
NSFA: Nested Scale-Free Architecture for Scalable
Publish/Subscribe over P2P Networks

Huanyang Zheng and Jie Wu
Department of Computer and Information Sciences, Temple University, USA

Email: {huanyang.zheng, jiewu}@temple.edu

Abstract—This paper proposes a scalable publish/subscribe
system based on unstructured P2P networks, which are shown
to have Nested Scale-Free Architectures (NSFAs). The scale-free
architecture is a classic concept, which means that the peer
degree distribution follows power-law. ‘Nested’ indicates that
the scale-free architecture is preserved when low-degree peers
and their associated connections are removed. We find that
NSFA’s hierarchy can be distributedly constructed, and has a
better bound than classic hierarchies. By leveraging the NSFA’s
hierarchy, our publish/subscribe system achieves a competitive
tradeoff among the event routing efficiency, system robustness,
and overhead. For an unstructured P2P network with |V | peers,
the number of routing hops for the event deliveries in our system
is expected to be O(ln ln |V |). For the topological information,
each peer only needs to maintain an overhead with a constant
size, O(1). Peer arrival, departure, and failure can be handled
within a message complexity of O(ln ln |V |). Finally, real data-
driven experiments demonstrate the efficiency and effectiveness
of the NSFA-based publish/subscribe system.

Index Terms—Nested scale-free architecture; network scalabil-
ity;publish/subscribe; unstructured P2P network

I. INTRODUCTION

Publish/Subscribe (pub/sub) systems are appealing abstrac-
tions for the Content Delivery Networks (CDNs). A pub/sub
system involves three roles: subscribers, publishers, and bro-
kers. Subscribers express their interests through subscriptions
with the system, in order to receive events matching their
subscriptions. Events are issued by publishers and are deliv-
ered to subscribers via brokers. Real-world pub/sub system
applications include Yahoo Message Broker [5] which is
integrated with web applications, Global Data Synchronization
Network [4] that exchanges supply chain information among
retailers, and SuperMontage [14] that disseminates financial
data and orders among traders.

Most existing large-scale pub/sub systems are implemented
as overlay networks on the Internet. They require hundreds of
servers placed at strategic points across the globe to handle the
load, as well as trained professionals to monitor these servers.
For example, the infrastructure of Akamai’s pub/sub system
includes 56,000 dedicated servers among 950 networks in 70
countries [14]. However, such expensive infrastructure costs
are not always feasible for many large corporations. Moreover,
the scalabilities of these systems are inherently questionable,
because all the events are handled on given servers in a
centralized manner. As a result, building pub/sub systems on
Peer-to-Peer (P2P) networks becomes an alternative option
[24]. P2P networks are inexpensive and highly scalable, since

(a) P2P network with all peers. (b) Top 50% peers.

Fig. 1. NSFA in the Gnutella dataset.

all the peers contribute their machines to distributedly increase
the computational and storage resources. In P2P-based pub/sub
systems, peers are used to not only store events, but also route
events to other peers with matching subscriptions.

P2P networks can be roughly classified as unstructured
and structured. Unstructured P2P networks, such as Gnutella,
Kazaa, and Bitcoin, are formed by peers that “randomly”
connect to each other. Since there is not a globally-imposed
structure on peers, unstructured P2P-based pub/sub systems
have very low construction overheads and are highly robust in
terms of frequent churns (peer arrivals and departures). How-
ever, routing events from publishers to subscribers becomes
extremely inefficient due to the lack of structure. For example,
Sub-2-Sub [26] uses a flooding-based routing strategy that
leads to a high amount of network traffic. For another example,
SIENA [3] cannot provide a bounded routing performance, in
terms of the routing hops and overheads. On the other hand,
structured P2P networks, such as Chord, P-Grid, and Pastry,
organize peers into specific topologies through Distributed
Hash Tables (DHTs), and thus enable high-performance rout-
ings for pub/sub systems. However, as a tradeoff, structured
P2P-based pub/sub systems have considerable construction
overheads and are vulnerable to churns, due to the maintenance
of large-size DHTs. For example, handling one peer churn in
Terpstra [25] and PastryStrings [1] takes logarithmic messages
with respect to the number of peers in the system.

Recent advances in network science show that peer connec-
tions in unstructured P2P networks are not truly random [2].
We propose that they share a Nested Scale-Free Architecture
(NSFA). The scale-free architecture is a classic concept [2],
meaning that the peer degree distribution follows power-law.
In such an architecture, a majority of the periphery peers are

inactive with a small number of connections, while a minority
of the core peers are active with a large number of connections.
‘Nested’ indicates that the scale-free architecture is preserved,
when low-degree peers and their associated connections are
removed. An example is shown in Fig. 1, where peers with
more connections are shown as larger nodes. Fig. 1(a) depicts
the largest strongly connected component formed by peers
whose IDs are smaller than 500 in the Gnutella dataset [12].
It is scale-free. Then, we iteratively remove the peer with the
smallest number of connections, until half of the peers remain.
Fig. 1(b) shows the resulting network, which maintains scale-
free by the nested property. We find that NSFA’s hierarchy
can be distributedly constructed, and has a better bound than
classic hierarchies [7, 10, 19, 22, 28]. For an unstructured P2P
network with |V | peers, the number of hierarchical levels in
NSFA can be bounded by ⇥(ln |V |).

By leveraging the NSFA’s hierarchy, this paper proposes
a novel distributed pub/sub system for unstructured P2P net-
works. While our system has very low construction overhead
and is highly robust, its event routing efficiency is competitive
with those in structured P2P-based pub/sub systems. Our event
routing is hierarchical, and has two phases: the publisher
first uploads the event to the network core, which in turn
downloads the event to the subscriber. For an unstructured P2P
network with |V | peers, the number of routing hops can be
O(ln ln |V |) in our approach. Moreover, instead of using costly
DHTs whose sizes scale up with the number of peers, each
peer in the proposed system only needs to keep a constant-
size overhead as the topological information to handle event
routings and peer churns. Peer arrival, departure, and failure
can be handled within a message complexity of O(ln ln |V |).
Our pub/sub system outperforms classic systems, in terms of
better bounds of asymptotic performances.

Our main contributions are summarized as follows:

• We address a novel architecture of NSFA in unstructured
P2P networks. A distributed labeling scheme is proposed
to determine the hierarchical levels in NSFA.

• Based on NSFA’s hierarchy, we propose a novel pub/sub
system, which has low construction overhead, is highly
robust in terms of peer churns, and is efficient for event
routings. Our system performance is well-bounded.

• The state-of-the-art pub/sub systems over P2P networks
are surveyed in a comparative manner with the proposed
work, in terms of the event routing efficiency, system
robustness, and overhead.

• Extensive real data-driven experiments on Gnutella and
Bitcoin are conducted to evaluate the proposed pub/sub
system. Experimental results are shown from different
perspectives to provide insightful conclusions.

The remainder of this paper is organized as follows. Section
II formulates the problem. Section III presents the NSFA and
its hierarchy. Section IV describes the pub/sub system. Section
V surveys the related works in a comparative manner with the
proposed pub/sub system. Section VI includes experiments.
Finally, Section VII concludes the paper.

