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ABSTRACT Without effective cryptographic mechanisms, the wireless channel between the
USB/uploader and insulin pump frequently suffers from vulnerabilities. Either eavesdropping or therapy
manipulation attacks would put the patients in a life-threatening situation. Towards tackling this problem,
we propose an access control scheme by introducing feature fusion and voiceprint. Featured by the anti-
replay speaker verification and voiceprint-based key agreement, it secures communications over the wireless
channel. Through a cascaded fusion of speaker verification and anti-replay countermeasure, the anti-replay
speaker verification guarantees that the pump can only be accessed after the verification. When defending
against zero-effort and replay impostors with our scheme, the equal error rate can be reduced to 2.22%.
Furthermore, to generate a common key for the wireless channel, in the voiceprint-based key agreement,
we present a non-interactive energy-difference-based voiceprint extraction and adaptive Reed-Solomon
coding based fuzzy extractor. Thus, it enhances the communication encryption which protects the pump
from eavesdropping and therapy manipulation attacks. Also, with an appropriate constraint on voiceprints
similarity, the key agreement lowers the risk of channel establishment from device locating outside the
pump’s close proximity.

INDEX TERMS Wireless insulin pump, feature fusion, voiceprint, access control, acoustic channel.

I. INTRODUCTION

IN the U.S., 9.4% of the population are suffering from
diabetes. Among them, about 5% of patients with type

1 diabetes use insulin pumps [1]. Similar to other digi-
tal medical devices [2], [3], insulin pump systems prefer
wireless channels to form a closed-loop system. But few
of them are equipped with effective cryptographic mecha-
nisms. Lacking enough security mechanisms, insulin pump
systems frequently suffer from vulnerabilities. Patients who
use such devices face security threats. For instance, wireless
signals between the glucose sensor and the management
device can be intercepted [4] while data transmission may
be captured [5]. The prior usually causes inaccurate display
while the latter leads to malicious control of the insulin

pump, e.g., delivering fatal doses. Besides, Li et al. [6] and
Marin et al. [7] conducted reverse-engineering towards the
communication protocols. They confirmed that attacks such
as eavesdropping, impersonation replay attacks, message
injection attacks, and privacy attacks on the insulin pump
system compromise both the privacy and safety of the patient.
Consequently, appropriate security mechanisms are urgently
required to secure wireless insulin pump systems.

Towards this requirement, we focus on protecting the wire-
less channel between the USB/uploader (e.g., CareLink USB
[8], hereinafter called USB) and insulin pump. Some early
solutions, e.g., certificate-based or token-based schemes,
adopted either complicated key management [7] or additional
devices [9], [10]. In [7], an AES-MAC based cryptographic
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solution with an optimization of the message format was
presented. However, the requirement of sharing two inde-
pendent symmetric keys increases the system complexity of
key management. By introducing additional external devices,
Denning et al. [9] and Inchingolo et al. [10] investigated fail-
open defensive techniques to strike a balance between safety
in the common case and security under adversarial condi-
tions. Furthermore, Hei et al. [11] designed a patient infusion
pattern based access control scheme to defend against single
acute overdose and chronic overdose attacks, but it needs
glucose level data measured by finger-stick. These attacks
and solutions above bring up a question: Is there an effective
way of establishing a secure channel between unacquainted
devices without pre-shared common keys in a closed-loop
insulin pump system?

To answer this question, in this paper, a novel feature
fusion and voiceprint based access control scheme is pro-
posed. To establish a secure channel between the USB and
insulin pump (also called “the two devices”), it adopts two
audio sensors separately embedded in each device to avoid
introducing permanent key sharing or additional devices.
Before data request or dosage adjustment, the pump grants
permission to the USB through random passphrases speak-
ing. After successful speaker verification, a secure channel
can be established by the proposed key agreement.

Intuitively, the core ideas of our proposal comprise: 1) au-
tomatic speaker verification (ASV) utilizing cascaded fusion
of speaker verification and anti-replay countermeasure (CM).
It makes the pump be accessible to the USB of the legiti-
mate user (not a replay impostor); 2) secure key agreement
introducing non-interactive (independent) energy-difference-
based voiceprint extraction and adaptive Reed-Solomon (RS)
coding [12] based fuzzy extractor [13]. Base on the protocol,
the required common cryptography (temporary) key can only
be generated when the user/speaker and the two devices are
in close proximity. The adaptive means that the RS coding
setting is not fixed but determined by real-time voiceprints.

Our voiceprint extraction scheme is non-interactive and
real-time and only needs to compute one voiceprint in each
device while the algorithm in [13] needs to align the voices
and compute hundreds of voiceprints to find two matched
voiceprints. The RS-coding-based fuzzy extractor utilizes
the voiceprint f1 as a secret to hide a confidential random
number r (i.e., key seed) in such a way that only a similar
voiceprint f2 can decrypt/decode the original number r. We
define the error tolerance threshold as τ , which is the ratio of
the number of max tolerable bit differences (i.e., Hamming
Distance) to the length of the voiceprints (f1 and f2 should
be aligned to the same length). Only if the two voiceprints
(generated in the insulin pump and USB, respectively) have a
similarity η ≥ 1−τ , the common secret/key can be generated
and be employed to be (or further generate) a session key for
message encryption or appending MAC. Then attacks such
as message eavesdropping and remote dosage setting can
be resisted well. Besides, Gaussian mixture model (GMM)
is adopted for anti-replay speaker verification, which only

stores the target user’s speaker models while reaches a low
equal error rate (EER). EER is the threshold when the false
acceptance rate (FAR) equals the false rejection rate (FRR).

The main contributions are as follows:
• The proposal of a feasible voiceprint based access con-

trol scheme which employs both anti-replay speaker
verification and voiceprint-based key agreement proto-
col to secure the communication between the USB and
the pump.

• The design of anti-replay speaker verification method
which introduces a cascaded fusion of speaker ver-
ification and anti-replay strategy. For speaker verifi-
cation, we extend the major implementations of fea-
ture extractions, including Rectangular Filter Cepstral
Coefficients (RFCC) [14], Subband Spectral Centroid
Frequency Coefficients (SCFC) [15], Subband Spectral
Centroid Magnitude Coefficients (SCMC) [15], Sub-
band Spectral Flux Coefficients (SSFC) [16], and Rel-
ative phase shift (RPS) [17]. And then we apply linear
scale (LIN), mel scale (MEL) and inverted mel scale
(IMEL) filter banks to these features and form new
features, i.e., RFCC-MEL, RFCC-IMEL, SCFC-MEL,
SCFC-IMEL, SCMC-MEL, SCMC-IMEL, RPS-LIN,
and RPS-IMEL. Besides, we propose the using of Root
Mean Square (RMS) energy for replay detection and
form three features: RMSCC-LIN, RMSCC-MEL, and
RMSCC-IMEL. Evaluation results show that the fusion
of Linear Frequency Cepstral Coefficients (LFCC) [18]
and RMSCC-MEL achieves the best performance.

• The non-interactive voiceprint extraction algorithm
and an RS-coding-based fuzzy extractor. Taking the
voiceprint extraction and fuzzy extractor as basic units,
we present a secure key agreement for two unacquainted
devices whose feasibility is evaluated by experiments
using voice samples recorded by two smartphones in 27
distance settings. In the key agreement, the voiceprint
similarity threshold ensures that the secure channel can
only be established between devices in close proximity.

• On ASVspoof 2017 datasets, our anti-replay speaker
verification scheme reduces EER to 2.22% with the
existence of zero-effort and replay impostors.

The remaining parts of this paper are organized as follows.
In Section II, we briefly review the related works. The
general models for the system and attacker are described in
Section III. Then, Section IV and V respectively presents our
feature fusion and voiceprint based access control scheme
for wireless insulin pump systems and the essential security
analysis. Experimental results are presented in Section VI.
We also make overhead analysis and emergency handling for
the proposed scheme in Section VII. Finally, conclusions are
drawn in the last section.

II. RELATED WORK
A. MEDICAL DEVICE AUTHENTICATION
By introducing reverse-engineering technology, Li et al. [6]
showed that both passive attacks and active attacks threaten
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the insulin pump, and then compromise both the privacy
and safety of patients . To ease these threats, many re-
searchers tried to add authentication schemes to medical
devices. For instance, Li et al. also proposed two possible
CMs based on cryptographic protocols (rolling code) and
body-coupled communication to protect the wireless links
[6]. Fully reverse-engineering the wireless communication
protocol in the insulin pump system, Marin et al. [7] further
extended their attacks, and then provided an AES-MAC
based cryptographic solution which needs sharing two sym-
metric keys.

Kune et al. measured the susceptibility of analog sensors
in implantable medical devices by using specially crafted
electromagnetic interference (EMI) [19]. They showed that
EMI could inhibit pacing and induce defibrillation shocks on
implantable cardiac electronic devices and then developed
a defense mechanism using analog shielding components.
Inchingolo et al. [10] and Denning et al. [9] proposed
authentication schemes using additional external devices,
which may be forgotten, lost or stolen, and could potentially
disclose a patient’s status. Hei et al. [20]–[23] proposed
various access control schemes for wireless medical devices.
However, most of the solutions above suffer from remote
attacks if the attacker has sufficient knowledge of the radio
propagation patterns. Different from these works, we prefer
an acoustic channel as a source of proximity declaration
which successfully utilizes the change of sound quality with
respect to distance. Thus our scheme can construct secure
channel between unacquainted devices in proximity.

B. ANTI-REPLAY VOICE AUTHENTICATION

Based on physiological features (face, fingerprint, iris, etc.)
or behavioral features (voice, gait, keystroke dynamics,
etc.), biometric identification systems are widely adopted
by healthcare providers. However, these systems frequently
suffer from spoofing attacks using methods such as arti-
fact, mutilations, and replay to achieve impersonation or
concealment. Focusing on voice or speaker authentication
systems, the spoofing attacks consist of impersonation, voice
conversion, speech synthesis, and replay [24]. In this study,
the major concern is the anti-replay voice authentication. To
mitigate replay attacks, some insightful CMs can be found in
speech recognition or speaker verification systems. Among
them, Nuance is a commercial voice authentication system
which adopts a challenge-response strategy and requires the
users’ explicit cooperation (i.e., repeating sentences in a
closed set). Refs. [25]–[27] agree that discriminative features
are critical for building spoofing CMs. Thus, they provided
acoustic feature-based methods. Besides, Zhang et al. found
that liveness detection is also helpful to design anti-replay
methods [28]. They proposed VoiceGesture which uses a
smartphone to leverage the human’s articulatory gesture
while avoiding additional cumbersome operations.

