

1) Setup ( K ) → ( PK, MK, s ): The cloud server takes a security parameter K as the input, and outputs a system public key

PK , a system master key MK , and a root secret key s ∈ Z 

∗
q as follows: 

P K = (q, G 1 , G 2 , Q 0 , ̂  e , P 0 , P 1 , H 1 , H 2 , H 3 ) 

MK = (k 0 , k 1 , K 1 ) 

where (q, G 1 , G 2 , ̂  e ) are the outputs of a BDH parameter generator IG [18] , P 0 is a random generator of G 1 , P 1 is a

random element in G 1 ; H 1 : { 0 , 1 } ∗ → G 1 and H 2 : G 2 → { 0 , 1 } L for some L are random oracles; H 3 : G 1 → Z 

∗
q is a hash

function; k 0 and k 1 are random elements in Z 

∗
q ; Q 0 = k 0 P 0 ∈ G 1 , and K 1 = k 0 P 1 ∈ G 1 . PK is publicly available, but MK

and s are kept secret. 
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Table 1 

Summary of notations. 

Notation Description 

u, v, w , Clients 

μ, ν , Resource requester, resource provider 

R , d Universal resources, size of R 

RS u , m u ’s resource coordinate, size of RS u 
t i , T i, j Time period i , the j th time slice in t i 

T K T i, j 

u,a u ’s token for attribute a at T i, j 

dk 
T i, j 

u,a u ’s time-based decryption key 

pr f t i a Proof of possessing resource a at t i 

FV T i, j 

u Time-based fuzzy vault 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) GenT oken (P K, s, ID μ, a, T i, j , T i, j+1 ) → ( T K 

T i, j 
μ,a , T K 

T i, j+1 
μ,a ) : The cloud server takes system public key PK , the root secret

key s, μ’s identity ID μ, and time slice T i, j as inputs, and generates a time-based token T K 

T i, j 
μ,a = H 3 (s 

T i, j 
a H 1 (ID μ)) ∈ Z 

∗
q .

Here, s 
T i, j 
a can be calculated in a hierarchical way: 

s a = H s (a ) , s t i a = H s a (t i ) , s 
T i, j 

a = H 

s 
t i 
a 
(T i, j ) (1)

where attribute a , time period t i , and time slice T i, j will be expressed as a bit string, and H s : { 0 , 1 } ∗ → Z 

∗
q , H s a :

{ 0 , 1 } ∗ → Z 

∗
q , and H 

s 
t i 
a 

: { 0 , 1 } ∗ → Z 

∗
q are keyed hashes with s, s a , and s 

t i 
a as their secret keys, respectively. In the same

way, the cloud server generates a time-based token T K 

T i, j+1 
μ,a for μ. 

3) GenP roof (P K, s, a, t i ) → (pr f 
t i 
a ) : The cloud server takes system public key PK , root secret key s , and a time period t i 

as inputs, and generates s 
t i 
a ∈ Z 

∗
q with Eq. (1) . Then, it sets the time-based proof pr f 

t i 
a = s 

t i 
a for provider ν . 

4) GenKey (P K , MK , ID μ, a, T i, j ) → (dk 
T i, j 
μ,a ) : The cloud server takes system public key PK , system master key MK , requester

μ’s identity ID μ, resource a , and time slice T i, j as inputs, and generates a decryption key dk 
T i, j 
μ,a = (K μ, K 

T i, j 
μ,a ) as fol-

lows: 

K μ = k 1 k μP 0 , K 

T i, j 

μ,a = K 1 + k 1 k μH 1 (a || T i, j ) 

where ID μ is expressed as a bit string, k μ ∈ Z 

∗
q is a random element associated with ID μ, and H 1 (a || T i, j ) ∈ G 1 de-

notes resource a ’s public key at time slice T i, j . The notation “||” denotes concatenation. For example, the result of

“0011”||“1100” is “00111100”. 

5) Lock (κ, p, { T K 

T i, j 
μ,a , T K 

T i, j+1 
μ,a } a ∈ RS μ ) → ( FV T i, j 

μ ) : To lock secret κ ∈ Z 

∗
q , requester μ picks a random polynomial p of (θ −

1) degree and sets p(0) = κ . Then, it calculates p( T K 

T i, j+1 
μ,a ) for each resource a ∈ RS μ, and generates the time-based

fuzzy vault FV T i, j 
μ = { (T K 

T i, j 
μ,a , p(T K 

T i, j+1 
μ,a )) } a ∈ RSμ. 

