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Abstract—Competitive Influence Maximization has attracted
great research interest recently. A key challenge in this regard
is modeling the users’ information forwarding behaviors from
nodes just activated to their not yet activated neighbors, especially
when some competitors try to maximize their influence over the
network. Competitors need to simultaneously decide how many
resources should be allocated to a potential member of a social
network. The main objectives are to discover which potential
members to select and how many resources to allocate to these
potential members to the maximize of the competitors’ influence.
Most previous works on competitive influence focus on the single-
shot game without considering the effect of budget allocation.
We are interested in multi-round competitive influence where
each competitor needs to decide the location and amount of
budget to invest simultaneously and repeatedly under a given
total budget to maximize the total number of activated nodes.
In this paper, we propose a tree-approximate game-theoretical
framework and introduce the new measurement as a dynamic
weight. We demonstrate through simulation that our approach
works well in a multi-round and learning-based CIM problem.

Index Terms—budget allocation, game theory, reinforcement
learning, social networks, multi-round influence maximization.

I. INTRODUCTION

In the real world, there are many competitors at the same
time implementing their strategies to find a large influence on
the same social network. Actually, each rational player tries
to make its influence spread as maximal as possible and make
that of its opponents as minimal as possible. That is why Com-
petitive Influence Maximization (CIM) [1]–[3] has received
a lot of attention recently. The CIM problem aims to select
the best seeds in response to the other competitors’ decisions
with the goal of maximizing their influence. Considering a
competitive game with two competitors, Red and Blue, in the
given social network G(V,E, P ), where V is the vertex set and
E is the edge set. P is a set of edge propagation probabilities,
where p(u, v) represents the influence probability of the edge
between u and v, where

∑
u p(u, v) < 1. When there is

no edge between u and v, p(u, v) = 0. Nodes can take
on one of the following states: activated by Red, activated
by Blue, and inactive. First, competitors identify the most
influential nodes of the network. Then they compete over
only these influential nodes by the amount of budget they
allocate to each node. After activation of a node, its influence
propagates with a certain probability to their not yet activated
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(a) S = {v1, v2, v3} (b) No winner in v3 (c) Red wins v3

Fig. 1: Budget allocation in case of tie in the CIM.
neighbors. At each step t, each node u activated at step t− 1
activates its neighbor v with probability p(u, v). Once acti-
vated, they stay activated. Influence maximization under both
independent cascade (IC) [4] and linear threshold (LT) [5]
models are NP-hard.

We will use IC in this paper. The key characteristic of this
model is that diffusion events associated with every edge in the
given social graph are mutually independent and the success
of the seed node u to influence one of its inactive neighbors v
only depends on p(u, v). Consider the social network in Fig.
1(a). Players Red and Blue compete over the nodes of this
network. They consider v1, v3 , and v8 as seed nodes. The
table shows the amount of budget allocation from these players
over seed nodes. Player Red wins v1 with the probability of
2/(1 + 2) = 2/3. Player Blue wins v3 with the probability
of 3/(3 + 2) = 3/5. Players have the same budget allocation
on v8. The winning probability is proportional to the budget
allocation of two parties.

We model such a scenario by the multi-round CIM where
each player would prefer to find an optimal combination of
strategies to utilize their budget efficiently in a competitive
environment. Instead of selecting seeds only in the first round,
we consider a more realistic and practical setup in which
the players might keep taking action by selecting seed nodes,
based on the current network state and the expected reactions
of other players within given rounds. In addition, each player
can spend a limited amount of budget in all rounds on seed
nodes. The most influential nodes are selected according to
different strategies based on the current state of the given
network. In each round, players select a seed node st, make a
decision about the amount of budget that should be allocated
to this seed node, then wait until the end of the propagation
process. This assumption can be extended to multiple seed
nodes in each round. Note that during each round players take
action simultaneously, but there are sequence rounds. As in-



fluence maximization is NP-hard, we introduce a new notation
of Most Reliable Influence Path (MRIP) as an approximation.