C. SECURE CHANNEL ESTABLISHMENT
Some schemes have been proposed to establish secure com-
munication between two devices with no prior trust [13],
[29], [30]. Roeschlin et al. [30] proposed a device pairing
protocol to ensure that the secure channel can only be con-
structed if both of the two devices are held by one person. The
protocol uses an unauthenticated wireless channel to achieve
Diffie-Hellman key agreement and the read-only human body
channel to implement key confirmation. Rostami et al. [31]
introduced a physiologically-based IMD device pairing pro-
tocol, called Heart-to-Heart (H2H), which uses the extracted
time-varying randomness (Physiological Value, PV) from
ECG signals as an authenticated mechanism. Then the pro-
grammer can access a patient’s IMD if and only if physically
contacting the patient’s body. Zheng et al. [32] proposed
the Finger-to-Heart (F2H), which is another biometric-based
IMD authentication scheme using fingerprints to secure the
IMD. The F2H scheme does not require the IMD to capture
and preprocess the fingerprint image and extract the minu-
tiae. It exhibits a lower resource consumption but assumes
an authenticated, encrypted channel between the IMD and
programmer, which is the goal of our paper. To establish a
secure channel between unacquainted devices, the solution
from [13] is conditioned on similar ambient audio patterns.
The ambient audio fingerprints are introduced to generate a
common key for two devices in proximity. In the solution,
error-correcting codes are explored to account for noise in
the fingerprints. However, pricey computations are consumed
by voice alignment and voiceprints extraction before finding
out two matched voiceprints. This problem motivates us to
build a non-interactive scheme by which the voiceprints can
be extracted independently in each of the two devices. In
addition, Karapanos et al. [33] proposed Sound-Proof, a two-
factor authentication (2FA) based on ambient sound, which
also utilizes a previously established secure channel (sym-
metric encryption) as in [32]. Based on ultrasonic distance
bounding, Rasmussen et al. [29] proposed a proximity-based
access control scheme, which enables an implanted medical
device to be accessed only by devices in close proximity if
the devices have effective RF shielding.

III. SYSTEM AND ATTACKER MODEL
A. SYSTEM MODEL
1) Background
Fig. 1 shows a typical insulin pump system (e.g., Medtronic
Paradigm). It is a real-time closed-loop control system which
comprises the insulin pump and its accessories, e. g., blood
glucose meter, remote control, glucose sensor & transmit-
ter, and the upload device (USB). From finger-stick tests,
the blood glucose meter gets blood glucose readings which
can be automatically transmitted to the programmed insulin
pump via wireless link 2. Meanwhile, the glucose level is
read by the glucose sensor and sent to the insulin pump
via wireless link 4. Then, the pump delivers insulin to the
patient. Besides, the insulin pump works following the in-
structions from the remote control operated by the patient.
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FIGURE 1: A real-time closed-loop control system of insulin
pump system.

Instructions such as suspending and resuming basal dosage
are transmitted via wireless link 1 from a distant location.
The last wireless channel is link 3 via which the USB requests
report from the insulin pump and uploads data to a diabetes
management system.

Via link 3, the remote attackers can passively eavesdrop
data from the insulin pump and use the USB to change
settings (e.g., dosage level) in the pump by forging radio
signals. Therefore, in this study, our works investigate an
innovative defense strategy over link 3 towards easing the
potential threats on the privacy and safety of the user.

2) General system model
To mitigate the attacks above, a human-aware and acoustic
channel based access control scheme is proposed in this
work. Intuitively, we introduce access control to the phase
of the USB accessing the insulin pump for data or modifying
the therapy settings. In this phase, the USB should acquire the
access permission first by sending a request. This behavior
activates the speaker verification of the pump to avoid illegal
attacker being granted. Generally, each pump should have
its specific user(s). With the proposed speaker verification
protocol and embedded audio sensor, the pump will boot-
strap the key agreement protocol with the specific USB in
close proximity. To match the pump, the USB device should
be equipped with an audio sensor or use the microphone
in the connected computer. Given the two separately col-
lected voiceprints, the proposed system effectively generates
a shared temporary secret/key for communication encryption
of the secure channel.

B. ATTACKER MODEL
Generally, an attacker launches attacks to steal sensitive data
or manipulating the therapy settings over channel 1 of Fig.
2. These attacks bring privacy leakage or put the patient in
critical danger. In this proposal, we consider two work modes
for the pump, i.e., normal mode and emergency mode [29].
The normal mode means the legitimate user has to pass the
speaker verification, and the USB should be staying in close

Wireless channel
Voice recording

Attacker User

Close Proximity Carelink USB

Insulin Pump

1
2

3

4

FIGURE 2: Communication channels among legitimate user,
USB, insulin pump, and attacker.

proximity, while only the proximity constraint for the USB is
employed by the pump in the emergency mode. Meanwhile,
the emergency mode tolerates the two devices sharing a
common key generated from the voiceprints extracted from
anyone.

Therefore, the proposed scheme are supposed to defend
against three different adversaries:

• Remote impersonation. As shown in Fig. 2, the attacker
wants to pass the speaker verification and launches the
key agreement with the pump over channels 3 and 4.
Furthermore, the attacker is not in the required proxim-
ity. But he can participate in the authentication process
by remotely recording the voice in real-time or replay-
ing the previously recorded voice over channel 2. This
attack frequently appears when the pump is accidentally
activated, and the user is speaking.

• Passive eavesdropping. Attacker eavesdrops on the mes-
sages over channels 1, 3 and 4, and then records the
voice of the legitimate user over channel 2. Using the
spied messages, the attacker may infer sensitive infor-
mation related to the shared secret/key. The recorded
voice can also be replayed by the attacker to imperson-
ate the legitimate user/speaker.

• Man-in-the-middle (MITM). According to participating
in the authentication process, the attacker makes the two
devices believe that the shared secret/key is successful
working. Unfortunately, the established so-called secure
channels are connecting with the attacker.

IV. VOICEPRINT-BASED ACCESS CONTROL SCHEME
The proposed voiceprint-based access control scheme com-
prises two critical components. Speaker verification system
is the first component featured with speaker-dependent and
text-independent properties. The prior means it only accepts
the legitimate user, and the latter allows the user to use
random (and long enough) passphrases. The key agreement
protocol is the second component which prefers a strategy of
the combination of non-interactive energy-difference-based
voiceprint extraction and adaptive RS-coding-based fuzzy
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extractor to complete the authentication between the pump
and the USB. So the scheme executes in 4 phases:

1) Speaker & Anti-replay Verification accepts the legit-
imate user and rejects the zero-effort (impersonation)
and replay impostor;

2) Energy-difference-based Voiceprint Extraction
computes voiceprints using recorded passphrases in
USB and insulin pump, respectively;

3) Secret Agreement using Fuzzy Extractor (SAFE)
aborts the authentication procedure if the voiceprint
similarity check fails;

4) Key Agreement establishes a secure wireless channel
between the pump and USB.

We will explain phase 1 in Section IV-A and Section IV-B
and explain phases 2, 3, and 4 in Section IV-C. Before the
detailed explanation of the access control scheme, we list
the following notations in Table 1, which are used in the
subsequent sections to facilitate the understanding of the
proposal.

TABLE 1: Notations

Symbol Explanation

P
Passphrase or speech recorded by microphone and

spoken by the user or the imposter
fs Sampling frequency of a passphrase
l Sampling points number in each frame of a passphrase
L Sampling points number of a passphrase

M
filter banks number when partitioning the whole

frequency interval
sca Type of filter-banking scale (linear, MEL, or IMEL)
N The number of frames when framing a speech
Xn Each of frames after framing a speech
Fn Fourier transformation of Xn

SF
Vector containing M + 2 frequency points spaced in

[fsmin, fsmax] according to sca,
fsmin = 0, fsmax = fs in our scheme

FBm Frequency bands partitioning SF , m ∈ {1, . . . ,M}

f
Voiceprint extracted from P using energy-difference-based

voiceprint extraction

A. ACOUSTIC CHANNEL VERIFICATION
To introduce an acoustic channel verification to the wireless
link 3, several challenges can be found in the embedded
systems. Firstly, the insulin pump is usually a resource-
constraint system with very limited computation and memory
resources. Secondly, for a specific user, the speaker models
should be pre-stored in the pump. Thirdly, the speaker ver-
ification system should achieve a high enough accuracy to
make the scheme’s applicability and security.

Motivated by the first requirement, we adopt features
which can be extracted with low-cost computation, such
as LFCC and RMSCC. To reduce memory occupation, we
select a moderate number of filter bands who contribute to
high verification performance, e.g., high accuracy and low
ERR. Both of the corresponding computation complexities
and storage overhead are analyzed in Section VII-A. Towards
the second problem, we train the classifier based on our
specific requirements. In practical use, for instance, there is

Speaker
Feature 

Extraction
Classifier

Speaker 

Model

Decision 

Logic

Decision Reject / 

Accept

Front-end Back-end

Speech

FIGURE 3: Automatic speaker verification system.

no essential for the proposed system to support many speak-
ers. Therefore, we can build a lightweight system to meet a
specific user’s requirement. The verification performance can
be optimized for a particular scenario with only one user.
Speaker Verification Process. Typically, the speaker ver-
ification contains enrollment and prediction phases. In the
enrollment phase, the user’s utterances are carefully collected
to train the speaker models and classifiers; whereas the
prediction phase is to evaluate each test utterance based on
the speaker models. Fig. 3 depicts a typical ASV system
with front-end and back-end subsystems. The major tasks of
the front-end are voice acquirement, feature extraction, and
feature matrix generation. Each column (feature vector) of
the feature matrix corresponds to a voice frame. Employing
the trained classifiers, the back-end classifies the feature
vectors and gives a verification result for decision.