II. PROBLEM STATEMENT

The objective of this paper is to build an advanced content-
based pub/sub system for unstructured P2P networks. An
unstructured P2P network is modeled by a directed graph G =

(V,E), where V is a set of peers (nodes), and E ✓ V 2 is a set
of directed connections among the peers (directed edges). The
numbers of incoming and outgoing connections held by a peer
are denoted as its indegree and outdegree, respectively. Each
peer may publish events, which are conjunctions of attribute-
value pairs. For example, {(temperature, 30), (precipitation,
20)} is an event describing the weather conditions. Each peer
has its own interests. Peers express their interests through sub-
scriptions with the system, in order to receive interested events
matching their subscriptions. Subscriptions are conjunctions
of attribute-operator-value tuples. For example, {(temperature,
<, 40), (precipitation, >, 10)} could be one subscription of a
peer. A peer may have multiple subscriptions. A subscription
matches an event if all the operators in this subscription are
satisfied using the corresponding attributes and values of that
event. Peers can also route events to other peers. In other
words, each peer can be a publisher, a subscriber, a broker, or
an arbitrary combination of these three roles.

To evaluate the system performance, we focus on three
metrics: event routing efficiency, robustness, and overhead.
Event routing efficiency refers to the number of routing hops in
event deliveries. Robustness refers to the number of messages
used by the system to deal with peer arrivals, departures, and
failures. Overhead refers to each peer’s storage consumption
on the topological information for event routings, peer churns,
and peer failures. Classic unstructured P2P-based pub/sub
systems are highly robust and have low overheads, but sacrifice
routing efficiency due to the lack of structure. On the contrary,
classic structured P2P-based pub/sub systems have a high
routing efficiency, but perform poorly in terms of robustness
and overhead. This is because they need to maintain large-
size DHTs as the topological information. By contrast, our
system obtains well-bounded results on all these three metrics
by leveraging the NSFA of unstructured P2P networks.

We use a hierarchical approach. We start with the inherent
hierarchy in unstructured P2P networks (the NSFA’s hierarchy
in Section III). The hierarchical level of each peer is deter-
mined. Based on the NSFA’s hierarchy, our pub/sub system is
described (Section IV). Then, a comparative survey of related
works is given on their asymptotic performances (Section V).
Our system has a better bound than classic approaches.

III. UNSTRUCTURED P2P NETWORKS

A. Scale-Free Architecture

A P2P network is a distributed application that partitions
tasks or work loads between peers. They can be roughly
classified as unstructured (Gnutella, Kazaa, and Bitcoin) and
structured (Chord, P-Grid, and Pastry), depending on whether
particular topologies are specified or not by design. In previous
decades, peers in unstructured P2P networks were considered
to be “randomly” connected to each other. However, recent

Algorithm 1 Distributed labeling scheme for SFA
Input: The peer v and its neighbors.
Output: The hierarchical level of v in SFA.

1: Initialize v as unlabeled.
2: repeat in a round-by-round manner do
3: if v has the smallest degree (including the tie) among

all its unlabeled neighbors then
4: Set v’s label to be the largest label among its labeled

neighbors plus one (in the event that v does not have
a labeled neighbor, v’s label is one).

5: return v’s label as its hierarchical level.

advances in network science show that peer connections are
not truly random [2]. Bulut et al. [2] showed that unstructured
P2P networks have the Scale-Free Architecture (SFA):

Definition 1: A network (i.e., G) satisfies SFA, if its node
degree distribution follows power-law.

Since P2P networks are directional, the degree could be
either indegree or outdegree. Let Pd denote the fraction of
peers with a degree of d, the power-law means that:

Pd =

↵� 1

dmin
·
⇣ d

dmin

⌘�↵
(1)

↵ is a constant power-law exponent ranging from 2 to 3 [2].
dmin is also a constant parameter from where the power-law
degree distribution holds. Eq. 1 indicates that majority peers
hold only a few connections, while minority peers hold lots
of connections. Consequently, SFA can produce the following
network hierarchy by degree rankings:

Definition 2: SFA’s network hierarchy is defined by ranking
hierarchical levels based on peer degrees. Peers with smaller
degrees have lower hierarchical levels.

Algorithm 1 is proposed as a distributed labeling scheme
that determines peers’ hierarchical levels in SFA. It works
through synchronous peer iterations (a round-by-round manner
in line 2). The label of a peer indicates its hierarchical level.
Since unstructured P2P networks are directional, Algorithm 1
has an indegree version and an outdegree version, depending
on the degree used in it. For indegree and outdegree versions,
the neighbors in Algorithm 1 (lines 3 and 4) refer to the
incoming and outgoing neighbors, respectively.

SFA’s hierarchy has been widely acknowledged in many
existing works [7, 10, 19, 22, 28]. One of the most famous
example includes BubbleRap [10], which presents a routing
scheme for delay tolerant networks with social features. A
message in BubbleRap is iteratively forwarded to nodes with
larger degrees to seek the message destination. However, the
number of routing hops in BubbleRap is not well-bounded
even if the network satisfies SFA. The number of hierarchical
levels in SFA could be ⇥(|V |), where |V | is the number of
nodes in the network [28]. As a result, hierarchical routings
in SFA may perform poorly under certain scenarios. On the
other hand, SFA is not sufficient to describe the ad-hoc nature
of unstructured P2P networks, where peers arrive and depart
dynamically. Further explorations are conducted.

Algorithm 2 Distributed labeling scheme for NSFA
Input: The peer v and its neighbors.
Output: The hierarchical level of v in NSFA.

Same as Algorithm 1, except the subtle change on the if
statement in line 3: if v has the smallest effective degree
(including the tie) among all its unlabeled neighbors

B. Nested Scale-Free Architecture

Differing from structured P2P networks that have specified
topologies by design, unstructured P2P networks are formed
by peers that arrive and depart dynamically. When new peers
arrive, they connect to existing peers as new peripheries of the
existing network. Such time-evolving peer dynamics create an
onion-like architecture, which is defined as the NSFA:

Definition 3: Let Gs denote the set of subgraphs generated
by iteratively removing the lowest-degree node and its con-
nections in a network, G. We claim that G satisfies NSFA, if
(i) G and all the subgraphs in Gs satisfy SFA, and (ii) the
standard deviation of their power-law exponents is o(1).

An intuitive explanation of NSFA is that, G satisfies NSFA,
if it satisfies SFA and its power-law exponent (i.e., ↵ in Eq. 1)
has almost no variation when the current lowest-degree node
in G is iteratively removed. Subgraphs in Gs, which are overly
small to depict SFA, can be ignored by setting up a threshold.
Clearly, NSFA is a “nested” extension of SFA. We claim that
unstructured P2P networks satisfy NSFA (verified later). NSFA
is our novel contribution, and is the key idea of this paper.
NSFA produces the following network hierarchy:

Definition 4: NSFA’s network hierarchy is defined by rank-
ing hierarchical levels by iteratively removing the set of peers
that have the lowest degrees among their neighbors. Peers that
are removed earlier have lower hierarchical levels.