The contributions of this paper are summarized as follows:
1) We define new measurement called dynamic weight for
nodes. Considering both fixed and dynamic weights in the
processes of selecting seed nodes helps players to have a
more accurate selection. 2) We discuss the influence spread in
the social network by considering the Most Reliable Influence
Paths (MRIP) for each node in the process of seed selection
as an approximation. MRIP is inspired by the notion of
critical path in the scheduling community. 3) We consider three
new features maximum weight of inactive nodes, the ratio of
budget, and the weight of nodes, in case of reachability to
describe the state of the network in reinforcement learning.
4) We propose a CIM model which selects the winner of the
node in case of breaking tie based on the budget proportion.

II. RELATED WORK

Competitive Influence Maximization. The competitive IM
aims to find a strategy for the competitors in a social network
such that one’s influence is maximized while his opponents’
influences are minimized [6]. Instead of focusing on the
propagation of a single idea in social networks, there are
various extensions of the IC model and the LT model for
multiple competing ideas [7]. Li et al. [8] consider a model
for competitive IM. Given a graph G and a diffusion model,
the strategy space consists of all IM algorithms that may be
adopted by players. The objective is to find a Nash equilibrium
strategy for each player such that his own influence π(si) is
maximized. In [9], authors addressed a multi-stage version
of the Influence Maximization problem. They provided a
new formulation and compared their approaches in terms of
accuracy and computation run time.

Reinforcement Learning. An important line of work that
uses RL to solve NP-hard optimization problems on graphs is
[10] [11]. In [12], Lin et al. model a multi-party CIM problem
and propose a different model with the help of RL and based
on the Multi-Round CIM method. Authors in [13] propose
a novel deep RL-based framework to tackle the MRCIM
problem considering the network community structure under
a quota-based ε-greedy policy. K. Ali et al. [14] propose a
deep reinforcement learning-based model to tackle the CIM
on unknown social networks. K. Ali et al. in [15] propose a
novel RL-based framework that is built on a nested Q-learning
algorithm. They derive the optimal solution in both budget
allocation and node selection that results in the maximum
profit with time constraints.

Resource Allocation Against Opponents. Parties in a CIM
problem perform like a player in a Colonel Blotto game.
Colonel Blotto games (CBG) are a class of two-player zero-
sum games, in which both players need to simultaneously
allocate limited resources over several objects. Authors in [16]
address the budget allocation scenario in maximization influ-
ence problem. Companies can allocate different values of their
budget to a node in the network, and nodes will prefer the
product of the company that has offered a higher value. Here,

TABLE I: Main notations
Symbol Meaning
B1/B2 Total budget of player 1/2
T Total number of rounds
N(u) Neighbor set of node u
V 1/V 2 Set of activated nodes by player 1/2
w(u) Weight of node u
w′(u) Estimated total influence weight of node u
p(u, v) Influence probability of edge between u and v
R(u, v) Influence value of the MRIP between u and v

companies compete with each other through the amount of
budget they allocate to each node in the network.

Different from most of the existing works, in this paper,
we study the problem of Multi-round CIM within budget
constraints and while considering the remaining budget of
opponents. We consider a different approach from the Blotto
game for budget allocation strategy. There is a dependency
between targets and players can continue their investment in
case of tie-breaking. In addition, there is propagation after any
activation. In comparison with ML approaches, we consider
new features to describe the state of the network.

III. PRELIMINARY

A social network can be modeled with a weighted and
directed graph G(V,E, P,W ), where we define W as a set of
weights associated with each vertex in V . In G, a node u can
be activated if it accepts the idea of the player i. Once a node
u accepts the idea of a player i, it cannot switch its occupation
status to other parties. If the given node does not accept any
idea, it means that the state of the node u is inactive.

Competitive Influence Maximization. In a multi-stage
CIM problem, competitors need to make decisions about se-
lecting seed nodes in each of sequence stages simultaneously.
Suppose that there is a CIM game with two players, 1 and 2,
and n nodes in a social network G. Player 1 has budget of
size B1 and player 2 has budget size of B2. Each node u
has a value, W (u) > 0, which can be regarded as the reward
of taking this node for players. The total value of n nodes
in this social network is W =

∑
u∈V W (u). The player

who can obtain the most reward by influencing the more
important nodes would be the winner of this game. Players
have competition with the amount of budget they allocate
in seed nodes (the most influential nodes). In this game
three types of competition can occur. The first competition
is the competition of players on seed nodes by amount of
allocated budget, which can be called Node-Node competition.
The second one is Link-Link, which is the competition of
influence when two different links with different influence try
to activate the given node by their favor. The last one is Node-
Link. This will happen when one of the competitors allocates
some budget on the given node and the influence of another
competitor reaches to this node by influence of link.