1) Feature Extraction
In the proposed scheme, short-term power spectrum and
short-term phase features (except CQCC) as in [25], [27]
are considered. They include mel frequency cepstral coeffi-
cients (MFCC) [34], inverted MFCC (IMFCC) [35], linear
frequency cepstral coefficients (LFCC) [18], linear prediction
cepstral coefficients (LPCC) [36], constant-Q cepstral coef-
ficients (CQCC) [37], subband spectral centroid frequency
coefficients (SCFC) [15], subband spectral centroid magni-
tude coefficients (SCMC) [15], subband spectral flux coef-
ficients (SSFC) [16], rectangular filter cepstral coefficients
(RFCC) [14], all-pole group delay function (APGDF) [38],
and relative phase shift (RPS) [17]. The extraction flow for
each feature is shown in Fig. 4. Different from [27], which
compared these features for synthetic speech detection, we
evaluated these features for replay attack detection. Different
from [25] making features analysis (except for APGDF and
RPS) for replay attack detection, we focus on the fusion
of these features and concentrate on the specific scenario
with one speaker. In addition, we also extend the imple-
mentations of some of these features and introduce a new
feature namely root mean square energy cepstral coefficients
(RMSCC) which will be described in the following.

• Linear, Mel-Scale, and Inverse Mel-Scale Filter
Banking. To extract the cepstral coefficients, the filter
banking step is based on the power spectrum computed
by signal framing and short-time Fourier transform
(STFT) and followed by logarithmic compression and
DCT to get the cepstral coefficients. There are two
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FIGURE 4: Block diagram of the extraction flows of the
evaluated features.

major types of filters, i.e., the rectangular window used
in RFCC and the triangular window used MFCC, IM-
FCC, and LFCC, etc. There are three methods to place
the filters: linear-scale, mel-scale, and inverted mel-
scale. RFCC and LFCC use linear scale filters, which
are evenly positioned in the whole frequency band.
MFCC uses MEL filters, which places more filters in
low-frequency band and less in high-frequency band
whereas IMFCC uses inverted mel-scale filters, which
places less filters in low-frequency band and more in
high-frequency band. The original implementations of
RFCC, SCFC, SCMC, and SCMC only use linear scale
[27] and the RPS (only) uses MEL, we extend the imple-
mentations in [27], [39] and apply linear scale, MEL and
inverted IMEL filter banks to these features and form
new features: RFCC-MEL, RFCC-IMEL, SCFC-MEL,
SCFC-IMEL, SCMC-MEL, SCMC-IMEL, RPS-LIN,
and RPS-IMEL. Besides, we use RFCC-LIN, SCFC-
LIN, SCMC-LIN, SCMC-LIN, and RPS-MEL to denote
their original versions, respectively.

• RMSCC. The signal energy can be computed by tak-
ing the root average of the square of the amplitude,
i.e., RMS [40]. RMS was used by [41] to fingerprint
smart devices through embedded acoustic components.
Different from [41], we compute the RMS in each of
frequency subbands, get the RMSCC according to Algo-
rithm 1, and then explore the possibility of applying the
RMSCC feature to detect the attacks of replay impos-
tors. Similar to the extension of RFCC, SCFC, SCMC,
SCMC and RPS, we apply (rectangular) linear, mel-
scale, inverted mel-scale filters to RMSCC (line 5 of
Algorithm 1), and correspondingly form three features:
RMSCC-LIN, RMSCC-MEL and RMSCC-IMEL.

Based on the results in Section VI, LPCC [36]) and LFCC
[18] are chosen in the ASV model training for accuracy.
Meanwhile, MFCC [34], SCMC-MEL, APGDF [38], and
RMSCC-MEL are employed in the CM model training to
resist replay attacks. Finally, they form 8 fusion systems
whose performance are evaluated in Section VI.

Algorithm 1 RMSCC Extraction

Require: Passphrase P , sampling frequency fs, frame
length l, number of filter banks M , filter bank scale sca

Ensure: Feature RMSCC
1. Silence Removing [Optional]. Remove the silence seg-

ments in P using voice activity detector (VAD) [42].
2. Prepossessing. Prepossess P using digital filter.
3. Speech Framing. Partition P of length L into N half-

overlapping frames X1, ..., XN of identical length l.
4. Short-Time Fourier Transformation (STFT). Trans-

form each frame using fast fourier transformation (FFT)
weighted by a hanning window (HW):
Fn = FFT(HW(Xn)), n ∈ {1, . . . , N}.

5. Frequency Partitioning. Create a vector SF of M + 2
points linearly, MEL, or IMEL spaced in the interval
V = [fsmin, fsmax] according to sca. Partition V
into M frequency banks FBm using a triangular-shaped
membership function (trimf) according to the points in
SF .

6. Filter Banking and RMS Computing. Compute the
RMS energyRMSn,m of each frequency band FBm per
frame Fn as follows:

RMSn,m =

√
|Fn|2 · FBm

Len(FBm)
n ∈ {1, . . . , N},

m ∈ {1, . . . ,M}
(1)

where Len(FBm) gets the number of non-zero points
in FBm and the symbal · denotes scalar dot product of
vector |Fn|2 and FBm.

7. Feature Computation. Compute the static feature
through log and discrete cosine transform (DCT):
RMSCC = DCT(LOG(RMS)), where RMS
is feature matrix with elements RMSn,m (n ∈
{1, . . . , N}, m ∈ {1, . . . ,M}).

8. Feature Velocity (∆) [Optional]. Compute the deltas
(derivatives) of the static feature:
RMSCC∆ = Derivative(RMSCC).

9. Feature Acceleration (∆∆) [Optional]. Compute the
deltas (derivatives) of the feature velocity:
RMSCC∆∆ = Derivative(RMSCC∆).

2) Classifier Training
• GMM-ML Model. In the scenario, attack detection is a

two-class problem (genuine or replay). We adopt GMM
with maximum likelihood estimation (GMM-ML) [43]
as the anti-replay CM classifier in which GMM is the
weighted combination of multivariate Gaussian distri-
butions.

• GMM-UBM Model. Taking GMM as the likelihood
function, GMM with universal background model
(GMM-UBM) [44] uses the UBM to represent the al-
ternative speakers and introduces Bayesian adaptation
(e.g., maximum a posteriori, MAP) to generate speaker-
specific models from the UBM. In this study, GMM-
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FIGURE 5: Fusion of ASV and CM.

UBM is employed in ASV training.

B. FUSION OF ASV AND ANTI-REPLAY CM
In practical use, both ASV and CM should accept genuine
utterances, while either ASV or anti-replay CM should reject
the utterances from (zero-effort or replay) impostors. Thus in
[45], [46], a straightforward solution was formed in terms
of a cascaded combination of ASV and CM. For further
improvement in the particular scenario with one speaker,
we propose a cascaded fusion system of ASV and CM
whose framework is given by Fig. 5. If an utterance passes
the ASV’s verification (score > θASV ), it continues to
be checked by CM. If passing the verification of the CM
(score > θCM ), a legitimate target speaker is declared.

C. VOICEPRINT-BASED KEY AGREEMENT
Even though the target speaker has passed the verification,
the attacker still has a chance to tamper the dosage level
before insulin delivery. Therefore, we propose a voiceprint-
based key agreement protocol as a defense. By using the
protocol, the chance can only be got by the USB who is in
close proximity of the pump and the target speaker.

1) Non-interactive Extraction for Energy-difference-based
Voiceprint
Following the speaker verification, the key agreement proto-
col will be started by the pump and the USB synchronously.
At first, a voiceprint is separately extracted by each device
from the sample audio. Towards reducing the complexity,
we improve the voiceprint extraction scheme of [13], [47] to
form a non-interactive scheme. In Algorithm 2, we use voice
active detector (VAD) [42] to find the beginning and end of
each voice. Then, the voiceprint of each frame is extracted
independently according to the energy difference of adjacent
filter banks. This strategy avoids the alignment between the
two voices recorded in the insulin pump and USB. Therefore,
this voiceprint extraction algorithm is non-interactive and
real-time (only once computation required by each device)
whereas the algorithm in [13] has to align the voices recorded
and compute hundreds of voiceprints before finding out the
two matched voiceprints.

2) Key Agreement using Voiceprint
The pump and the USB may potentially use different audio
sensors, and different hardware characteristics also exist in
the same type of sensors. There is a high probability that
two voiceprints respectively extracted by the two devices

Algorithm 2 Non-interactive Energy-difference-based
Voiceprint Extraction

Require: Passphrase P , frame length l, preset sampling
frequency fs, number of filter banks M

Ensure: Voiceprint f
1. Resampling. Resample P to fs if its sampling frequency

is not fs.
2. Silence Removing. Remove the silence before the be-

ginning and after the ending of the active voice P using
voice active detector (VAD) [42] and get the active
segments X = VAD(P, fs).

3. Framing. Partition X of length L into N non-
overlapping framesX1, ..., XN of identical length l, such
that N = ceil(L/l) (zero-padding for the last frame if L
is not a multiple of l).

4. Short-Time Fourier Transformation (STFT). Trans-
form each frame using Fast Fourier Transformation
(FFT) weighted by a hanning window (HW):
Fn = FFT(HW(Xn)), n ∈ {1, . . . , N}.

5. Frequency Partitioning. Create a vector SF of
M + 2 points linearly spaced in the interval V =
[fsmin, fsmax]. Partition V into M frequency banks
FBm using a triangular-shaped membership function
(trimf) according to the points in SF .

6. Filter Banking and Energy Computation. Compute
the energyEn,m of each frequency band FBm per frame
Fn by:

En,m = |Fn|2 · FBm, n ∈ {1, . . . , N},
m ∈ {1, . . . ,M}

(2)

7. Voiceprint Computation. Compute each bit fn,m of the
voiceprint f with length N(M − 1) bits by:

fn,m =


1,

(En,m − En,m+1) > 0,

n ∈ {1, . . . , N},
m ∈ {1, . . . ,M − 1}

0, otherwise.