The difference between Definitions 3 and 4 is that NSFA’s
hierarchy is defined by removing all the local lowest-degree
peers in one iteration, while NSFA is defined by removing the
global lowest-degree peer in one iteration. Clearly, through
local approximations, NSFA’s hierarchy can reveal the struc-
tural properties of networks that satisfy NSFA. Algorithm 2 is
proposed as a distributed labeling scheme to determine peers’
hierarchical levels in NSFA. It involves the following concept:
the effective degree of a peer is defined as its number of
connections to its unlabeled neighbors. Algorithm 2 also works
through synchronous peer iterations (round-by-round manner
in line 2). The label of a peer indicates its hierarchical level.
The only difference between Algorithms 1 and 2 is line 3
(the if statement), which shows the prerequisite for the peer
labeling. However, it leads to a fundamental insight difference:
Algorithm 2 can reveal the nested property, while Algorithm 1
cannot reveal this property. This is because labeling peers in
a round of Algorithm 2 is essentially peeling off the current
outermost layer of the onion-like network. Once a peer labels
itself, its connections are no longer counted in the effective
degrees of unlabeled peers. Peers are iteratively peeled off by
the labeling process to reveal the onion-like architecture.

Algorithm 2

Algorithm 1

peel
off

3rd round2nd round1st round: they are identical

peel off the outermost layer

peel off the outermost layer
1 1 1 1 1 1

1 1 1 1 1 1

2

1 1 1 1 1 1

2

1 1 1

2

1 1 1

3

2

1 1 1

3

1 1 1

2

3

1 1 1

2

1 1 1
peel
off

nested property

Fig. 2. Difference between Algorithms 1 and 2 (indegree version).

To better illustrate the differences between Algorithms 1 and
2, an example of their indegree versions is shown in Fig. 2. A
node represents a peer. The numbers within the nodes are their
hierarchical levels. Directed arrows are directed connections
among peers. In Fig. 2, the two peers with the largest indegrees
have the maximal hierarchical level in Algorithm 1, but they do
not have the maximal hierarchical level in Algorithm 2. This
is because their connections are peeled off in the first round.
Each round of Algorithm 2 peels off the outermost layer of
the onion-like network, which is composed of the remaining
unlabeled peers. Our next claim is that, as the most important
property and the greatest advantage of NSFA, the expected
number of rounds for Algorithm 2 to terminate is bounded:

Theorem 1: Suppose an unstructured P2P network has |V |
peers and satisfies NSFA. Then, Algorithm 2 is expected
to terminate within ⇥(ln |V |) rounds of synchronous peer
iterations. The maximal peer label is also ⇥(ln |V |).

Proof: The key idea is to show that a constant percentage of
unlabeled peers are expected to label themselves in each round
of Algorithm 2. We start with the upper bound. Initially, all
the peers are unlabeled. Let us consider the probability that
an arbitrary peer (say v) labels itself. Suppose v’s degree is
dv . Based on Eq. 1, the probability that a neighbor of v has
a higher degree than v is:

Z 1

dv

↵� 1

dmin
·
⇣ d

dmin

⌘�↵
dd =

⇣ dv
dmin

⌘
1�↵

(2)

The node v labels itself when all of its dv neighbors have larger
effective degrees than v. Since all peers are initially unla-
beled, the probability that v labels itself is (dv/dmin)

(1�↵)⇥dv .
Therefore, the expected percentage of peers that will label
themselves in the first round of Algorithm 2 is:

Z 1

dmin

⇣ dv
dmin

⌘
(1�↵)⇥dv

· ↵� 1

dmin
·
⇣ dv
dmin

⌘�↵
ddv

>

Z
2dmin

dmin

⇣ dv
dmin

⌘
(1�↵)⇥dv

· ↵� 1

dmin
·
⇣ dv
dmin

⌘�↵
ddv

>

Z
2dmin

dmin

⇣ dv
dmin

⌘
(1�↵)⇥2dmin

· ↵� 1

dmin
·
⇣ dv
dmin

⌘�↵
ddv

=

1

2dmin + 1

h
1� 1

2

(↵�1)(2dmin+1)

i
= c (3)

Let c denote the result in Eq. 3. Note that ↵ is a constant
that ranges from 2 to 3 [2]. dmin is also a constant parameter.

Therefore, c is a positive constant, meaning that more than a
constant percentage of unlabeled peers will label themselves in
the first round of Algorithm 2. Then, in the second round, these
labeled peers are peeled from the remaining network. This
is because their connections are not counted in the effective
degrees of unlabeled peers. With the nested property, we
consider that the effective degree distribution for the unlabeled
peers remains the same. This is because peers labeled in one
iteration are not adjacent to each other, and the remaining
network belongs to Gs by Definition 3. We ignore the limited
variation of ↵. Through the same arguments in Eqs. 2 and
3, more than a constant percentage of unlabeled peers will
label themselves in the second round of Algorithm 2. By
induction, we conclude that more than a constant percentage
of unlabeled peers will label themselves in each round of
Algorithm 2. Since |V | ⇥ c� logc |V |

= 1, Algorithm 2 is
expected to terminate within � logc |V | rounds. c is a positive
constant that is smaller than one, and thus � logc |V | belongs
to O(ln |V |). Therefore, the number of rounds for Algorithm
2 to terminate is expected to be O(ln |V |).

The proof of the lower bound is similar: less than a constant
percentage of unlabeled peers will label themselves in each
round of Algorithm 2. Similar to Eq. 3, we have:

Z 1

dmin

⇣ dv
dmin

⌘
(1�↵)⇥dv

· ↵� 1

dmin
·
⇣ dv
dmin

⌘�↵
ddv

<
↵� 1

dmin

Z 1

dmin

⇣ dv
dmin

⌘
(1�↵)⇥dv

ddv

=

↵� 1

dmin

Z 1

dmin

e(1�↵)⇥dv⇥ln(dv/dmin)ddv

<
↵� 1

dmin

h Z edmin

dmin

⇣ dv
dmin

⌘
(1�↵)dmin

ddv +
Z 1

edmin

e(1�↵)dvddv
i

=

↵� 1

dmin

h e(1�↵)dmin+1 � 1

(1� ↵)dmin + 1

dmin �
e(1�↵)edmin

1� ↵

i
= c⇤ (4)

Let c⇤ denote the result in Eq. 4. Clearly, c⇤ is also a
constant. Through the same argument, the number of rounds
for Algorithm 2 to terminate is expected to be ⌦(ln |V |).

Combining the upper and lower bounds, we conclude that
Algorithm 2 is expected to terminate within ⇥(ln |V |) rounds
of synchronous peer iterations. In each round, the maximal
peer label increases by one (line 4 in Algorithm 1, which is
also used by Algorithm 2). Therefore, the expected maximal
peer label in NSFA is also ⇥(ln |V |). ⌅

0% 15% 30% 45% 60% 75% 90%
2.1

2.4

2.7

3

3.3

3.6

Percentage of Removed Peers

Sc
al

in
g

Ex
po

ne
nt

Gnutella
Bitcoin

(a) Power-law scaling exponent.