6) Unlock (P K, FV T i, j 
μ , { pr f 

t i 
a } a ∈ RS ν ) → (κ) : For each time-based proof pr f 

t i 
a , provider ν first calculates s 

T i, j 
a = H 

s 
t i 
a 

(T i, j ) =

H 

pr f 
t i 
a 

(T i, j ) and then tests whether H 3 ( s 
T i, j 
a H 1 (ID μ)) appears in FV T i, j 

μ or not. If so, it calculates T K 

T i, j+1 
μ,a =

H 3 (s 
T i, j+1 
a H 1 (ID μ)) , where s 

T i, j+1 
a = H 

s 
t i 
a 

(T i, j+1 ) = H 

pr f 
t i 
a 

(T i, j+1 ) . If | RS μ ∩ RS ν | ≥ θ , it can obtain sufficient points on poly-

nomial p , and use { ( T K 

T i, j+1 
μ,a , p( T K 

T i, j+1 
μ,a )) } a ∈ RS μ∩ RS ν , to reconstruct p and get p (0) as confirmation message κ . 

7) Encrypt(P K, A , M, T i, j ) → (C 
T i, j 

A 
) : As in the HABE scheme [9] , the access structure A is expressed in the DNF form.

Specifically, to verify whether requester μ is authorized to access all of the resources in RS μ = { a μ1 , . . . , a μm 

} at time

slice T i, j , the provider ν will specify an access structure A = a μ1 ∧ . . . ∧ a μm 

∧ T i, j . Then, ν encrypts a message M ∈ {0,

1} L with access structure A by calculating Eq. 2: 

U 0 = rP 0 , (2a) 

U 1 = r 
∑ 

a ∈ R S μ
H 1 (a || T i, j ) , (2b) 

V = M � H 2 ( ̂  e (Q 0 , rmP 1 )) (2c) 

where r ∈ Z 

∗
q is a random number, and H 1 (a || T i, j ) ∈ G 1 denotes resource a ’s public key at time slice T i, j . The ciphertext

C 
T i, j consists of ( U 0 , U 1 , V ). 

A 
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8) Decrypt(P K, C 
T i, j 

A 
, { dk 

T i, j 
μ,a } a �A ) → (M) : Given ciphertext C 

T i, j 

A 
, requester μ uses its decryption keys { dk 

T i, j 
μ,a } a �A to recover

data M with Eq. (3) : 

M = V � H 2 

( 

ˆ e ( U 0 , 
∑ 

a ∈ R S μK 

T i, j 

μ,a ) 

ˆ e ( K μ, U 1 ) 

) 

(3)

Note that K μ = k 1 k μP 0 and K 

T i, j 
μ,a = K 1 + k 1 k μH 1 (a || T i, j ) . Thus, the correctness of Eq. (3) can be proven as follows: 

H 2 

( 

ˆ e (U 0 , 
∑ 

a ∈ RS μ
K 

T i, j 

μ,a ) 

ˆ e ( K μ, U 1 ) 

) 

= H 2 

(
ˆ e (rP 0 , 

∑ 

a ∈ RS μ
( K 1 + k 1 k μH 1 (a || T i, j ) )) 

ˆ e ( k 1 k μP 0 , r 
∑ 

a ∈ RS μ
H 1 (a || T i, j ) ) 

)

= H 2 

(
ˆ e (r P 0 , m K 1 ) ̂  e (r P 0 , 

∑ 

a ∈ RS μ
k 1 k μH 1 (a || T i, j ) ) 

ˆ e ( k 1 k μP 0 , r 
∑ 

a ∈ RS μ
H 1 (a || T i, j ) ) 

)
= H 2 ( ̂  e (r P 0 , m K 1 )) 

Thus, we have: 

V � H 2 

( 

ˆ e (U 0 , 
∑ 

a ∈ RS μ
K 

T i, j 

μ,a ) 

ˆ e ( K μ, U 1 ) 

) 

= M � H 2 ( ̂  e (Q 0 , rmP 1 )) � H 2 ( ̂  e (r P 0 , m K 1 )) 

= M � H 2 ( ̂  e (Q 0 , rmP 1 )) � H 2 ( ̂  e (Q 0 , rmP 1 )) = M 

6. Security analysis 

As defined in Section 2 , our TPRS protocol is considered to fail if any of the following cases are true: 

Case 1. The client u has the ability to forge its resource coordinate RS u to access unauthorized resources at time slice T i, j .

In our TPRS protocol, the provider will provide resources to the requester only after the requester can decrypt and send

back M . Therefore, we consider that Case 1 will not happen if the following propositions hold: 

Proposition 1. The keys produced by the GenKey algorithm are secure. 