(3)

are similar yet not the same. The direct use of them as
the common key is infeasible. Consider this problem, we
propose a key agreement protocol which will abort if the two
voiceprints’ similarity η is less than a preset threshold, i.e.,
η < 1 − τ . The protocol comprises an energy-difference-
based voiceprint extraction algorithm (Algorithm 2 ) and
an adaptive RS-coding-based fuzzy extractor (Algorithm 3).
The employed fuzzy extractor is derived from the RS Codes
[12], [13]. And we implement the RS coding by introducing
the construction method of [48], [49]. Different from [13]
using RS Codes with fixed parameters, we prefer an adaptive
RS coding algorithm, which means that the length of the real-
time voiceprints determines the parameter setting of RS.

When Algorithm 3 (SAFE) is finished, Alice and Bob
share a common secret r, which can be used as the seed for
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Algorithm 3 Secret Agreement using Fuzzy Extractor
(SAFE)

Require: Alice’s voiceprint f1, Bob’s voiceprint f2, Error
tolerance threshold τ .

Ensure: Alice and Bob share a common secret r, or abort
with an error.

1. Alice generates a random number (bit stream) r with
length lr = lf (1− 2τ), lf is the length of f1.

2. To tolerate or correct t = lfτ bit errors, Alice encodes
r to get a codeword c using RS(n, k) coding algorithm
satisfying: k = n − 2t, k ≥ lr, n = (2s − 1), s is the
chosen symbol size of RS coding and the lowest number
such that n ≥ lr + 2t. If k > lr, r will be extended
by adding k − lr zeros to its end before encoding. Note
that, we use systematic code (native data bits are left
unchanged and the parity bits are appended) and the
zero-padding needs not to be transmitted. The receiver
will reinsert the zero-padding before decoding.

3. Alice computes h1 = HASH(m1),m1 = c||f1||n||k||lr
and sends m = 〈c1 = c+ f1, n, k, lr〉 and h1 to Bob.

4. Bob adds f2 to c1 and gets c2 = c1 + f2 = c+ f1 + f2.
Then Bob decodes c2 using RS(n, k) decoding algo-
rithm to get c and r (first lr bits of c) if the Hamming Dis-
tance between f1 and f2 HammingDistance(f1, f2) ≤ t
and the voiceprint similarity η ≥ 1 − τ . Bob then gets
Alice’s voiceprint f1 by computing f1 = c1 + c. At this
time, Bob can check the integrity of m ( and m1) by
comparing HASH(c||f1||n||k||lr) and the received hash
value h1 to confirm thatm is not modified. If the integrity
check fails, Bob will abort the protocol and report an
error. Otherwise, Bob sends MACr (f1) to Alice.

5. Alice checks MACr (f1) using r and f1 and reports an
error if the check fails.

common key generation. Note that the two voiceprints f1 and
f2 in SAFE should have the same length or f2 should be
truncated or padded with zero to the end to have the same
length with f1. Using SAFE as a basic unit, Algorithm 4
shows the whole key agreement protocol.

V. SECURITY ANALYSIS
A. REMOTE IMPERSONATION
If an attacker locating outside the close proximity of the
pump/USB/speaker wants to participate the key agreement,
he must obtain an effective voiceprint to pass the similarity
validation (step 4 in Algorithm 3). To achieve this objective,
two methods may be possible, i.e., generating a random bit
sequence, or extracting from previously (in close proximity)
or currently (in a different context, e.g., outside the door)
recorded voice. For the prior, the voiceprints frequently have
high entropy [13]. If the voiceprint length is long enough
(e.g., ≥ 512 bits), the probability of guessing a voiceprint
which has the similarity η ≥ the preset threshold (e.g.,
η ≥ 85.00%, τ = 15%) is usually negligible. For the latter,
as the evaluation results shown in Section VI-G, there is a

Algorithm 4 Secure Key Agreement (SKA)

Require: Insulin pump (Alice), USB (Bob), Speaker or user,
Error tolerance threshold τ

Ensure: Common key K, or abort with an error
1. The speaker says a random passphrase to Alice and Bob

after the access control functionality in the two devices
is activated by the speaker, e.g. using a button in each
device.

2. Alice and Bob extract voiceprints f1 and f2, respectively,
from the voice of the speaker according to Algorithm 2.

3. Alice and Bob share a common secret r using SAFE
(Algorithm 3) and Bob gets the voiceprint of Alice f1

if HammingDistance(f1,f2)/Length(f1) ≤ τ holds.
4. Alice and Bob compute the common key: K =

HASH(r||HASH(f1)) (The symbol || denotes bit string
concatenation), respectively.

significant gap between the two voiceprints (the maximal
η ≤ 65.00%) even though the adversary eavesdrops the same
audio source in another context. However, through remotely
getting a user’s voice or using the record, the attacker can
hardly get a voiceprint with high similarity with that of in the
pump due to different contexts.

B. PASSIVE EAVESDROPPING
During the procedure of key agreement, all the exchanged
messages could be collected by an attacker through channel
eavesdropping. Meanwhile, the attacker can record the voice
from the legitimate speaker. These problems generally lead
to replay attacks. By using the cascaded fusion of speaker
verification and anti-replay CM, experiments in Section VI
confirm the mitigation of the replay attacks with high accu-
racy brought by the proposed speaker verification scheme.
Actually, whether the attacker can learn partial or all infor-
mation with respect to the exchanged voiceprints or not is
critical for the security of the key agreement. The attacker
may use brute-force and message eavesdropping to reach his
objective. However, for brute-force attack, the key agreement
requires that the extracted voiceprints have a long length
(e.g., ≥ 512 bits) and the user speaks random passphrases
with a long duration (e.g.,≥ 2 s). Thus a high entropy and no
bias in bit distribution of the voiceprints can be guaranteed.
For message eavesdropping, our protocol adopts an RS-
based fuzzy extractor (SAFE in Algorithm 3) to exchange
a common secret. No information about the voiceprints is
leaked given the following three conditions.

• The random number used in Algorithm 3 is indepen-
dently and uniformly distributed.

• The setting 〈2s, n, k〉 of RS coding is strong enough and
the space of data words and codewords is large enough

• The entropy of the voiceprints is high. This can be
ensured by randomly spoken passphrases and long voice
duration (long voiceprint).

In the implementation, we set the symbol size s = 10,
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the number of symbols (including data and parity) of each
codeword n = 2s − 1 = 1023, and the number of data
symbols k ≥ 512. The data symbols (i.e., random numbers)
can be chosen from a space ≥ (210)512, which is large
enough to ensure the codewords have sufficient entropy and
do not leak the voiceprint’s information (f1 in Algorithm 3).

C. MAN-IN-THE-MIDDLE
If an eavesdropper Eve performs the attacks as a middle per-
son in between Alice and Bob, she has to tamper at least one
message during the key agreement. Otherwise, this is a pas-
sive eavesdropping. According to the remote impersonation
analysis, Eve can hardly complete the agreement protocol
with either Alice or Bob. Any modification happens to any
message in the protocol (i.e., m,h1,MACr (f1) in Algorithm
3), Alice and Bob will fail to finish the key agreement.

VI. EXPERIMENTS EVALUATION
To verify the performance of the proposed scheme, a series
of experiments are conducted in this section. To make a
full description of the conducted experiments, this section
consists of 6 parts. 1) Section VI-A gives the data description
and metrics used for evaluations; 2) Section VI-B presents
evaluations for different features and the candidates selec-
tion method for ASV; 3) Section VI-C and Section VI-D
respectively conduct both training and testing for the stan-
dalone ASV using features chosen in case of zero-effort and
replay imposters; 4) Section VI-E considers the training and
testing for the standalone CM in case of replay imposters;
5) Section VI-F checks the performance of our cascaded
fusion scheme in case of zero-effort and replay impostors; 6)
Section VI-G demonstrates the feasibility of the voiceprint
based key agreement. All the experiments were executed in
a virtual machine server with 8 Cores (Intel Broadwell 2.29
GHz) and 64 GB RAM.

A. DATASETS, PROTOCOL, AND METRICS
Datasets. To conduct experimetns, we use the ASVspoof
2017 challenge corpus which is primarily employed for
spoofing (replay) attack detection in [26]. It consists of
genuine and replay/spoof recordings with the former coming
from recent text-dependent RedDots corpus and the latter
from the replay version of the former [50], [51]. The data set
is separated into three subsets for training, development and
evaluation which are described in Table 2. We use version 2.0
[52] and purge the evaluation protocol file by removing the
file items which do not exist in the Evaluation subset.