2 3 4 5 6 7101

102

103

104

Hierarchical Level in NSFA

N
um

be
r o

f P
ee

rs

Gnutella
Bitcoin

(b) Peer distribution in NSFA.

0% 15% 30% 45% 60% 75% 90%
2.1

2.4

2.7

3

3.3

3.6

Percentage of Removed Peers

Sc
al

in
g

Ex
po

ne
nt

Gnutella (August 4)
Gnutella (August 5)
Gnutella (August 6)

(c) Peer arrival and departure.

0% 15% 30% 45% 60% 75% 90%
1.3

1.9

2.5

3.1

3.7

Percentage of Removed Peers

Sc
al

in
g

Ex
po

ne
nt

Facebook
AS−733
Wikipedia

(d) Other NSFA networks.
Fig. 3. NSFA verifications in unstructured P2P networks.

Theorem 1 shows that the number of hierarchical levels
in NSFA can be logarithmically bounded. By contrast, classic
hierarchies ranked by the node connectivity [19, 28], social
centrality [10, 22], or organizational roles [7] cannot guarantee
such a bound. This is because they do not require structural
similarities among different hierarchical layers [6]. Moreover,
NSFA’s hierarchy can be constructed distributedly with low
overheads, since each node only takes local neighborhood
information. Such great advantages of NSFA enable bounded
high-performance routings. Furthermore, the number of rout-
ing hops in NSFA can be even asymptotically smaller than
⇥(ln |V |), since some hierarchical levels can be skipped. We
will discuss this property later in Section IV (Theorem 2).

C. Verify the Existence of NSFA
To verify the existence of NSFA, real data-driven experi-

ments on Gnutella [12] and Bitcoin [18] are conducted. The
Gnutella dataset has 10,876 peers with 39,994 connections
on August 4, 2002 (peer arrivals and departures are recorded
for the following days). The Bitcoin dataset has 4,579 peers
with 18,667 connections (partial dataset for comparisons with
Gnutella). Verification results are shown in Fig. 3, where solid
and dashed lines are the results of indegree and outdegree
versions, respectively. Fig. 3(a) shows the variation of the
power-law exponent (i.e., ↵), when the current lowest-degree
peer is iteratively removed. ↵ has a limited variation, even if a
large percentage of peers are removed. Based on Definition 3,
Gnutella and Bitcoin satisfy NSFA. Then, Fig. 3(b) shows
the distribution of peers in NSFA’s hierarchy. The number of
peers decreases exponentially with respect to the hierarchical
level. As a result, the number of hierarchical levels in NSFA
is logarithmically bounded. Fig. 3(c) shows the scenario of
peer arrivals and departures in Gnutella (three days from
August 4 to 6). It can be seen that NSFA naturally holds
when peers arrive and depart. The nested architecture actually
results from peer arrivals and departures, in which SFA is sat-
isfied. This phenomenon reveals that peer connections are not
truly random [2]. Real data-driven experiments validate that
unstructured P2P networks satisfy NSFA. Moreover, NSFA is
not unique for unstructured P2P networks, i.e., NSFA exists in
other types of networks. Experiments are conducted in three
undirected networks [12]: Facebook (online social networks),
AS-733 (autonomous systems), and Wikipedia dataset (website
networks). Fig. 3(d) shows that these networks also satisfy
NSFA, i.e., the variation of the power-law exponent is limited
when the lowest-degree node is iteratively removed.

TABLE I
COMPARE HIERARCHIES

Dataset SFA indegree hierarchy NSFA indegree hierarchy
of levels # of LMPs # of levels # of LMPs

Gnutella 20 1,715 10 120
Bitcoin 41 204 19 76

Dataset SFA outdegree hierarchy NSFA outdegree hierarchy
of levels # of LMPs # of levels # of LMPs

Gnutella 19 1,430 10 676
Bitcoin 36 167 17 43

D. Compare Hierarchies
This subsection experimentally compares SFA’s hierarchy

and NSFA’s hierarchy (Algorithms 1 and 2) in unstructured
P2P networks. We start with the following definition:

Definition 5: If a peer has a higher hierarchical level than
all of its neighbors, it is a Local Maximum Peer (LMP).

We have two claims: (i) NSFA’s hierarchy has fewer hierar-
chical levels than SFA’s hierarchy, and (ii) NSFA’s hierarchy
in has fewer LMPs than SFA’s hierarchy. The first claim
means that the maximal peer label in Algorithm 2 is smaller
than that in Algorithm 1. Algorithm 2 terminates faster than
Algorithm 1. The second claim means that NSFA’s hierarchy
is a more concentrated. To verify our claims, experiments on
Gnutella [12] and Bitcoin [18] are conducted, based on the
same settings as in the previous subsection. The result is shown
in Table I, where the NSFA’s hierarchy has significantly fewer
levels than SFA’s hierarchy (basically half in both datasets).
NSFA’s hierarchy has many fewer LMPs than does SFA’s
hierarchy, especially in the indegree version (fewer than 10%
for Gnutella). The above results demonstrate our claims.

NSFA’s hierarchy has key advantages over SFA’s hierarchy
in terms of hierarchical event deliveries in pub/sub systems.
This event delivery has two phases. In the first phase, a peer
uploads its event to the network core, which is formed by
the peers with the highest hierarchical levels. In the second
phase, peers in the network core download the event to the
subscribed peers. Since NSFA’s hierarchy has fewer levels,
events can be uploaded to the network core with fewer routing
hops. Meanwhile, NSFA’s hierarchy has fewer LMPs, meaning
that there exist fewer local extrema for the event uploads and
downloads. More details are described in the next section.

IV. PUBLISH/SUBSCRIBE IN NSFA
A. System Design Overview

In a general pub/sub system, each peer may publish events
and receive its own interested events. Each peer maintains an
event filter to determine whether an event should be received

(a) Network.

2 1

1

(b) Indegree.

1 2

1

(c) Outdegree.
Fig. 4. Examples of NSFA-based forests (indegree and outdegree versions).

or not. Each peer also needs some overhead to maintain the
topological information for event routings, peer churns, and
peer failures. In the proposed pub/sub system, such topological
overheads of a peer only include its hierarchical level in both
the indegree and outdegree versions of NSFA. Consequently,
the storage consumption of a peer is a constant that does not
scale up with the network size. In other words, the size of the
overhead per peer is O(1).

The event routing is accomplished through NSFA’s hierar-
chy. This hierarchy abstracts a forest of rooted trees from the
unstructured P2P network. The roots of these trees are LMPs.
For a non-LMP peer, its parent in the tree is the neighbor that
has the maximal hierarchical level. Since Algorithm 2 has two
versions, the resultant forest has both indegree and outdegree
versions. Fig. 4 shows such an example. Fig. 4(a) shows a
network. The corresponding forests of indegree and outdegree
versions are shown in Figs. 4(b) and 4(c), respectively. The
numbers within the nodes represent their hierarchical levels in
NSFA. Connections, which are not in the forest, are gray and
dashed. We claim that the maximal tree depth in an NSFA-
based forest can be bounded:

Theorem 2: The maximal tree depth in an NSFA-based
forest is expected to be O(ln ln |V |).