Proposition 2. The ciphertext produced by the Encrypt algorithm is semantically secure. 

For Proposition 1 , we prove that our GenKey algorithm is as secure as the GenKey algorithm in the HABE scheme (referred

to as the HGenKey algorithm). If requester μ is authorized to access resource a at time slice T i, j , it will obtain a time-based

decryption key dk 
T i, j 
μ,a = { K μ, K 

T i, j 
μ,a } . Firstly, the way to generate K μ is the same in both algorithms. Secondly, given the system

public key PK , the system master key MK, μ’s identity ID μ, and the concatenation of attribute a and time slice T i, j , a || T i, j , as

inputs of the HGenKey algorithm, the produced key K 

T i, j 
μ,a is the same as that of our GenKey algorithm. As proven in [9] , due

to the BDH assumption, malicious users cannot obtain MK , even if all of them collude. Thus, Proposition 1 is correct. 

For Proposition 2 , recall that message M is encrypted to V = M � H 2 ( ̂  e (Q 0 , rmP 1 )) . Therefore, an adversary needs to con-

struct ˆ e ( Q 0 , rm P 1 ) = ˆ e ( U 0 , K 1 ) 
m to recover M . From the GenKey algorithm, we know that the only occurrence of K 1 is in K 

T i, j 
μ,a .

Then, we consider the case that malicious clients work independently, or collude to compromise data security. 

The Encrypt algorithm is considered to be insecure if adversary A , whose resource coordinates do not satisfy the access

structure A at time slice T i, j , can recover M . We have the following assumptions for ease of presentation: Adversary A has

requested keys on all but one of the resources a u 1 , . . . , a u (k −1) , a u (k +1) , . . . , a um 

in A for client u , and has requested a key on

the missing resources a vk for client v , at time slice T i, j . The only occurrence of K 1 is in K 

T i, j 
μ,a , so the adversary has to use

keys requested for client u and v for bilinear map, yielding for some ξ : 

ˆ e 

( 

U 0 , 

m ∑ 

l =1 ,l � = k 
K 

T i, j 

u,a ul 
+ K 

T i, j 

v ,a v k + ξ

) 

= 

ˆ e (U 0 , mK 1 ) ̂  e (rP 0 , ξ ) ̂  e (K v , rH 1 (a v k || T i, j )) ̂  e (K u , r 

m ∑ 

l =1 ,l � = k 
H 1 ( a ul || T i, j )) 

where H 1 ( a || T i, j ) denotes a ’s public key at time slice T i, j . To obtain ˆ e ( U 0 , K 1 ) 
m , the last three elements have to be elimi-

nated. Note that K v and K u are known to adversary A , but r is randomly chosen by the encrypter for the ciphertext C 
T i, j 

A 
.

The adversary cannot know rH 1 ( a vk || T i, j ) or r 
∑ m 

l =1 ,l � = k H 1 (a ul || T i, j ) , even if it knows U 1 = r 
∑ 

a ∈ R S μH 1 (a || T i, j ) due to the BDH

assumption. Therefore, adversary A cannot recover M from V . Thus, Proposition 2 is correct, and Case 1 will not happen. 

Case 2. The client u ’s resource coordinate RS u is disclosed to client v which is not u ’s collaborator. 

The pre-filtering phase is based on the SDP protocol, the security of which has been proven in [7] . Thus, the entities

involved only know whether | RS u ∩ RS v | ≥ θ or not, without exposing their resource coordinates. In the verification phase,

the message from requester μ to provider ν is a time-based fuzzy vault FV T i, j 
μ = { ( T K 

T i, j 
μ,a , p( T K 

T i, j+1 
μ,a )) } a ∈ RS μ . If ν and μ are

not collaborators at time slice T i, j , we know that RS μ ∩ RS ν = 0 . For each proof pr f 
t i 
a , ν cannot obtain s 

t i 
a satisfying a νk ∈
νk νk 
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Table 2 

Parameter setting. 

Parameter Description Value 

d Number of universal resources {50, 100} 

n Number of clients 40 ∼ 200 

m Size of the resource coordinate RS u 5 ∼ 20 

S Security parameter {2, 5} 

θ Threshold value { m /2, m } 

L The length of message M 64B 

Table 3 

The computation cost at the cloud server. 

m = 5 m = 10 m = 15 m = 20 

GenToken 259 ms 423 ms 598 ms 758 ms 

GenKey 304 ms 584 ms 863 ms 1149 ms 

GenProof 0 . 49 ms 0 . 71 ms 0 . 93 ms 1 . 20 ms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RS μ. Due to the security of the hash functions, it cannot obtain s 
T i, j 
a μl 

for any resource a μl ∈ RS μ. Due to the BDH assumption,

it cannot generate token T K 

T i, j 
a μl 

for any resource a μl ∈ RS μ, and thus cannot know which resources μ is requesting for. 