TABLE 2: Statistics of the ASVspoof 2017 Corpus

Subset # Speakers # Utterances
Genuine Spoof

Training 10 1507 1507
Development 8 760 950

Evaluation 24 1294 11988
Total 42 3561 14445

Protocol. In the ASVspoof 2017, the Training and Develop-
ment subsets are suggested for finding the replay CMs while
the Evaluation subset is provided to demonstrate the accuracy
and generalization capacity of the replay detectors. Since the
proposed scheme concentrates on a particular scenario with
only one speaker, we use the data set in different ways, which
are explained in following subsections.
Metrics. In the context of the ASV, there are two types of
inputs: genuine and zero-effort impostor speech. For the CM,
there is another type namely spoof/replay impostor speech.
Both the ASV and CM should accept the genuine speech;
the ASV should reject the zero-effort impostor while the CM
should reject the spoof/replay impostor. Following [53], the
decisions of ASV and CM corresponding to genuine trial and
zero-effort/replay trial are illustrated in Table 3. To evaluate
the performance of the ASV and CM, the preferred metrics
are as follows:

• False Acceptance Rate (FAR): Percentage of impostor
trials (incorrectly) accepted by the ASV and CM sys-
tem. It corresponds to a threshold θ computed by:

FAR(θ) =
Number of impostor trials with score > θ

Number of all impostor trials
(4)

• False Rejection Rate (FRR): Percentage of genuine tri-
als (incorrectly) rejected by the ASV and CM, which
corresponds to a threshold θ. It is computed by:

FRR(θ) =
Number of genuine trials with score ≤ θ

Number of all genuine trials
(5)

• Equal Error Rate (EER): It corresponds to a threshold
θEER at which FAR and FRR are equal or approximately
equal. The threshold is determined in development
phase utilizing a reference database Dbase by:

θEER = argmin
θ
|FAR(θ,Dbase)− FRR(θ,Dbase)| (6)

TABLE 3: Trial Decisions of ASV and CM

Trials Decision
Acceptance Rejection

Genuine trial Correct acceptance False rejection

Zero-effort trial False acceptance Correct rejection
(ASV) (ASV)

Spoof/Replay trial False acceptance Correct rejection
(CM) (CM)

B. MODEL FEATURE SELECTION
Feature Selection. To choose the appropriate features for
ASV, we have evaluated 12 different features (shown in
Section IV, the same kind of features with different filter
bank implementations are considered as one feature) using
the ASVspoof 2017 Training subset.
Classifier and Parameters. To train ASV, we use the GMM-
UBM model with 256 GMM mixtures in 20 iterations. It
is implemented using the MSR Identity Toolbox V1.0 [54].
For each feature, we have evaluated three combinations of
static and dynamic coefficients: static, static + deltas (∆),
static + deltas (∆) + double-deltas (∆∆). The deltas (∆)
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TABLE 4: Samples Composition of Training Subset of
ASVspoof 2017 Corpus

Training Subset of ASVspoof 2017 Corpus
Speakers Genuine Spoof Total
M0001 280 280 560
M0002 258 258 516
M0003 30 30 60
M0004 90 90 180
M0005 90 90 180
M0006 150 150 300
M0007 120 120 240
M0008 200 200 400
M0009 189 189 378
M0010 100 100 200
Total 1507 1507 3014

is the derivatives of the static coefficients and the double-
deltas (∆∆) is the derivatives of the deltas (∆). For CQCC
(no using of STFT), the number of cepstral coefficients is
30 (with an additional 0th coefficient). For the other features
(with STFT), we adopt 20ms frame length and 40 filter banks.

Training and Testing Datasets. To train and evaluate
the GMM-UBM classifier, we utilize the Training set of
ASVspoof 2017, which contains utterances of a total of 10
speakers. Table 4 shows the numbers of samples for each
speaker. The least number of the utterances of the user (i.e.,
M0003) used in the experiments is 30 and the total duration
of these utterances is about 90 s. 70% of all the genuine
utterances of the Training set are used to train the UBM
model, and 70% of genuine utterances per speaker are used
to train the speaker-specific model. Then the remaining 30%
utterances are used for verification. All possible model-test
combinations are taken into the verification trials (30% of one
target speaker vs. 30% of all the other impostors’ utterances).

Performance. Table 5 lists the performance in terms of ERR.
We find that voice activity detector (VAD) is critical for
most features. Except CQCC and RPS, which achieve bet-
ter performance without VAD, other features achieve better
performance when using VAD. Of all the evaluated features,
LPCC (static + ∆ + ∆∆), SCMC-MEl (static + ∆), LFCC
(static + ∆ + ∆∆), CQCC (static + ∆), and RMSCC-LIN
(static + ∆ + ∆∆) achieve better performance than others,
the EERs of which are 0.15%, 0.22%, 0.25%, 0.25%, and
0.25%, respectively. Base on the above results, we chose 5
features: LPCC (static + ∆ + ∆∆), SCMC-MEl (static + ∆),
LFCC (static + ∆ + ∆∆), CQCC (static + ∆), and RMSCC-
LIN (static + ∆ + ∆∆) as candidates to train the ASV.
Although LPCC (static + ∆) also achieves good performance
(0.25%), we only chose LPCC (static + ∆ + ∆∆), which
has the best performance and dropped LPCC (static + ∆) to
evaluate more others features.

TABLE 5: Standalone ASV Feature Performance (% EER)
Based on Traing Subset of ASVspoof 2017 Corpus

Features Selected Coefficients
(Stat) (Stat+∆) (Stat+∆ + ∆∆)

CQCC (no VAD) 0.34 0.25 0.44
MFCC 0.54 0.39 0.89
IMFCC 0.89 0.89 0.74
LPCC 0.44 0.25 0.15
LFCC 0.66 0.49 0.25
RFCC-LIN 0.57 0.54 0.44
RFCC-MEL 0.69 0.44 0.66
RFCC-IMEL 1.33 1.11 1.33
SCFC-LIN 1.63 1.06 1.11
SCFC-MEL 1.16 0.89 1.11
SCFC-IMEL 3.10 1.77 3.32
SCMC-LIN 0.91 0.44 0.44
SCMC-MEL 0.49 0.22 0.66
SCMC-IMEL 1.11 0.66 1.11
SSFC-LIN 1.20 0.81 1.99
SSFC-MEL 2.24 1.55 1.79
SSFC-IMEL 2.68 2.43 3.39
APGDF 1.11 1.89 2.70
RMSCC-LIN 0.66 0.49 0.25
RMSCC-MEL 0.54 0.39 0.89
RMSCC-IMEL 0.89 0.89 0.74
RPS-LIN (no VAD) 5.75 5.31 5.73
RPS-MEL (no VAD) 6.24 7.30 8.14
RPS-IMEL (no VAD) 5.68 5.97 5.53

C. STANDALONE ASV PERFORMANCE AGAINST
ZERO-EFFORT IMPOSTORS
Selected Features. Following Section VI-B, we evaluate
the performance of LPCC (static + ∆ + ∆∆), SCMC-MEl
(static + ∆), LFCC (static + ∆ + ∆∆), CQCC (static +
∆), and RMSCC-LIN (static + ∆ + ∆∆) in case zero-effort
impostors use their own sounds to impersonate the genuine
target speaker.
Training and Testing Datasets. We use the Training subset
shown in Table 4 and Development subset shown in Table
6 to train and test the two-class GMM-UBM classifier. In
each evaluation of each feature for each speaker, we use
except one cross validation, i.e., one of the 10 speakers is
chosen as the enrollment (target) speaker, and the remaining
9 speakers are treated as zero-effort impostors. Their utter-
ances are employed in training the speaker-specific model
and the impostor model, respectively. To train the two-class
GMM-UBM model, 70% of genuine utterances from the
target speaker are combined with all of the other 9 impostors’
genuine utterances. Meanwhile, 30% genuine utterances of
the target speaker combined with all genuine utterances of the
Development subset containing utterances from 8 speakers
are used to verify the performance.

Performance. From Table 7 (columns 2-6), we can appar-
ently find that the largest EERs achieved by all the 5 features
on all 10 speaker models are 2.50%, 2.50%, 3.81%, 6.67%,
and 17.37%, respectively. The first three features which
achieve better performance are LFCC (static + ∆ + ∆∆),
RMS-LIN (static + ∆ + ∆∆), and LPCC (static + ∆ + ∆∆).
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TABLE 6: Samples Composition of Development Subset of
ASVspoof 2017 Corpus

Development subset of ASVspoof 2017 Corpus
Speakers Genuine Spoof Total
M0011 140 200 340
M0012 50 40 90
M0013 90 90 180
M0014 60 20 80
M0015 30 50 80
M0016 190 240 430
M0017 90 140 230
M0018 110 170 280
Total 760 950 1710

D. STANDALONE ASV PERFORMANCE AGAINST
REPLAY IMPOSTORS
Selected Features. Based on the trials in Section VI-B and
Section VI-C, we have evaluated the performance of the
same features used in Section VI-C. Here, recordings of the
target speaker (or someone else) are employed by the replay
impostors.
Training and Testing Datasets. The Training subset shown
in Table 4 was used to train a two-class GMM-UBM clas-
sifier. In each iteration, we choose 1 of the 10 speakers as
the target speaker to train the speaker-specific model, and
the others are considered as the replay impostors to build
impostor model. To build the GMM-UBM model, 70% of the
genuine utterances of the target speaker and all of the genuine
utterances of the other 9 impostors are chosen. Meanwhile,
we take 30% genuine along with all the spoof utterances
of the target speaker and the whole Development subset
shown in Table 6 to predict and check the performance.
All the spoof utterances of the target speaker are used to
evaluate the performance against replay attacks while the
whole Development subset is used to evaluate zero-effort
attacks.
Performance. As shown in Table 7 (columns 7-11), the
performance against the replay impostors is worse with larger
EERs than that against the zero-effort impostors. The largest
EERs achieved by all the 5 features on all 10 speaker models
are 8.28%, 9.03%, 9.03%, 13.33%, and 15.56%, respectively.
The first three features, which achieve better performance are
LPCC (static + ∆ + ∆∆), LFCC (static + ∆ + ∆∆), and
RMSCC-LIN (static + ∆ + ∆∆). They also achieve better
performance in the 5 evaluated features when against zero-
effort imposters.

E. STANDALONE CM PERFORMANCE AGAINST
REPLAY IMPOSTORS
Selected Features. To evaluate the performance of stan-
dalone CM against replay impostors, all the features used
in Section VI-B are selected. We find the performance will
deteriorate when adding VAD before feature extraction. So
in all the trials, we do not use VAD.
Classifier and Parameters. The employed GMM-ML model
for training CM is with 512 GMM mixtures and 100 it-
erations. The GMM-ML implementation is based on the

baseline implementation of ASVspoof 2017 [26]. Same with
the evaluation in Section VI-B, for each feature we evaluate
three combinations of static and dynamic coefficients: static,
static + deltas (∆), static + deltas (∆) + double-deltas (∆∆).
For all features except LPCC and CQCC, we adopt 20 ms
frame length and 40 filter banks. For LPCC, the configuration
with the 200 ms frame length and 40 filter banks achieves
better performance. For CQCC (not using STFT as other
features), the number of cepstral coefficients is 30.
Training and Testing Datasets. We use the Development
subset shown in Table 6 and Evaluation subset shown in
Table 8 to build the two-class GMM-ML. Specifically, all the
genuine utterances of the Evaluation subset are employed to
train the genuine model, while its spoof utterances are used
to train the spoof model. Meanwhile, to evaluate the trained
models, we use the whole Development subset.
Performance. Table 9 shows the performance of the stan-
dalone CM against replay impostors. We find that, of all
the evaluated features, APGDF (static + ∆), SCMC-MEL
(static), MFCC (static), and RMSCC-MEL (static) outper-
form the others, the EERs of which are 4.48%, 4.86%,
4.94%, and 5.05%, respectively. Base on the results, we
chose these 4 best features as candidates to train the CM in
the fusion system, which will be shown in Section VI-F.