1) Node-Node Influence Competition: Considering a Node-
Node competition on the node u. Suppose that x1 and x2
are the amount of budget that players 1 and 2 have allocated



Fig. 2: Approach during training process.

to node u. The winning probability of player 1 for this
competition is x1/(x1 + x2).

2) Link-Link Influence Competition: Link-Link influence
competition will be happened after the process of budget
allocation and determining the winner of this stage in the
case of taking the given seed node. During the process of
propagation, suppose that node u has the influence of player 1
from one of its neighbors with p1 = p(v, u). In addition, node
u has influence of player 2 from another neighbor, node w,
with p2 = p(w, u). The probability that node u would be
activated by player 1 is (p1/(p1 + p2)) × (1 − p1p2), where
(1−p1p2) considers the probability of activation of node u by
at least one of the players. The probability that node u would
be activated by player 2 is (p2/(p1 + p2))× (1− p1p2).

3) Node-Link Influence Competition: In a multistage com-
petition, competitors are able to allocate budget at the same
moment at the beginning of each stage, rather than during
the stage. At the beginning of each stage, competitors make
decision about their budget allocation, then propagation of
influence starts. At the end of the propagation, competitors
can start the next stage and make decision about new budget
allocation. Therefore, there are node-node competition at the
beginning of each stage and link-link competition during each
stage. Therefore, we will avoid considering the link-node
competition for the multistage CIM problem.

Multi-agent Reinforcement Learning. In sequential
games, players need to look forward and reason back to find
the best decision. In simultaneous games, players look for the
best response when they cannot see what is the strategy of
the other side. Therefore, players need to learn more about
the strategies of opponents. Reinforcement learning (RL) is a
subfield of machine learning that addresses the problem of the
learning of optimal decisions over time. In RL, the agent keeps
interacting with the environment to find the optimal policy π
in order to maximize his expected accumulated rewards [17].
The goal of an RL is to learn a policy π(s) to determine
which action to take given a certain environment represented
by state s. The reward obtained by an agent should reinforce
his behavior. Reward reflects the success of the agent’s recent
activity and not all of the successes achieved by the agent so
far. The agent’s objective is to learn the policy that maximizes
the expected value of the return.

RL formulates the expected accumulated rewards of a state
and the expected accumulated rewards given a state-action
pair to estimate how good the policy π is in maximizing the
accumulated reward rt. The V function Vπ(s) associated with

a policy π tells the agent how good the policy is. The state-
value function is defined as:

Vπ(s) = Eπ{rt|st = s} = Eπ{
∑∞

k=0
γkrt+k+1|st = s},

(1)
where γ is the discount factor. The action-value function
Q(s, a) is expected return starting from action a in state s,
and then following policy π:

Qπ(s, a) = Eπ{
∑∞

k=0
γkrt+k+1|st = s, at = a} (2)

The state value and action value can be learned through
the interacting of agents with the environment. The optimal
policy π(s) can be obtained given the Q function and find the
maximum value. Fig. 2 displays the details of RL for a multi-
round CIM. According to this diagram, at the end of each
round, players can see the result of the competition in terms of
reward and the current state. Then, they update their learning
and compute new policy against the opponent’s strategy and
select a new seed set. We assume that there are only two
parties that compete with each other. We need to first define
the environment, the reward, the action, and the state.

IV. METHODOLOGY

In our approach, the two phases of seed selection and
budget allocation are integrated into the RL model. Convincing
influential nodes to act as a seed in addition to just selecting
seed nodes is what we consider in the budget allocation phase.
The goal of the agent in the proposed framework is to learn the
optimal policy π for a seed placement strategy that maximizes
its expected accumulated rewards. The players first identify the
influential nodes of the network. Then, they compete over only
the selected nodes, rather than the whole network, by the value
of the budget they allocate to each influential node. At each
round t, the agent observes a set of features that represents
the network state st ∈ S and selects an action at from the set
of legal actions. At each round, the agent first selects a seed
set, St ⊂ V , based on its past observations. Note that St is
the seed set selected by π at round t. The goal for the agent
is to follow a learning policy π maximizing the total number
of activated nodes. The algorithm terminates when no budget
remains, or no node can be added to seed set S.