Proof: Let lmax denote the maximal peer label in NSFA.
We start with an arbitrary peer (say v) in an arbitrary tree of
the NSFA-based forest. Let lv denote the label of this peer.
Suppose the labels of v’s neighbors are uniform-randomly
distributed from 1 to lmax. Then, for v’s neighbors whose
labels are larger than lv , they are expected to have labels of
lv + (lmax � lv)/2. Since v’s parent has the maximal label
among v’s neighbors, its label is expected to be larger than
lv+(lmax� lv)/2. In other words, the label difference between
the current label and the maximal label is expected to be
at least halved, when we move from an arbitrary peer to its
parent. Since 2

log2 lmax
= lmax, it takes O(ln lmax) steps to move

from a leaf to a root in a tree. Since Theorem 1 has stated that
lmax 2 ⇥(ln |V |), the maximal tree depth in an NSFA-based
forest is expected to be O(ln ln |V |). ⌅

The insight of Theorem 2 is that a peer may have a parent
with a hierarchical level that is much higher than its own,
leading to a double logarithmic tree depth. Theorems 1 and 2
show that connections in unstructured P2P networks are not
truly random, in terms of NSFA. The maximal tree depth of
an NSFA-based forest has a better bound than classic forests
[17, 20]. Moreover, our NSFA-based forest can be constructed
in a distributed manner. Our key idea is to utilize the NSFA-
based forest as the network backbone to deliver events among
peers with a bounded performance and a limited overhead.

 {(y, <, 20)}

3

1

2 1

 {(x, <, 10)}

 {(x, <, 30)}

 {(y, <, 40)}

(a) Peer interests.

 {(y, <, 20)}

3

1

2 1

 {(x, <, 10)}

 {(x, <, 30)}

 {(y, <, 40)}
 {(x, <, 10)},

 {(x, <, 30)},

(b) Subscriptions.
Fig. 5. An example of peer interests and the corresponding subscriptions.

B. Subscription

Peers express their interests through subscriptions with the
system. Such subscriptions are captured by the event filter,
which is maintained by each peer to determine whether an
event should be received or not. The NSFA-based forest of the
indegree version is used to collect these subscriptions. A peer
may not only receive its own interests, but also may receive
other peers’ interests for the purpose of event deliveries. In
our approach, a peer collects all the events interesting to itself,
along with the interests of its descendants in the NSFA-based
forest. Hence, a peer notifies all of its precedents in terms of
its interests. An example is shown in Fig. 5, where x and y
are two attributes. Fig. 5(a) shows the interests of each peer
(attribute-operator-value tuples). Fig. 5(b) shows the resulting
subscriptions. The root will receive all the events matching
that x is smaller than 30 or y is smaller than 40.

A peer subscription takes O(ln ln |V |) messages. This is
because this peer needs to notify all of its precedents, while
the maximal tree depth is bounded by Theorem 2. The
unsubscription process is similar and also takes O(ln ln |V |).
Note that peers with higher hierarchical levels tend to have
more descendants, and thus they tend to collect more events.
Hence, their event matchings are more time-consuming and
can be accelerated by some existing works [13, 16].

C. Event Delivery

The proposed pub/sub system uses a two-phase hierarchical
event delivery scheme. The first phase is the upload phase,
which utilizes the NSFA-based forest of the indegree version.
Once a peer wants to publish an event, it will upload this
event to the root of its tree, through recursively forwarding
this event to the parent. Once the root receives an event in the
upload phase, the second phase, or download phase, begins.
This phase utilizes the NSFA-based forest of the outdegree
version. Once a peer receives a matched event, it will forward
this event to all of its children in the tree. This is because a peer
collects all the events interesting to itself and its descendants
through subscriptions. If the received event is not matched,
the peer will drop it. In summary, the publisher first uploads
the event to the network core (peers with highest hierarchical
levels), which in turn downloads the event to the subscriber.

A potential problem is that multiple roots may exist in the
NSFA-based forest. Meanwhile, the roots in the NSFA-based
forest of the indegree version are not necessarily roots in the
NSFA-based forest of the outdegree version. Hence, roots need
to connect with each other before the event deliveries. Roots
can register their addresses at an extra registration server.

Publisher Subscriber

(a) Pub/Sub over a P2P network.

3 2

2

1 1
1Publisher Subscriber

Root

Ev
en

t
up

lo
ad

(b) NSFA-based forest (indegree version).

2 3

2

1 1
1Publisher Subscriber

Root

Event

dow
nload

(c) NSFA-based forest (outdegree version).
Fig. 6. An illustration for the two-phase hierarchical event delivery in the proposed pub/sub system.

Since Table I shows that roots are few, the registration cost
is ignorable. Through the registration server, roots can set up
special connections to each other before the event deliveries.
Similar techniques have been used in existing works [17, 20].

Fig. 6 illustrates an example for the event deliveries. The
network topology is shown in Fig. 6(a). The publisher and sub-
scriber are the peers who publish and subscribe to the event,
respectively. Fig. 6(b) shows the upload event delivery phase in
the NSFA-based forest of the indegree version. For simplicity,
this forest includes only one tree. The numbers within the
nodes (peers) are their hierarchical levels. Connections without
the forest are gray and dashed. The event is uploaded to the
root, by recursively being forwarded to the parent in the tree.
Once the root receives the event, the upload phase terminates.
The root sends this event to the other roots through special
connections that are set up in advance of the event deliveries.
Then, the download event delivery phase begins at the root in
the NSFA-based forest of the outdegree version. As shown in
Fig. 6(c), the peer will forward matched events to all of their
children, but drop non-matched events.

Since Theorem 2 claims that the tree depth is O(ln ln |V |),
the number of routing hops for the event deliveries is also
O(ln ln |V |). The upload phase takes O(ln ln |V |) to deliver
the event from the publisher to the root, while the download
phase also takes O(ln ln |V |) to deliver the event from the root
to the subscriber. The proposed upload-and-download rout-
ing scheme is based on classic hierarchical routing schemes
[10, 17, 20, 27]. Our novel contribution is the NSFA. NSFA’s
hierarchy can be distributedly constructed, and has a better
bound than classic hierarchies. The outstanding performance
of our event delivery comes from the bound of NSFA’s
hierarchy. Our work is asymptotically compared with classic
approaches in Table II (later in Section V).