F. ASV & CM FUSION PERFORMANCE AGAINST
ZERO-EFFORT AND REPLAY IMPOSTORS
Selected Features. Combining the results of standalone ASV
(in Section VI-B, Section VI-C, and Section VI-D) and the
results of standalone CM (in Section VI-E), we adopt LPCC
(static + ∆ + ∆∆) and LFCC (static + ∆ + ∆∆) to train
the standalone ASV models, and then use MFCC (static),
SCMC-MEL (static), APGDF (static+∆) and RMSCC-MEL
(static) to train the standalone CM models. For the chosen
features’ diversity, we do not choose RMSCC-LIN (static +
∆ + ∆∆) to train the ASV models even though it archives an
equivalent performance to LPCC (static + ∆ + ∆∆). Because
we have chosen RMSCC-MEL (static) to train the CM. The
serial concatenation of the standalone ASV and CM forms
the fusion system to mitigate the attacks from both the zero-
effort and the replay impostors.
Datasets and Thresholds Determination. The Training
subset (Table 4) is employed in both of the ASV GMM-
UBM model training and testing, as well as determining the
threshold (θASV ). If an utterance gets a score ≤ θASV , it
might be a zero-effort or replay impostor rejected by the
ASV; otherwise, it needs one more check in CM. The other
two data sets, Development subset (Table 6) and Evaluation
subset (Table 8), are used to train the GMM-ML model for
CM. In the Evaluation subset, all the utterances of each
speaker, both the genuine and spoof, are employed in train-
ing a GMM-ML model. The whole Development subset is
used to test the model and compute a CM threshold (θCM ).
Similarly, each utterance with a score ≤ θCM is considered
as a spoof/replay attack. The second check in the CM is
to find out the utterances falsely accepted by the ASV(i.e.,
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TABLE 7: Standalone ASV Performance against Zero-effort and Replay Impostors (% EER) based on Training and
Development Subsets of ASVspoof 2017 Corpus

Speakers
Zero-effort Impostors Replay Impostors

CQCC
(no VAD) LPCC LFCC SCMC-MEL RMSCC-LIN

CQCC
(no VAD) LPCC LFCC SCMC-MEL RMSCC-LIN

M0001 1.05 2.38 1.19 0.13 1.19 0.55 1.11 1.19 0.15 1.19
M0002 0.00 0.13 0.13 0.13 0.13 0.91 1.02 0.91 0.30 0.91
M0003 0.00 0.92 1.45 2.76 1.45 3.28 2.13 7.36 11.11 7.36
M0004 1.58 0.00 0.00 0.39 0.00 3.06 3.67 3.11 3.70 3.11
M0005 2.37 1.71 0.26 2.37 0.26 1.06 0.61 0.56 1.78 0.56
M0006 9.47 3.81 2.50 2.22 2.50 15.56 8.28 9.03 13.33 9.03
M0007 0.13 0.00 1.58 0.00 1.58 0.05 0.87 0.77 0.05 0.77
M0008 17.37 1.05 0.53 6.67 0.53 10.00 3.35 1.67 6.67 1.67
M0009 1.75 0.92 0.00 1.05 0.00 0.05 2.42 0.05 1.26 0.05
M0010 1.18 0.26 0.26 0.13 0.26 0.50 1.65 2.15 0.11 2.15

TABLE 8: Samples Composition of Evaluation Subset of
ASVspoof 2017 Corpus

Evaluation Subset of ASVspoof 2017 Corpus
Speakers Genuine Spoof Speakers Genuine Spoof
M0019 40 524 M0032 100 1240
M0020 119 1066 M0033 70 630
M0021 69 562 M0034 29 284
M0022 110 798 M0035 59 572
M0023 60 584 M0036 10 -
M0024 50 531 M0037 10 -
M0025 139 1501 M0038 10 -
M0026 50 516 M0039 10 -
M0027 89 756 M0040 10 -
M0028 60 674 M0041 10 -
M0029 90 801 M0042 10 -
M0030 40 437 Total 1294 11988
M0031 50 512 - - -

TABLE 9: Standalone CMs Replay Detection Performance
(% EER) on the Development and Evaluation Subsets of
ASVspoof 2017 Corpus

Features Selected Coefficients
(Stat) (Stat+∆) (Stat+∆ + ∆)

CQCC 9.33 9.22 8.33
MFCC 4.94 5.93 6.77
IMFCC 6.62 6.94 7.84
LPCC 6.97 6.53 6.97
LFCC 7.31 6.65 6.49
RFCC-LIN 7.95 6.60 6.76
RFCC-MEL 7.51 7.89 7.87
RFCC-IMEL 7.51 6.82 9.63
SCFC-LIN 29.06 29.06 29.06
SCFC-MEL 30.98 30.98 30.98
SCFC-IMEL 45.09 45.09 45.09
SCMC-LIN 7.14 6.03 6.45
SCMC-MEL 4.86 5.70 6.21
SCMC-IMEL 7.26 6.67 8.63
SSFC-LIN 9.34 8.18 9.95
SSFC-MEL 11.75 12.06 14.31
SSFC-IMEL 11.16 10.21 11.24
APGDF 5.66 4.48 5.21
RMSCC-LIN 7.33 6.39 6.78
RMSCC-MEL 5.05 6.07 5.79
RMSCC-IMEL 6.41 6.88 7.94
RPS-LIN 28.68 30.45 36.75
RPS-MEL 40.65 40.85 41.64
RPS-IMEL 31.64 32.87 35.42

false positive). Notice that the false negative rate (a genuine
utterance is considered as a spoof one) potentially increases
due to the fusion policy. In that case, one more trial is
recommended to guarantee safety.
Performance of Fusion Systems. We have evaluated LPCC
(static + ∆ + ∆∆) and LFCC (static + ∆ + ∆∆) in ASV
and MFCC (static), SCMC-MEL (static), APGDF (static
+ ∆), and RMSCC-MEL (static) in CM. Table 10 shows
the corresponding performance of the 8 different fusions.
Apparently, the max EERs of all speaker models in each of 8
evaluated fusion systems are 4.44%, 6.67%, 3.33%, 3.33%,
3.33%, 6.67%, 6.67%, and 2.22%, respectively.

Fusion System with Best Performance. Fusion8 achieves
the best performance with the EER of 2.22%. It is the fusion
of ASV2 (LFCC) and CM4 (RMSCC-MEL). To defense
against zero-effort and replay impostors, we fix the FRR
of 10% and then evaluate the performance of standalone
ASV2 and fusion8 in terms of EER (%) and FAR (%) for all
the speakers’ models in Training subset of AVSspoof 2017.
Column 2 of Table 11 gives the number of samples chosen
from Training subset and used to test each speaker model.
Comparing with the standalone ASV, the fusion system re-
duces the max EER from 3.17% to 2.22% and reduces the
max FAR from 1.90% to 0.92%. Therefore, we believe that
the fusion of ASV and CM improves performance.

G. FEASIBILITY OF THE NON-INTERACTIVE
VOICEPRINT EXTRACTION BASED KEY AGREEMENT
Once the speaker passes the verification, the voiceprint-based
key agreement will be launched to bootstrap a secure com-
munication channel. By taking the non-interactive voiceprint
extraction (Algorithm 2) as a basic unit, we demonstrate the
feasibility of the key agreement (Algorithm 4).
Voice Samples Collection. To collect voice samples, we use
iPhone 5S and Honor 10 (H10) to record 135 passphrases,
respectively (total 270). In each case, we take a person speak-
ing the passphrase as a voice source, and the two devices are
separately positioned at one of 27 different distance settings
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TABLE 10: ASV and CM Fusion Replay Detection Performance (% EER) based on ASVspoof 2017 Corpus

System Speakers
M0001 M0002 M0003 M0004 M0005 M0006 M0007 M0008 M0009 M0010

ASV1 (LPCC) 2.16 0.20 0.80 1.22 3.17 0.43 0.05 1.94 0.32 0.33
ASV2 (LFCC) 1.19 0.10 1.90 1.67 0.28 3.12 0.38 1.67 1.75 0.33
CM1 (MFCC) 4.08 4.04 4.62 4.48 4.48 5.45 4.37 4.27 4.37 5.18

CM2 (SCMC-MEL) 3.51 3.55 4.06 3.91 3.91 4.91 3.84 3.67 3.95 4.28
CM3 (APGDF) 4.54 3.36 3.86 3.81 3.75 3.60 4.22 4.72 3.43 4.40

CM4 (RMSCC-MEL) 4.47 4.53 5.17 4.99 4.99 6.04 4.91 4.74 4.96 5.34
Fusion1 (LPCC+MFCC) 2.11 0.15 0.52 0.06 2.67 4.44 0.05 1.31 0.26 0.11

Fusion2 (LPCC+SCMC-MEL) 2.11 0.15 0.52 0.06 2.72 2.22 0.05 1.20 0.32 6.67
Fusion3 (LPCC+APGDF) 2.11 0.10 0.40 0.06 2.61 2.22 0.05 1.67 0.11 3.33

Fusion4 (LPCC+RMSCC-MEL) 2.11 0.15 0.52 0.06 2.72 2.22 0.05 1.20 0.32 3.33
Fusion5 (LFCC+MFCC) 1.19 0.05 0.80 0.11 0.11 2.22 0.38 1.20 1.75 3.33

Fusion6 (LFCC+SCMC-MEL) 1.19 0.05 0.98 0.06 0.17 2.31 0.38 1.15 1.75 6.67
Fusion7 (LFCC+APGDF) 1.19 0.05 0.52 0.06 0.11 2.22 0.33 6.67 1.75 3.33