The message from provider ν to requester μ is a ciphertext C 
T i, j 

A 
encrypted with the Encrypt algorithm, which is proven

to be semantically secure in Case 1. Therefore, μ can recover M to know ν ’s resource coordinate only when it possesses

sufficient decryption keys, which implies that ν is a collaborator of μ. Thus, Case 2 will not happen. 

Case 3. The client u accesses resources from those which are not u ’s close collaborators. 

In our protocol, requester μ requests resources from provider ν only when ν unlocks and sends back κ . As the proven

in Case 2, ν can calculate T K 

T i, j+1 
a v k 

satisfying T K 

T i, j+1 
a v k 

= T K 

T i, j+1 
a ul 

only when a νl = a μk . That is, ν cannot forge proofs for the

unauthorized resources. Due to the hardness of the Reed–Solomon List Decoding problem [11] , ν has the ability to recover

p only when it obtains sufficient points lying on p . Thus, Case 3 will not happen. 

7. Evaluation 

In this section, we will evaluate the performance of the TPRS protocol in terms of computation cost. The cloud server

is running on a Linux system with Intel Xeon X3430 at 2.4GHz CPU and 4.0 GB RAM, and the client is running on a Linux

system with Intel Core i3-2310M at 2.10 GHz CPU and 4.0 GB RAM. The cryptographic algorithms in the verification phase

are implemented with JPBC library [19] . We use a 160-bit elliptic curve y 2 = x 3 + x over a 512-bit finite field, in which q is

a 160-bit length prime, and the length of element in G 1 is 512-bit. The parameters used in the experiments are shown in

Table 2 . 

7.1. The costs at the cloud server 

In our experiments, the Setup algorithm takes about 330 ms for performing a constant number of exponentiation op-

erations. However, the Setup algorithm is run only during system initialization, and hence can be done once and for all.

Then, the cloud server runs algorithms GenToken and GenKey to generate tokens and decryption keys for a requester, or runs

the GenProof algorithm to generate proofs for a provider. The average computation costs for these algorithms are shown in

Table 3 . From Table 3 , we know that most of processing time is spent in the GenKey algorithm, where the most expensive

operation is the calculation of H 1 ( a || T i, j ). As an improvement, we allow the cloud server to cache the result of the random

oracle, so that H 1 ( a || T i, j ) is only executed once regardless of how many clients are requesting a at time slice T i, j . Therefore,

the computation time of the GenKey algorithm does not grow linearly as the number of clients, n , increases. 

To verify the scalability of the proposed protocol, we will test the performance of cloud server while n ranges from 40

to 200. We consider random distribution and power-law distribution for the resources in RS u . From Figs. 4 , 5 and 6 , we know

that parameter m has the greatest impact on the computation time at the cloud server. Furthermore, our protocol has better

performance in pow-law distribution compared with random distribution. However, the distribution has less influence on

the GenToken algorithm. The reason is, for two clients sharing the same resource a at time slice T i, j , only the calculation for

s 
T i, j 
a can be shared in the GenToken algorithm. 

7.2. The costs at the requester 

In our TPRS protocol, requester μ, associated with RS μ, first participates in the pre-filter phase to find out candidate

providers. From Table 4 , we know that the computation cost increases as either d or S increases. In the worst case, it takes

less than 1ms to finish this step. 
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Fig. 4. Computation time for the GenKey algorithm (ms). 
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Fig. 5. Computation time for the GenToken algorithm (ms). 
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Fig. 6. Computation time for the GenProof algorithm (ms). 

Table 4 

The computation cost in the pre-filtering phase. 

S = 2 S = 5 

d = 50 d = 100 d = 50 d = 100 

Requester 0 . 173 ms 0 . 367 ms 0 . 232 ms 0 . 429 ms 

Provider 0 . 064 ms 0 . 137 ms 0 . 097 ms 0 . 169 ms 

 

 

 

 

 

 

The computation costs for algorithms Lock and Decrypt are shown in Fig. 7 , from which we know that the computation

time of the Lock algorithm mainly depends on parameters m and θ , and the computation cost of the Decrypt algorithm

increases as m increases. However, both algorithms are very efficient. 