D. Peer Arrival, Departure, and Failure

Our pub/sub system can handle the peer arrival, departure,
and failure. As shown in Fig. 3(c), NSFA can naturally hold
when peer arrives and departs. NSFA also holds if the failure
is uniformly distributed. Therefore, we only need to adjust the
hierarchical levels of peers. (i) When a new peer arrives at
the pub/sub system, its hierarchical level is set to the lowest
hierarchical level among all of its neighbors (or one in the
case of no neighbor). Then, this peer will express its interests
through subscriptions, taking O(ln ln |V |) messages. (ii) If a
non-root peer wants to depart, it will unsubscribe from the

system. Its connections with its children can be transferred to
its parent. If a root peer wants to depart, its neighbor with the
highest hierarchical level will be selected as the new root. The
connections and subscriptions of this root will be transferred
to the new root. The new root will register its address within
the network to set up connections with the other roots. (iii)
If a peer finds a failing child, it examines the subscriptions
of its children and then unsubscribe the failed child. If a peer
finds a parent failure, it re-selects a parent to re-subscribe.
Since Theorem 2 claims that the tree depth is O(ln ln |V |), the
peer arrival, departure, and failure take O(ln ln |V |) messages.
Our pub/sub system can also run Algorithm 2 periodically
to reset NSFA’s hierarchy. Moreover, the following theorem
shows that, when a peer’s interests are popular, the number of
messages for its arrival, departure, and failure can be reduced:

Theorem 3: If a peer has the same interests as ⌦(

1

ln ln |V |)
fraction of peers in the system, then its arrival, departure, and
failure are expected to take O(

p
ln ln |V |) messages.

Proof: Suppose a peer, v, has the same interests as a
fraction, f , of all peers in the system. Note that a peer collects
all the events interesting to itself, along with the interests of
its descendants in the NSFA-based forest. Hence, the subscrip-
tions of peers with larger labels are more likely to include v’s
interests than those with smaller labels. For peers with labels
of one, f fraction of their subscriptions include v’s interests.
These peers (a fraction, c, of total peers by Eq. 3) notify their
parents of their subscriptions. For peers whose labels are larger
than one, the fraction of their subscriptions that include v’s
interests is 1 � (1

�f) ⇥ (1

� c
1�c ⇥ f) ⇡ (1 + c)f , assuming

f⌧
1 and c⌧1. Then, let us remove the peers with labels of

one, and look at peers with larger labels. By induction, for
peers with labels of i + 1, the fraction of their subscriptions
that include v’s interests is (1 + ic)f .

We start with the peer arrival. Once a new peer (say u)
arrives, it needs to notify all of its precedents to express its
interests. However, such a notification can terminate earlier, if
the subscription of u’s precedent already includes u’s interests.
Suppose u has a distance of L to the root. Then, the expected
number of notification messages is:

L
X

i=1

n

i�1
Y

j=0

⇥

1� (1 + jc)f
⇤

o


L
X

i=1

⇥

1� (1 +
i� 1
2

c)f
⇤i (5)

In Eq. 5,
Qi�1

j=0

⇥
1 � (1 + jc)f

⇤
is the upper bound of the

probability that the i-th message in the notification process is
sent. When f = 0, L messages are sent for the subscription.

TABLE II
COMPARISONS AMONG EXISTING SYSTEMS AND OUR NSFA-BASED SYSTEM.

Metrics Structured P2P-based Pub/Sub Unstructured P2P-based Pub/Sub
Terpstra [25] Meghdoot [9] PastryStrings [1] Sub-2-Sub [26] Vitis [17] Poldercast [20] NSFA-based

Event routing O(ln |V |) O(⌧ |V |
1
⌧
) O(logµ |V |) O(|V |) O(ln

2 |V |) O(ln |V |) O(ln ln |V |)
System robustness O(ln |V |) O(⌧ |V |

1
⌧
) O(logµ |V |) O(1) N/A O(ln |V |) O(ln ln |V |)

Overhead O(ln |V |) O(⌧) O(µ logµ |V |) O(1) O(1) O(1) O(1)

When f 2 ⇥(

1

L) and i 2 ⇥(

p
L), [1� (1+

i�1

2

c)f]i becomes
a constant according to the definition of the Euler’s number.
When f 2 ⇥(

1

L),
PL

i=1

⇥
1 � (1 +

i�1

2

c)f
⇤i 2 O(

p
L). This

is because the terms with i 2 ⌦(

p
L) can be ignored in the

summation. Since Theorem 2 claims that L 2 O(ln ln |V |),
the proof completes the part for peer arrivals.

The proofs for peer departures and failures are similar and
are omitted due to the page limitation. The key idea is that,
when a peer has the same interests as many existing peers in
the system, its arrival, departure, and failure can be handled
more locally instead of notifying all the precedents. ⌅

V. RELATED WORKS AND DISCUSSIONS

The pub/sub system is a well-known paradigm for CDNs
with the objective of providing efficient event deliveries from
the publishers to the subscribers [11]. Classic pub/sub systems
are usually implemented as overlay networks on the Internet,
using hundreds of servers to deliver content to clients [14].
Since traditional pub/sub systems are infrastructure-dependent,
infrastructure-free P2P-based pub/sub systems become another
option [25]. Early pub/sub systems were built on unstructured
P2P networks due to their low construction overheads and
inherent robustness. However, event routing is inefficient [26],
since peers are “randomly” connected to each other. Therefore,
state-of-the-art pub/sub systems are built on structured P2P
networks to improve the routing performance, through using
DHTs to organize peers into specific topologies [23]. Never-
theless, the maintenance of DHTs lead to high construction
overheads, and degrades the system robustness. We focus on
an asymptotical approach. Therefore, some classic pub/sub
systems (e.g., SIENA [3], PADRES [8], and Hermes [15]) are
not compared, since their performances are not bounded.

Table II compares the existing systems and the NSFA-
based pub/sub system, in terms of the event routing efficiency
(number of routing hops for event deliveries), system robust-
ness (message complexity for peer churns and failures), and
overhead (storage consumption per peer). |V | is the number of
peers in the pub/sub system. Terpstra [25], Meghdoot [9] and
PastryStrings [1] are structured P2P-based pub/sub systems.
Terpstra organizes peers as a Chord [21]. The topology of
Meghdoot is a Cartesian space with a dimensionality of ⌧ .
Compared with Terpstra, Meghdoot has a smaller overhead at
the cost of a worse event routing efficiency and a worse system
robustness. PastryStrings has a prefix-based routing through
string trees, where µ is a pre-specified digit base. It sacrifices
the overhead to improve the event routing efficiency. Sub-2-
Sub [26], Vitis [17], and Poldercast [20] are unstructured P2P-
based pub/sub systems. Sub-2-Sub considers that connections

among peers are random, and uses broadcasts to deliver events.
Sub-2-Sub has a very poor routing performance, but is highly
robust. Vitis and Poldercast also consider that peer connections
are random. While Vitis uses a clustering-based event delivery
protocol, Poldercast chains all the peers to a ring network with
shortcuts for efficient event routings (based on small worlds).