Fusion8 (LFCC+RMSCC-MEL) 1.19 0.05 0.92 0.06 0.17 2.22 0.38 1.15 1.75 0.11

TABLE 11: Standalone ASV and Fusion8 (ASV LFCC + CM
RMSCC-MEL) Performance in Terms of EER (%) and FAR
(%) for a Fixed FRR of 10% for All the Speakers Against
Zero-effort and Replay Impostors

Speakers # Samples ASV1 Fusion8 (ASV1+CM4)
EER FAR EER FAR

M0001 2074 2.16 0.00 1.19 0.00
M0002 2045 0.20 0.05 0.05 0.05
M0003 1749 0.80 1.90 0.92 0.92
M0004 1827 1.22 1.11 0.06 0.06
M0005 1827 3.17 0.11 0.17 0.06
M0006 1905 0.43 0.59 2.22 0.59
M0007 1866 0.05 0.00 0.38 0.00
M0008 1970 1.94 0.26 1.15 0.10
M0009 1956 0.32 0.00 1.75 0.00
M0010 1840 0.33 0.17 0.11 0.11

TABLE 12: Average Similarity of Voiceprints Generated by
Two Devices at Different Distances to the Same Voice Source

Distance (cm) Average voiceprints similarity (%)
5S 20 5S 30 5S 50 5S 150 5S 300 5S outside

H10 20 88.20 87.73 85.84 78.48 78.96 59.43
H10 30 85.55 85.64 84.48 79.07 79.59 61.78
H10 50 85.83 84.82 84.59 78.69 76.74 58.45
H10 150 84.15 84.42 82.89 - - -
H10 300 79.25 82.47 83.13 - - -
H10 outside 64.16 59.96 62.67 - - -

from the person. The employed distances are shown in the
first column and the second row of Table 12. In each dis-
tance setting, the speaker speaks 5 sentences. Each sentence
should contain either 4 or 5 English words, or 5 numbers (in
closed interval [0, 9]), and persist 1 ∼ 3 seconds. We use
different distances among the speaker and the mobile phones
to demonstrate the relative positions among the pump, the
USB, and the user (or the attacker). Table 12 illustrates all
the adopted distance settings and the similarity evaluations
for voiceprints generated by the two devices.

Voiceprint Extraction Setting. For voiceprint extraction
shown in Algorithm 2, we resample all the passphrases to
16 kHz sampling frequency and use 63 ms frame length and
17 frequency filter banks. The sampling frequencies of the

native voice recording application in iPhone 5S and Honor
10 are 44.1 kHz and 48 kHz, respectively.
Performance. Table 12 gives all the experimental results.
Some conclusions are revealed. (1) When the distance be-
tween the two devices and the voice source is smaller than
30 cm, the average voiceprint similarity (AVS) is larger than
85.00%. (2) If the distance between one device and the
speaker is about 300 cm, the AVS drops down to 76.74%.
Especially, if one device locates outside the closed door of
a room (about 320 cm, mean ambient loudness in the room:
38 dB, outside: 47 dB), the AVS is only 58.45%. Therefore,
an attacker cannot get a voiceprint which has a high similarity
with the one in the pump or USB in a different context.

VII. DISCUSSION
A. OVERHEAD ANALYSIS

In this section, we analyze the storage consumption, com-
putation complexity, and communication complexity of the
whole authentication process, including feature fusion (of
ASV and CM) and voiceprint-based key agreement. Consid-
ering that the pump can be powered by a battery and the USB
by PC, we do not make power consumption analysis in this
paper, which can be one of our future work.
Storage consumption. For the proposed scheme, the pump
only store classifier models for one patient. Intuitively, this
consumes much less storage than the conventional speaker
recognition systems. Table 13 (columns 2-7) shows the stor-
age comparisons for the 8 fusion systems. We choose fusion8
as the candidate to be used in the insulin pump system be-
cause it outperforms the others. By using fusion8, the storage
consumption for the ASV includes one GMM UBM model
(482 KB with 256 GMM components), one GMM user model
(482 KB), and one GMM background users model (482 KB).
For CM, the requirements are one GMM-ML Genuine model
(324 KB with 512 GMM components) and one GMM-ML
Spoof model (324 KB). So, the total permanent storage
consumption is only about 2 MB. Actually, it is not a pricey
consumption for the next generation insulin pump which may
adopt higher hardware configuration (e.g., with ARMv7/v8
CPU and Flash Memory ≥32 MB ).
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Computation complexity. First, we evaluate the time-costs
of feature extraction and score evaluation for all the 8 candi-
date fusion systems in a laptop with Intel Core (TM) i7-5500
CPU (2.40 GHz) and 8 GB RAM. The results are shown in
Table 13 (columns 8-9). The average feature extraction time
and score computation time, corresponding to two features
(ASV2 LFCC and CM4 RMSCC-MEL) extracted from a
voice sample, are 0.0256 s and 0.0145 s, respectively. Then,
we get the executing time for the key modules of the fusion8
system in the Raspberry Pi 3 Model B+ with 1.4 GHz
Broadcom BCM2837B0 CPU. We select the recorded voices
with the duration of around 2s. For speaker verification, the
ASV part comprises one audio read (≈ 0.01 s), one feature
extraction (LFCC, ≈ 0.05 s, including VAD), and one log
likelihood computation (≈ 0.04 s); the CM part consumes
one feature extraction (RMSCC-MEL,≈ 0.02 s), and one log
likelihood computation (≈ 0.04 s). To extract the voiceprint,
the scheme generates 16 bits voiceprint for each frame of
the voice. The lengths of all the evaluated passhprases range
from 17 to 42 frames, i.e., from 272 to 672 bits. For security
concern, we prefer the voiceprint with the length ≥ 512 bits
and adaptiveRS(n = 210−1, k = n−2t = n−2lfτ). Thus
the number of data symbols k is determined by the length
of real-time voiceprint lf and the error tolerance threshold τ .
For the voiceprints with the maximal length lf = 672 bits, we
set τ = 0.1 , get k = 1023− d2 · 672 · 0.1e = 888 and chose
RS(1023, 888) in SAFE (Algorithm 3). In the key agreement
protocol, the voiceprint extraction algorithm spends≈ 0.05 s
(672 bits, including silence removing in Algorithm 2); the
creating of the RS sequential-root-generator-polynomial [49]
takes ≈ 0.002 s, the RS encoding ≈ 0.01 s, and the RS
decoding ≈ 0.02 s. The running time for each of other
operations (6 HASHs and 2 MAC in Algorithm 3 and 4) is
≤ 0.0001 s, totally ≤ 0.001 s. Actually, the computational
time for the whole access control is about 1 s.

Communication complexity. For the proposed scheme,
message exchange only happens in the voiceprint-based key
agreement (SAFE) between the pump and USB. The pump
sends 1 HASH (h1, 256 bits using SHA256), 1 codeword
(m1, the max length ≈ 1024 bits) and receives 1 MAC
(160 bits using EVP SHA1) during the SAFE protocol
(Algorithm 3). In total, the size of the transmitted data is
≤ 2 Kbits. They can be exchanged within 1 s using the RF
channel (frequency of pump to USB: 961.5 MHz, bandwidth:
185 kHz). Taking the computational time into account, the
whole access control consumes about 2 s if the voice has
been recorded. Generally, 3 s is enough for voice recording.
Therefore, we can finish this voiceprint based access control
within 5 s.

B. HANDLING EMERGENCY SITUATION
In the literature, how to achieve easy access to medical
devices under emergencies is an orthogonal problem. Many
researches [9], [10], [29] recommend granting open access

to clinical staff during emergencies. [21] and [55] presented
schemes for emergency cases. In this study, we can deactivate
the speaker verification by a button in each device and
execute only the key agreement by using the voiceprints
extracted from the voice of anyone in case the target user
has a throat sickness and cannot say a passphrase accepted
by the access control. Although the patient cannot participate
in the procedure and grant permission specifically, the insulin
pump and USB can still establish a secure channel if the two
devices are in close proximity.

VIII. CONCLUSION
Security of the wireless channel between the insulin pump
and the USB/uploader is closely related to the patient’s
safety. In this paper, we have proposed a novel feature
fusion and voiceprint based access control scheme. The
scheme comprises an anti-replay speaker verification and
a voiceprint-based key agreement. Based on the scheme,
the insulin pump can only be accessed by the USB after
the legitimate user passes the identity verification, and the
pump establishes a secure channel only with the device in
its close proximity. To generate a common key for commu-
nication encryption, we adopt non-interactive and real-time
energy-difference-based voiceprint extraction and adaptive
RS-coding-based fuzzy extractor to the key agreement proto-
col. It protects the insulin pump from message eavesdropping
and parameters manipulation attacks while avoiding complex
computations and data exchanges over the wireless channel.
Furthermore, certificates, permanent shared keys, and addi-
tional devices are no more required. Finally, how to make the
proposed scheme be suitable for various infusion systems or
lightweight access control scenarios is to be investigated in
the future.
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Proof: Usable Two-Factor Authentication Based on Ambient Sound,” in
Proc. of the 24th USENIX Security Symposium, pp. 483-498, 2015.

[34] S. B. Davis and P. Mermelstein, “Comparison of parametric representa-
tions for monosyllabic word recognition in continuously spoken sentences,”
IEEE Trans. on Acoustics, Speech, and Signal Processing, 28(4), pp. 357-
366. 1980.

[35] S. Chakroborty, A. Roy, and G. Saha, “Improved closed set text-
independent speaker identification by combining MFCC with evidence from
flipped filter banks,” International Journal of Signal Processing, 4(2), pp.
114-121, 2007.

[36] S. Furui, “Cepstral analysis technique for automatic speaker verification,”
IEEE Trans. on Acoustics, Speech, and Signal Processing, 29(2), pp. 254-
272. 1981.

[37] M. Todisco, H. Delgado, and N. Evans, “A new feature for automatic
speaker verification anti-spoofing: Constant Q Cepstral Coefficients,” in
Proc. of ODYSSEY, 2016.