Selecting Seed Nodes and Propagation Model. Consider
a static social network and fixed budget at each round for
seed selection, that is, a single seed selection at each round.
The goal of each player is to reach and activate as many
users as possible within the budget. Each player can decide to
implement the specific strategy in order to maximize its overall
influence in G. A strategy denotes how a player spends its
budget at each round to select the seed nodes. The main idea
of the maximum influence with a spanning tree is to restrict the
influence diffusion of node u to a local tree structure rooted
at u. The influence of a node in the tree can be computed
efficiently and exactly. Note that the conflict rule is slightly
different from other works. In contrast to other approaches,
which consider a priority for one of the players or select the
winner of conflicting randomly, our approach allows players to



(a) Original graph (b) Constructing Tv2 (c) Calculating w′

Fig. 3: Computing shortest paths and influence weights.

TABLE II: Computing R(v) from source node v2
A N(A) R(s)* p(s,v) R(v)
{v2} v1 1 ∗ 0.2 = 0.2 R(v8)

1*0.4=0.4
{v2, v8} v1 1 ∗ 0.2 = 0.2 R(v7)

v5 0.4 ∗ 0.1 = 0.04
v7 0.4*0.7=0.28

{v2, v8, v7} v1 1*0.2=0.2 R(v1)
v5 0.4 ∗ 0.1 = 0.04

increase their investment in case of tie-breaking. The winner
will be determined with help of budget proportion.

Most Reliable Influence Path (MRIP) Since influence
maximization is NP-hard, we use the idea of the critical path in
the scheduling community. Following the style of Dijkstra and
Prim’s greedy algorithm, an inactive node will get a chance
to become active only through the shortest path from the
initially active nodes. In order to find the shortest path in a
maximum influence problem, we can consider the maximum
influence probability of edges. Influence propagates through
the most probable paths and the notion of the Most Reliable
Influence Path (MRIP) can be considered as an approximation.
It is helpful to estimate the local influence of nodes for seed
selection. The influence of each node in the case of considering
the most reliable paths originate from the given node can be
considered as a new measurement for ranking nodes.

In this paper, we call this value the weighted influence of
each node u, w′(u). Considering R(v) as the influence value of
the most reliable path on node v originated from the source u,
we construct a spanning tree T with the most reliable paths
helps us to find w′ for all node. In fact, Prim’s algorithm helps
us to determine the spanning tree Tv rooted at v such that each
node is reached from the source node v via MRIP.

The value of R(v) for any two nodes u and v in V is
the value of the shortest path from node u to v.. All nodes
along the path from u to v need to be successfully activated,
then node v would be activated. As an extension, to more
efficiently compute the increased influence spread within the
tolerance of error, we can use an influence threshold to filter
out the insignificant maximal influence paths whose values are
less than due to having a very small impact on the influence
spread computation. For all v ∈ V in the G, we need to find T .
For simplicity, we explain the process of computing w′ just
by considering node u as the root node of the tree. Suppose
that R(u) = 1, among all of the neighbors of node u finding
the edge (u, v) with maximum R(u)×p(u, v) is the first step.
This is a greedy algorithm. In each step, we consider all of
the edges that source of them in the explored node set A, and
its destination is in V − A. We continue this process until A

Algorithm 1 Finding seed set by MRIP

1: S ← ∅
2: for all u ∈ V do
3: w′(u)← 0
4: for u ∈ V do
5: Construct Tu via Alg. 2
6: for each leaf v in reverse Tu do
7: z ← parent(v)
8: while v 6= u do
9: Compute w′(z) = w′(z) +R(v)× w(z)

10: v ← z
11: z ← parent(v)
12: new seed← argmaxu∈V/ S w

′(u)
13: S ← S ∪ {new seed}
14: VA ← Activated nodes by new seed node
15: Constructing G′ with vertex set V − VA
16: Recalculate T and w′ in G′

