Opportunistic WiFi Offloading in a Vehicular Environment: Waiting or Downloading Now?

Ning Wang and Jie Wu Temple University

- Motivation
- Model and problem formulation
- Theoretical analysis
- The idea of the proposed algorithm
- Performance evaluations

Motivation

- Data downloading during the driving
 - Self-driving vehicles
 - Traffic and safety information
 - High-resolution digital maps
 - On boarding applications
 - Video, music, social networks

Related works

- **Opportunistic offloading**
 - Mobile Data Offloading through Opportunistic Communications and Social Participation. (TMC 2012)
- User's satisfaction decay with time
 - Toss: Traffic offloading by social network servicebased opportunistic sharing in mobile social networks (INFOCOM 2014)
- Roadside Units deployment
 - On-road ads delivery scheduling and bandwidth allocation in vehicular cps (INFOCOM 2013)

Motivation

A hybrid network

O Roadside Units with WiFi (RSUs).

O Limited coverage, high bandwidth, cheap

 \bigcirc Cellular network

O Full coverage, low bandwidth, expensive.

Delay-sensitive data downloading

 \bigcirc Delay sensitive data

Incoming call, safety information update

O Delay non-sensitive data

• Music, social network update, etc.

Network model and Problem

- With the increasing of data size
 - A trade-off between the cost and delay
 - from the Cellular network: No risk but lead to a high cost.
 - from the RSUs network : Risk, high delay, but cheap

Network model and Problem

- Maximize the user's satisfaction
 - If the cost is high, the user's satisfaction will be low.
 - If the delay is large, the user's satisfaction will be low.
 - Utility model

$$U_t = U_0 - at$$
 The sensitivity to

- Cost model
 - The price of downloading from cellular networks is C higher per bit than the price of downloading from RSUs.

the delay

- Simple downloading strategies.
 - only get good result in certain scenarios.

(a) Different data downloading cost (b) Different data utlity decay speed

- How to predict the expected utility through RSUs?
- When to adjust your downloading strategy?

 Inter-meeting distribution between a vehicle and RSUs in Diesel Bus Dataset:

- Exponential inter-meeting distribution
 - Memoryless property

• Theorem: For exponential distribution of the encountering time between the vehicle and RSUs, the vehicle only needs to do the decision once: download from the cellular network right now, or never. The criterion of choosing the cellular network right now is $a/2\lambda > c$.

Gaussian inter-meeting distribution

(a) Probability density function

(b) Expected enountering time

• Theorem: For Gaussian distribution of the encountering time between the vehicle and RSUs, the criterion for choosing the cellular network right now is $\frac{(T^e)^{\beta+1}a}{\beta} > c$.

multiple RSUs

- Dependent inter-meeting time in RSUs
 - Meet one RSU earlier (later), high probability to meet the following RSUs earlier (later)

$$f(t_1, t_2, \dots, t_k) = \frac{1}{q} \cdot f_1(t) * f_2(t) \cdots * f_k(t),$$

• Theorem: the expected meeting time with kth RSUs will not change, however the estimation uncertainty will increase \sqrt{k} times.

Proposed solution

- Adaptive algorithm
 - RSUs meeting prediction by historical information.
 - Jointly consider the expected meeting time with RSUs and the uncertainty to do downloading strategy.
 - Re-decision based on the actual situation.

Performance evaluation

- Trace information
 - Synthetic trace
 - UMass Diesel Trace
 - 40 Buses
 - 47 RSUs
- Experiment setting
 - Average data size 6MB
 - Different cost setting
 - Different decay speed

bandwidth	Cellular	RSUs
Kbps	20	100

 Meeting positions of a bus with RSUs in Diesel data trace, where the red marker
represents the contact records
between a vehicle and RSUs

Algorithm comparison

- Algorithms:
 - Minimizing delay: Keep downloading data from cellular network.
 - Minimizing cost: Always wait for the RSUs
 - Optimal solution through brute-force
 - Proposed algorithm

Experiment result

U

Experiment result

Satisfaction of user

С

Experiment result

S

- We investigate the data downloading strategy from a hybrid network (RSUs and Cellular networks), considering the downloading cost and delay.
- We analyze two theoretical meeting distributions and propose an adaptive scheme.
- RSUs inter-meeting prediction.
 - Inter-meeting time and uncertainty

Future work: the content sharing between vehicles

Thank you!

Ning Wang ning.wang@temple.edu