[38] P. Rajan, T. Kinnunen, C. Hanilci, J. Pohjalainen, and P. Alku, “Using
group delay functions from all-pole models for speaker recognition,” in
Proc. of INTERSPEECH, pp. 2489-2493, 2013.

[39] B. Hao, X. Hei, Y. Tu, X. Du, and J. Wu, “Voiceprint-based Access Control
for Wireless Insulin Pump Systems,” in Proc. of IEEE 15th International
Conference on Mobile Ad Hoc and Sensor Systems (MASS), pp.245-253,
2018.

[40] L. O. Lartillot and T. Petri, “A Matlab toolbox for musical feature ex-
traction from audio,” International Conference on Digital Audio Effect,
Bordeaux, 2007.

[41] A. Das, N. Borisov, M. Caesar, “Do you hear what I hear? Fingerprinting
smart devices through embedded acoustic components,” in Proc. of ACM
CCS, pp. 441-452, 2014.

[42] T. Giannakopoulos, “A method for silence removal and segmentation of
speech signals, implemented in Matlab,” University of Athens, Athens 2
(2009).

[43] D. A. Reynolds and R. C. Rose, “Robust text-independent speaker identi-
fication using Gaussian mixture speaker models,” IEEE Trans. On Speech
And Audio Processing, 3(1), pp. 72-83, 1995.

[44] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification using
adapted Gaussian mixture models,” Digital Signal Processing, 10, pp. 19-
41, 2000.

[45] H. Delgado, M. Todisco, and H. Yu, et al., “Integrated spoofing counter-
measures and automatic speaker verification: An evaluation on ASVspoof
2015,” in Proc. of INTERSPEECH, 2017.

[46] M. Todisco, H. Delgado, and K. A. Lee, et al., “Integrated presentation
attack detection and automatic speaker verification: Common features and
Gaussian back-end fusion,” in Proc. of INTERSPEECH, 2018.

[47] J. Haitsma and T. Kalker, “A highly robust audio fingerprinting system,”
in Pro. of the 3rd International Conference on Music Information Retrieval,
October 2002.

[48] M. Riley and I. Richardson, “An introduction to Reed-Solomon codes:
principles, architecture and implementation,” https://www.cs.cmu.edu/
~guyb/realworld/reedsolomon/reed_solomon_codes.html, 2019.

[49] Schifra, “Reed Solomon Error Correcting Library, Release Version 0.0.1,”
https://github.com/ArashPartow/schifra, 2019.

VOLUME 4, 2019 15



Y.Ping et al.: Feature Fusion and Voiceprint Based Access Control for Wireless Insulin Pump Systems

[50] T. Kinnunen, M. Sahidullah, and M. Falcone, et al., “RedDots replayed:
A new replay spoofing attack corpus for text-dependent speaker verification
research,” in Proc. of ICASSP, 2017.

[51] K. A. Lee, A. Larcher, and G. Wang, et al., “The reddots data collection
for speaker recognition,” in Proc. of INTERSPEECH, 2015.

[52] H. Delgado, M. Todisco, and M. Sahidullah, et al., “ASVspoof 2017
Version 2.0: meta-data analysis and baseline enhancements,” in Proc. of
ODYSSEY, pp.296-303, 2018.

[53] B. Hao and X. Hei, “Book chapter: Voice Liveness Detection for Medical
Devices,” In D. R. Kisku, P. Gupta, and J. K. Sing (Ed.), Design and
Implementation of Healthcare Biometric Systems, 2019.

[54] S. O. Sadjadi, M. Slaney, and L. Heck, “MSR identity toolbox v1.0: A
MATLAB toolbox for speaker recognition research,” Microsoft Research
Technical Report, 2013.

[55] J. Sun, X. Zhu, C. Zhang, and Y. Fang, “HCPP: Cryptography based secure
EHR system for patient privacy and emergency healthcare,” in Proc. of
ICDCS, pp. 373-382, 2011.

YUAN PING received the B.S. degree in elec-
tronics and information engineering from South-
west Normal University in 2003, the M.S. degree
in mathematics from He’nan University in 2008,
and the Ph.D. degree in information security from
Beijing University of Posts and Telecommunica-
tions in 2012. He is an associate professor with
Xuchang University and a visiting scholar with
the School of Computing and Informatics, Univer-
sity of Louisiana at Lafayette. He was a visiting

scholar with the Department of Computing Science, University of Alberta.
His research interests include machine learning, public key cryptography,
data privacy and security, cloud and edge computing.

BIN HAO received the B.S. degree in electronic
and information engineering from China Agri-
cultural University, Beijing, China, in 2004, the
M.S. degree in signal and information process-
ing from North China University of Technology,
Beijing, China, in 2007, and the Ph.D. degree
in computer science from Beijing University of
Posts and Telecommunications, Beijing, China, in
2012. He is currently a Postdoctoral Fellow at
School of Computing and Informatics, University

of Louisiana at Lafayette, Louisiana, USA. His research interests focus
on acoustical channel based access control, wireless device security, key
agreement protocol, and trusted computing.

XIALI HEI received the B.S. degree in electri-
cal engineering from Xi’an Jiaotong University,
Xi’an, China, in 2002, the M.S. degree in software
engineering from Tsinghua University, Beijing,
China, in 2005, and the Ph.D. degree in computer
science from Temple University in 2014. She is
an assistant professor in the School of Computing
and Informatics at the University of Louisiana
at Lafayette. Prior to joining the University of
Louisiana at Lafayette, she was an assistant pro-

fessor at Delaware State University from 2015-2017 and Frostburg State
University 2014-2015. Her research interests are secure real-time wireless
medical devices, vulnerability assessment and malware detection on An-
droid, and efficient encryption schemes design. She was awarded NSF CRII
grant and Delaware DEDO grant.She got several awards such as: ACM 2014
MobiHoc Best Poster Runner-up Award, Dissertation Completion Fellow-
ship, The Bronze Award Best Graduate Project in Future of Computing
Competition, IEEE INFOCOM and IEEE GLOBECOM student travel grant,
etc. She is the TPC member of USENIX Security, IEEE GLOBECOM, IEEE
ICC, WASA, etc.

YAZHOU TU received the B.S. degree in soft-
ware engineering from Wuhan University, Wuhan,
China, in 2013, and the M.S. degree in software
engineering from Tsinghua University, Beijing,
China, in 2016. He is currently a M.S. student in
the School of Computing and Informatics at the
University of Louisiana at Lafayette. His research
interests include security and privacy of embedded
devices.

XIAOJIANG DU (SM’09) received the B.S. and
M.S. degrees from Tsinghua University, Beijing,
China, in 1996 and 1998, respectively, and the
M.S. and Ph.D. degrees from the University of
Maryland at College Park, in 2002 and 2003, re-
spectively, all in electrical engineering. He is cur-
rently a tenured Professor with the Department of
Computer and Information Sciences, Temple Uni-
versity, Philadelphia, USA. His research interests
are wireless communications, wireless networks,

security, and systems. He has authored over 200 journal and conference
papers in these areas, as well as a book published by Springer. He is
a Life Member of the ACM. He received over $5 million U.S. dollars
research grants from the U.S. National Science Foundation, Army Research
Office, Air Force, NASA, the State of Pennsylvania, and Amazon. He was a
recipient of the Best Paper Award at IEEE GLOBECOM 2014 and the Best
Poster Runner-Up Award at ACM MobiHoc 2014. He serves on the editorial
boards of three international journals.

16 VOLUME 4, 2019



Y.Ping et al.: Feature Fusion and Voiceprint Based Access Control for Wireless Insulin Pump Systems

JIE WU is the Associate Vice Provost for In-
ternational Affairs at Temple University. He also
serves as Director of the Center for Networked
Computing and Laura H. Carnell professor in the
Department of Computer and Information Sci-
ences. Prior to joining Temple University, he was a
program director at the National Science Founda-
tion and was a distinguished professor at Florida
Atlantic University. His current research interests
include mobile computing and wireless networks,

routing protocols, cloud and green computing, network trust and security,
and social network applications. Dr. Wu regularly publishes in scholarly
journals, conference proceedings, and books. He serves on several editorial
boards, including IEEE Transactions on Service Computing and the Journal
of Parallel and Distributed Computing. Dr. Wu was general cochair/chair
for IEEE MASS 2006, IEEE IPDPS 2008, IEEE ICDCS 2013, and ACM
MobiHoc 2014, as well as program co-chair for IEEE INFOCOM 2011 and
CCF CNCC 2013. He was an IEEE Computer Society Distinguished Visitor,
ACM Distinguished Speaker, and chair for the IEEE Technical Committee
on Distributed Processing (TCDP). Dr. Wu is a CCF Distinguished Speaker
and a Fellow of the IEEE. He is the recipient of the 2011 China Computer
Federation (CCF) Overseas Outstanding Achievement Award.

VOLUME 4, 2019 17


	Introduction
	Related Work
	Medical Device Authentication
	Anti-replay Voice Authentication
	Secure Channel Establishment

	System and Attacker Model
	System Model
	Background
	General system model

	Attacker Model

	Voiceprint-based Access Control Scheme
	Acoustic Channel Verification
	Feature Extraction
	Classifier Training

	Fusion of ASV and Anti-replay CM
	Voiceprint-based Key Agreement
	Non-interactive Extraction for Energy-difference-based Voiceprint
	Key Agreement using Voiceprint


	Security Analysis
	Remote Impersonation
	Passive Eavesdropping
	Man-in-the-middle

	Experiments Evaluation
	Datasets, Protocol, and Metrics
	Model Feature Selection
	Standalone ASV Performance Against Zero-effort Impostors
	Standalone ASV Performance Against Replay Impostors
	Standalone CM Performance Against Replay Impostors
	ASV & CM Fusion Performance Against Zero-effort and Replay Impostors
	Feasibility of the Non-interactive Voiceprint Extraction Based Key Agreement

	Discussion
	Overhead Analysis
	Handling Emergency Situation

	Conclusion
	REFERENCES
	Yuan Ping
	Bin Hao
	Xiali Hei
	Yazhou Tu
	Xiaojiang Du
	Jie Wu