By contrast, our pub/sub system has the best event routing
efficiency by leveraging the inherent NSFA of unstructured
P2P networks, where peer connections are not truly random
[2]. NSFA’s hierarchy can be distributedly constructed, and has
a better bound than classic hierarchies [7, 10, 19, 22, 28]. The
overhead of the NSFA-based pub/sub system is asymptotically
optimal (a constant size per peer), since each peer only
needs to maintain its hierarchical level as the topological
information. The system robustness is competitive, and can be
further reduced for scenarios in which peers share the same
interests (Theorem 3). A notable point for the proposed system
is that peers with higher hierarchical levels tend to have larger
loads than peers with lower hierarchical levels (the load is not
balanced). We argue that peers with more connections could
have more computational and storage resources to share, i.e.,
“with great power comes great responsibility.”

VI. EXPERIMENTS

A. Real Data-driven Experiments
This section conducts real data-driven experiments based

on Gnutella [12] and Bitcoin [18]. To reveal the asymptotic
performance gap, we use the complete Bitcoin dataset, which
includes 6,336,769 peers and 37,450,461 connections. Our
pub/sub system on Gnutella can facilitate large-size content
deliveries, such as high-definition movie sharing services and
high-volume enterprise data distributions. Our pub/sub system
on Bitcoin can facilitate financial order disseminations among
traders and payroll transactions among workers.

B. Pub/Sub System Evaluations
The proposed pub/sub system is evaluated through com-

parisons with Terpstra, Meghdoot, PastryStrings, Vitis, and
Poldercast. These systems have been introduced in Section V.
Sub-2-Sub is not included, since it has an extreme design with
the worst event routing efficiency, the best system robustness,
and the smallest overhead. While unstructured P2P-based
pub/sub systems are tested directly on the Gnutella and Bitcoin
datasets, structured P2P-based pub/sub systems are tested with
their own topologies that have the same number of peers with
the datasets. In Meghdoot, we set ⌧ = 8 to minimize ⌧ |V | 1⌧
for |V | = 10, 876 in the Gnutella dataset. In PastryStrings, we
use µ = 4 as its digit base to encode event routings.

100 101 102 103100

101

102

103

104

Number of Subscribers

N
um

be
r o

f F
or

w
ar

di
ng

s

Terpstra
Meghdoot
PastryStrings

Vitis
Poldercast
Proposed

(a) Gnutella.

100 101 102 103100

101

102

103

104

105

Number of Subscribers

N
um

be
r o

f F
or

w
ar

di
ng

s

Terpstra
Meghdoot
PastryStrings

Vitis
Poldercast
Proposed

(b) Bitcoin.
Fig. 7. Event routing efficiency.

2 4 6 8 10 12 140%

20%

40%

60%

80%

100%

Number of Forwardings

Pe
rc

en
ta

ge

Terpstra
Meghdoot
PastryStrings
Poldercast
Proposed

(a) Gnutella with one subscriber.

0 200 400 600 800 1000 1200 14000%

20%

40%

60%

80%

100%

Number of Forwardings

Pe
rc

en
ta

ge

Terpstra
Meghdoot
PastryStrings
Vitis
Poldercast
Proposed

(b) Gnutella with one hundred subscribers.

1 5 9 13 17 21 25 290%

20%

40%

60%

80%

100%

Number of Forwardings

Pe
rc

en
ta

ge

Terpstra
Meghdoot
PastryStrings
Poldercast
Proposed

(c) Bitcoin with one subscriber.

0 500 1000 1500 2000 2500 3000 35000%

20%

40%

60%

80%

100%

Number of Forwardings

Pe
rc

en
ta

ge

Terpstra
Meghdoot
PastryStrings
Vitis
Poldercast
Proposed

(d) Bitcoin with one hundred subscribers.
Fig. 8. The CDF for the number of event forwardings.

To evaluate the event routing efficiency, one publisher and
several subscribers are uniform-randomly selected. The result
of the total number of forwardings from the publisher to
all subscribers in an event delivery is shown in Fig. 7. For
smoothness, it is averaged over 100,000 times. The NSFA-
based pub/sub system outperforms the others, since it has the
best asymptotical bound of O(ln ln |V |). Vitis has the worst
performance when subscribers are few, since it has a bad
asymptotical bound of O(ln

2 |V |). Meghdoot performs poorly
due to the same reason. A notable point is that the performance
gap between the proposed system and the other system is
larger in Bitcoin than that in Gnutella. This is because Bitcoin
has many more peers than Gnutella. The Bitcoin dataset has
6,336,769 peers and 37,450,461 connections. The asymptotical
performance gap is revealed, when the network scales up.

Fig. 8 shows the Cumulative Distribution Function (CDF)
with respect to the total number of forwardings in Fig. 7. Left
and right subfigures are the results with one subscriber and
one hundred subscribers, respectively. Vitis is not included
in Figs. 8(a) and 8(c), since it needs a much larger number
of forwardings when subscribers are few. Figs. 8(a) and 8(b)
show that, when there are more subscribers, the proposed
system has a more significant advantage over the other systems
due to the lower asymptotical bound. Fig. 8(a) also shows that
the NSFA-based system is not likely to deliver the event from
a publisher to a subscriber within 3 forwardings, due to the
event upload phase. On the other hand, most event deliveries
in our system can be finished within 7 forwardings (Gnutella
with one subscriber). When we have 100 subscribers, as shown
in Fig. 8(b), most event deliveries can be finished within 500
forwardings, which is less than 7 ⇥ 100 = 700 forwardings.
This is because the upload phases of different subscribers are
shared. Figs. 8(c) and 8(d) present similar results for Bitcoin.
The proposed pub/sub system performs significantly better
than the other systems in Bitcoin, due to the asymptotical

performance advantage in large-scale networks. In Fig. 8(d),
the number of forwardings used by our system is basically one
third of PastryStrings and Vitis.

To evaluate the system robustness, the Gnutella dataset is
further explored, since it has the peer churn records. However,
the Bitcoin dataset does not include the peer churn records.
Fig. 9(a) shows the available peer churn statistics in Gnutella
on August 2002. August 24 and 31 have the largest numbers
of peer churns. Note that the number of peer churns cannot be
ignored with respect to the total number of peers in Gnutella.
As shown in Fig. 3(c), NSFA holds when peer churns. Fig. 9(b)
shows the number of messages dealing with peer churns, when
peers do not share an interest. The number of messages scales
up with the number of peer churns. Our NSFA-based pub/sub
system uses the smallest number of messages to deal with peer
churns. By contrast, the number of messages used by Terpstra
is nearly quadrupled. To study the message complexity when
peers have common interests, we set up a special scenario
where the interest of each peer is uniform-randomly chosen
from ten given interests. The result is shown in Fig. 9(c). Our
system and Vitis have lower message complexities since they
can handle peer churns more locally.

The number of messages used for peer failures is shown
in Fig. 10, where a given percentage of peers are randomly
chosen to fail. Our NSFA-based system uses the smallest
number of messages to handle the peer failures. By contrast,
the number of messages used by Terpstra is almost tripled.
Experiments are not conducted with respect to the overhead,
since the overhead of our system is asymptotical optimal, i.e.,
O(1). Instead, we study the forwarding load distribution of
root peers for our system in Gnutella and Bitcoin. 10,000
publisher-subscriber pairs are uniform-randomly selected for
event deliveries. Fig 11 shows the cumulative distribution
function of root peer forwardings. None of the root peers have
more than 700 forwardings within 10,000 event deliveries.