Algorithm 2 Computing Tu
Require: G(V,E, P ), source node u

1: A = {u}, R(u) = 1
2: while A 6= V do
3: Find node v ∈ N(A) and v ∈ V −A such that
4: R′(v) = max(s,v):s∈A,v∈V−AR(s)× p(s, v)
5: R(v) = R′(v)
6: A = A ∪ {v}
7: Set s as the parent of v in spanning tree Tu
8: return Tu

includes all of the nodes in V . Algorithm 2 represents these
steps in detail. After constructing the spanning tree Tu, we
compute the influence weight of each node by traversing this
tree reversely. For each node v, the parent of v is u, and
the weight of node u, which is illustrated as the weighted
influence, will be measured by:

w′(u) =
∑
∀v∈V

R(v)× w(u), (3)

where w(u) is the weight of node u and R(v) presents the
value of shortest originated from u to v. If we consider w(u) as
the fixed weight for node u, which can be show the importance
of node in the case of degree or centrality, w′(u) can be
called dynamic weight of this node. Considering the example
in Fig. 3, for any pair of nodes u and v, we need to find the
maximum influence path from u to v and construct a spanning
tree T . Fig. 3 shows the process for node v2. Table II presents
some early steps of finding R(v) for each nodes when v2 is the
source node. Using the calculated R(v) and reverse traversing
the Tv2 in Fig. 3(b), the influence weights of all nodes are
shown in Fig.3(c). The intuition behind the proposed algorithm
comes from Dijisktra’s algorithm. We can prove the proposed
algorithm can find the most reliable path correctly.

Theorem 1. If Ts is the spanning tree selected by MRIP’s
algorithm for source node s in the social network G =
(V,E, P,W ), then Ts is a most reliable influence tree rooted



TABLE III: Evaluation of different features
Dataset Reward Dataset Reward

Fa
ce

bo
ok

OPT-F6 %49

Sy
nt

he
tic

OPT-F6 %45
OPT-F7 %52 OPT-F7 %53
OPT-F8 %55 OPT-F8 %50

OPT-F6F7 %58 OPT-F6F7 %48
OPT-F7F8 %56 OPT-F7F8 %58
OPT-F6F8 %58 OPT-F6F8 %51

OPT %65 OPT %68

in s in G and R(v) for each node v ∈ V shows the influence
value of the most reliable path on node v.

This theorem can be proved by the idea behind Dijkstra’s
algorithm easily. Algorithm 1 presents the processes of se-
lecting the seed node base on the influence weight of nodes.
After finding Tv for each node v in algorithm 2, by considering
w(v) of nodes as the weight of node or ranking measurement
in the case of the importance of node and R(v) as the value
of the most reliable path, the influence weights w′(v) of all of
the nodes can be calculated. The node with the highest w′

would be selected as the seed node in each round. After
selecting a seed node and propagating its influence, the next
step is to recalculate T and the weighted influence of nodes
in the graph G′ with V − VA nodes, where VA is the set of
activated nodes. Therefore, after selecting any seed node and
the propagation process, there are new w′s for nodes. That is
because we called this weight as dynamic weight.

Reinforcement Learning Settings. To use reinforcement
learning, we need to define some important parameters. We
treat the influence propagation process as the environment
effect, which propagates the influence of activated nodes to its
neighbors and activates new ones. The reward we get after T
steps is the number of nodes influenced in the entire graph.
Players can allocate different values for their budget to a node
in G. Players compete with each other by the amount of budget
they allocate to each node. The possible actions are allocating
budget on new seed nodes or feeding an activated seed node
to increase its influence on neighbors. We use the idea of
meta-learning [12] [15] in RL. We consider the following
actions: (1) Selecting a new seed node and (2) feeding a node
in case of tie. Selecting seed nodes can include Max-degree,
Max-weight, Centrality, Randomly, Voting, and learning-based
strategies. In case of investment, we consider investing $1 or
all of the remaining budget.