7.3. The costs at the provider 

In the verification phase, provider ν first runs the Unlock algorithm to recover confirmation message κ . Then, it runs the

Encrypt algorithm to generate a ciphertext. The most expensive operations in the above algorithms include the computa-

tion of a random oracle in G 1 , as well as the computation of exponentiation. As an improvement, we allow the provider

to request this information from the cloud server rather than calculating them independently. The computation costs for
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Fig. 7. Computation cost in the verification phase at the requester. 

Fig. 8. Computation cost at the provider in the verification phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

algorithms Unlock and Encrypt are shown in Fig. 8 , from which we know that the computation costs in both algorithms will

grow as m increases. Furthermore, the performance of the Unlock algorithm is also affected by the threshold value θ . 

Summary. The pre-filtering phase costs less than 1 ms in total. Thus, the requester can quickly screen a majority of

providers whose resource coordinates have less than θ intersection within its own resource coordinate. After obtaining

authorization from the cloud server, the total consumed time for the provider is within 100 ms , and the total consumed

time for the requester to authenticate one provider is within 40 ms in the worst case. Therefore, we can set the length of

each time slice to 200 ms . For a time period consisting of 100 time slices, the time duration for caching data is about 20 s . 

8. Related work 

The term cloud computing was first coined by Google CEO Eric Schmidt in 2006, and was immediately popular within

the industry. Although cloud computing has overwhelming superiorities over traditional computing models, the adoption of

clouds is still far from expected. The main reason is that customers worry that their data may be leaked or tampered by

the cloud vendors. Therefore, improving the service reliability and security in cloud computing environments has always

been the focus. For example, for reliable cloud services, Zhao et al. [20] introduced a low latency fault tolerance middle-

ware to provide fault tolerance for distributed applications deployed within clouds. Jhawar et al. [21] proposed a compre-

hensive approach to transparently deliver fault-tolerance applications running on virtual machine instances in clouds. Liu

et al. [22] presented a consistency as a service model, where the users were allowed to verify whether the CSP provided

the promised level of consistency or not. However, existing work mainly focuses on the C/S transmission mode, where the

clients request all of the resources from the cloud servers. The centralized resource management in C/S mode is in favour

of access control and system security, but is more likely to cause a single point of failure. This paper proposed a CT model,

which allows a client to access resources from either the cloud server in the C/S mode, or other clients in the P2P mode. 

Based on the CT model, our research problem focuses on how to efficiently and privately achieve authorized resource

sharing in the P2P mode. The problem of privately finding resources is similar to the secure friend discovery problem in

social networks [10,23–25] . For example, Dong et al. [10] proposed a privacy-preserving and verifiable secure dot-product

protocol based on the SDP protocol [7] and Homomorphic Encryption. With their protocol, a user’s social profile will be

protected during friend discovery in mobile social networks. Li et al. [23] proposed a privacy-preserving personal profile

matching scheme for mobile social networks by utilizing the efficient private matching and Set Intersection technique and

the Shamir secret sharing scheme. The main difference between our work and theirs is that we need to verify the authentic-

ity of the resource coordinate to achieve authorized resource sharing. Therefore, we generate tokens and keys to the clients

during authorization and apply the FV and ABE techniques for mutual authentication. 
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9. Conclusion and future work 

Our CT model allows a client to cache resources for a certain period of time to achieve comprehensive resource sharing,

which will better suit the ubiquitous and unconscious requirements of cloud services. In the CT model, our TPRS protocol

allows the requesters to quickly screen out a majority of clients that do not meet their requirements in the pre-filter phase,

and allows the requester and the provider to mutually verify the authenticity of each other’s resource coordinate in the ver-

ification phase. In the empirical study, the interaction between clients takes about 200 ms. Therefore, our protocol enables

the efficient, private, and authorized resource sharing in cloud computing. 

However, the TPRS protocol treats all the cloud servers equally, and lets them share the system master key MK and the

root secret key s . This makes it difficult to revoke a cloud server from the system. If a cloud server is compromised, s and

MK will be exposed to the attacker. For system security, we need to revoke the compromised cloud server and run the Setup

algorithm to reinitialize the whole system. Afterwards, we need to run the GenToken, GenKey , and GenProof algorithms for

generating new tokens, keys, and proofs for all clients. This revocation process will introduce a heavy workload on the sys-

tem. The preferred solution is to let each cloud server i associate personalized MK i and s i . Once cloud server j is revoked, we

replace it with a new cloud server i and then utilize MK i and s i to re-generate keys to only the clients requesting resources

from the revoked cloud server. Therefore, as part of our future work, we will try to incorporate the idea of distributed ABE

to our protocol to achieve efficient revocation of the cloud servers. 
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