5th 6th 8th 9th 24th 25th 30th 31st

102

103

104

105

Date in August 2002

N
um

be
r o

f P
ee

r C
hu

rn
s

(a) Peer churn statistics.

5th 6th 8th 9th 24th 25th 30th 31th102

103

104

105

106

Date in August 2002

N
um

be
r o

f M
es

sa
ge

s

Terpstra
Meghdoot
PastryStrings

Vitis
Poldercast
Proposed

(b) Message complexity (no shared interest).

5th 6th 8th 9th 24th 25th 30th 31th102

103

104

105

106

Date in August 2002

N
um

be
r o

f M
es

sa
ge

s

Terpstra
Meghdoot
PastryStrings

Vitis
Poldercast
Proposed

(c) Message complexity (shared interests).
Fig. 9. System performance with respect to the peer churns in Gnutella (the dataset only includes eight nonconsecutive days).

10% 20% 30% 40% 50%103

104

105

Failure Percentage

N
um

be
r o

f M
es

sa
ge

s

Terpstra
Meghdoot
PastryStrings

Vitis
Poldercast
Proposed

(a) Gnutella.

10% 20% 30% 40% 50%106

107

108

Failure Percentage

N
um

be
r o

f M
es

sa
ge

s

Terpstra
Meghdoot
PastryStrings

Vitis
Poldercast
Proposed

(b) Bitcoin.
Fig. 10. System performance with respect to the peer failures.

0 100 200 300 400 500 600 7000%

20%

40%

60%

80%

100%

Number of Root Peer Forwardings

Pe
rc

en
ta

ge

Gnutella (indegree roots)
Gnutella (outdegree roots)
Bitcoin (indegree roots)
Bitcoin (outdegree roots)

Fig. 11. The CDF of root peer forwardings.

VII. CONCLUSION

This paper proposes a scalable pub/sub system based on
unstructured P2P networks, which are shown to have NSFAs.
NSFA’s hierarchy can be distributedly constructed, and has
a better bound than classic hierarchies. By leveraging NS-
FA’s hierarchy, our system achieves a competitive tradeoff
among the event routing efficiency, system robustness, and
overhead. The number of event routing hops is O(ln ln |V |).
Each peer only maintains an overhead of a constant size .
Peer arrival, departure, and failure can be handled within a
message complexity of O(ln ln |V |). Experiments demonstrate
the outstanding performance of the proposed pub/sub system.

ACKNOWLEDGEMENT

This research was supported in part by NSF grants CNS
1449860, CNS 1461932, CNS 1460971, CNS 1439672, CNS
1301774, and ECCS 1231461.

REFERENCES

[1] I. Aekaterinidis and P. Triantafillou. PastryStrings: A comprehensive
content-based publish/subscribe DHT network. In ICDCS 2006.

[2] E. Bulut and B. K. Szymanski. Constructing limited scale-free topolo-
gies over peer-to-peer networks. TPDS, 2014.

[3] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation
of a wide-area event notification service. TOCS, 2001.

[4] C. Chen, R. Vitenberg, and H.-A. Jacobsen. A generalized algorithm for
publish/subscribe overlay design and its fast implementation. Distributed
Computing, 2012.

[5] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bo-
hannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni. PNUTS:
Yahoo!’s hosted data serving platform. VLDB Endowment, 2008.

[6] B. Corominas-Murtra, J. Goñi, R. V. Solé, and C. Rodrı́guez-Caso. On
the origins of hierarchy in complex networks. PNAS, 2013.

[7] R. Daft. Organization theory and design. Cengage learning, 2012.
[8] E. Fidler, H.-A. Jacobsen, G. Li, and S. Mankovski. The PADRES

distributed publish/subscribe system. In FIW 2005.
[9] A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi. Meghdoot:

content-based publish/subscribe over P2P networks. In Middleware 2004.

[10] P. Hui, J. Crowcroft, and E. Yoneki. Bubble rap: Social-based forwarding
in delay-tolerant networks. TMC, 2011.

[11] K. Jayaram, P. Eugster, and C. Jayalath. Parametric content-based
publish/subscribe. TOCS, 2013.

[12] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution: Densifi-
cation and shrinking diameters. TKDD, 2007.

[13] A. Margara and G. Cugola. High-performance publish-subscribe match-
ing using parallel hardware. TPDS, 2014.

[14] V. Muthusamy and H.-A. Jacobsen. Infrastructure-free content-based
publish/subscribe. ToN, 2014.

[15] P. R. Pietzuch and J. M. Bacon. Hermes: A distributed event-based
middleware architecture. In ICDCS 2002.

[16] S. Qian, J. Cao, Y. Zhu, and M. Li. REIN: A fast event matching
approach for content-based publish/subscribe systems. In INFOCOM
2014.

[17] F. Rahimian, S. Girdzijauskas, A. H. Payberah, and S. Haridi. Vitis: A
gossip-based hybrid overlay for internet-scale publish/subscribe enabling
rendezvous routing in unstructured overlay networks. In IPDPS 2011.

[18] F. Reid and M. Harrigan. An analysis of anonymity in the bitcoin system.
Security and Privacy in Social Networks, 2013.

[19] J. F. Rodrigues Jr, H. Tong, J.-Y. Pan, A. J. Traina, C. Traina, and
C. Faloutsos. Large graph analysis in the gmine system. TKDD, 2013.

[20] V. Setty, M. Van Steen, R. Vitenberg, and S. Voulgaris. Poldercast:
Fast, robust, and scalable architecture for P2P topic-based pub/sub. In
Middleware 2012.

[21] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications.
ACM SIGCOMM Computer Communication Review, 2001.

[22] M. Takaffoli, O. R. Zaı̈ane, et al. Social network analysis and mining to
support the assessment of on-line student participation. ACM SIGKDD
Explorations Newsletter, 2012.

[23] M. A. Tariq, B. Koldehofe, and K. Rothermel. Efficient content-based
routing with network topology inference. In DEBS 2013.

[24] M. A. Tariq, B. Koldehofe, and K. Rothermel. Securing broker-less
publish/subscribe systems using identity-based encryption. TPDS, 2014.

[25] W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. P. Buchmann.
A peer-to-peer approach to content-based publish/subscribe. In DEBS
2003.

[26] S. Voulgaris, E. Rivière, A.-M. Kermarrec, and M. Van Steen. Sub-2-
Sub: Self-organizing content-based publish and subscribe for dynamic
and large scale collaborative networks. In IPTPS 2006.

[27] X. Xu, R. Ansari, A. Khokhar, and A. V. Vasilakos. Hierarchical data
aggregation using compressive sensing (hdacs) in wsns. TOSN, 2015.

[28] S. Yang, Q. Sun, S. Ji, P. Wonka, I. Davidson, and J. Ye. Structural
graphical lasso for learning mouse brain connectivity. In KDD 2015.