We need to model the state to represent the network and
environment status. We need to resort to the design of features
to represent the current occupation status as well as the condi-
tion of the network. Below are the features we have designed:
1) Number of inactive nodes 2) Summation of degrees of all
inactive nodes 3) Maximum degree among all inactive nodes 4)
Summation of the weight of the edges for which both vertices
are inactive 5) Summation of the inactive out-edge weight for
nodes which are the neighbors of player i 6) Maximum sum
of the inactive out-edge weight of a node among all nodes 7)
Ratio of budgets and 8) Weight of nodes in case of reachability
Features 1 to 5 help players find the condition of network in

terms of the status of nodes as well as the weight of edges.
Features 6, 7, and 8 are new ones to describe the states of the
network. These features help players to learn more about the
environment, as well as the opponent’s strategy. The player
continually updates both Q-tables, that is, seed-selection, and
budget-allocation Q-tables, during the training. Meanwhile, it
updates its policy throughout the training in order to find an
optimal policy for budget utilization from budget-allocation
and seed-selection Q-tables.

V. EXPERIMENTS

We conducted experiments to evaluate the efficiency of the
proposed models in terms of influence spread to other algo-
rithms. Also, we evaluate our algorithm for different datasets
with different densities. The details of these real datasets are
accessible from [18]. We used the igraph Python library to
represent the graphs and for the shortest path calculations. In
order to find the performance of our approach, we consider
different baseline IM methods and the state-of-the-art multi-
round competitive approach which is called STORM [12]. OPT
is the name of the current paper’s approach which selects
seed nodes based on the both fixed and dynamic weight of
nodes. Each round is defined as players choose a seed node
and influence being propagated. The number of active nodes
after the diffusion process is used to evaluate the effectiveness
of influence maximization algorithms. We consider evaluation
of our approach in the cases of different budgets, network
structures, competing strategies, and ranges for the weight of
the edges. Table III shows the evaluation of approaches in the
case of different combinations of features.

1) Evaluation on Edge-weight Setting: We analyze the
effect of different edge-weight settings on the proposed model.
In addition, we consider different densities for network to
evaluate the performance of the approach in the case of the
sparsity of network. It can be observed from Fig. 4 that
the influence will diffuse more nodes when there are higher
weights for edges. That happens because seed nodes can have
an effect on mode nodes. Also, the results show that OPT
performs better if there is a high-density network.

2) Evaluation on Different Competing Strategies: We eval-
uate our approach for player 1 against a competitor with a
different strategies such as Degree, Weight, MRIP, as well as
the learned-based strategy STORM. In this part, we consider
a player who has a STORM approach or OPT against an
opponent behaving in one of the competing strategies. We
can conclude from Fig. 5 that OPT has the best performance
against all the competing strategies, even against the STORM
which is the learned-based model. According to the result of
this experiment, based on the structure of network there are
different results with baseline competing strategies.

3) Evaluation Based on Different Budgets: We examine the
effectiveness of the proposed models’ performances in terms
of reward by assuming players have different budgets. We
consider a fixed budget for one of the players, then analyze
the result of competition with a varied amount of budget
for the opponent side. Clearly, the larger the budget, the



(a) Edge weights in (0.4.0.7) (b) Edge weights in (0.1,0.4) (c) Edge weight U(0,0.2) (d) Edge weight U(0,1)

Fig. 4: Evaluation of player 1’s reward with different influence distributions in average all network.

(a) Facebook (b) Average all networks

Fig. 5: Player 1’s reward against different competing strategies.

more the spread increases. It should be noted that we have
trained the models by assuming both parties have the same
budget. It can be seen from the figures that OPT achieves
better performance in comparison with other models. Also,
we illustrate the performance of the proposed framework on
networks with different structures. It can been seen from Fig. 6
that in different real datasets with different topologies, OPT
has better results than STORM. In addition, OPT can find more
rewards when a player has a higher amount of budget.

VI. CONCLUSION

In this work, we propose a reinforcement learning frame-
work to tackle the multi-round CIM problem considering
budget ratio for players. A large body of related research did
not focus on the impact of different budgets for players in a
CIM problem. We look into identifying the set of seed nodes
to maximize the spread by considering the capabilities of
opponents. In fact, our framework considers the combination
of seed-selection and budget-allocation strategies to invest the
budget efficiently to achieve better rewards considering budget
constraints. To summarize, our main contribution is the design
and evaluation of a budgeted learned-based framework that
handles the multi-round CIM. Our experimental results show
that our approach is successful in increasing the influence on
the given network in comparison with some known baseline
approaches as well as a learned-based CIM approach.
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