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ABSTRACT

Broadcasting with network coding mixes packets to minimize the number of transmissions, which improves the

energy efficiency of wireless networks. On the other hand, delaying the transmissions increases coding opportunities at

intermediate nodes, but increases the delay of packets. In this paper, we consider these two contradicting factors and study

the problem of minimizing the number of transmissions in wireless networks while meeting the deadline constraints. We

show that this problem is NP-complete; therefore, we provide a heuristic to solve it. First, we construct broadcasting trees,

each of them rooted at one source. We then specify overlapping conditions based on the constructed trees, to determine the

number of transmissions each node has to perform without the deadline constraints. Then, we partition the set of packets

such that coding is performed among the packets of the same partition, which does not result in deadline misses. Linear

coding may not be applicable in some wireless networks because of its computational complexity. For these networks, we

propose three XOR coding approaches which rely only on local neighborhood information. Simulation results show that

our techniques not only reduce the number of transmissions, but also allow the majority of nodes to receive the packets on

time. Copyright c⃝ 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Broadcasting is used frequently in wireless networks

to disseminate control messages and data in many

applications. Flooding is the simplest broadcasting method

in wireless networks, where each node forwards the

received packets to its neighbors. Clearly, flooding is not

an efficient way to broadcast, due to the unnecessary

and redundant transmissions it causes. To perform

broadcasting efficiently, many works have targeted

decreasing the number of transmissions. These works can

be classified into two main categories: probabilistic and

deterministic approaches.

In the probabilistic methods, each node forwards the

received packets with a given forwarding probability [1,

2, 3]. This probability should be chosen carefully, so

that all nodes are able to receive the packets with the

restricted number of transmissions. On the other hand,

the deterministic approaches use the network topology

and neighborhood information to select some forwarding

nodes that are responsible for forwarding the received

packets. Connected dominating sets (CDS) [4] and pruning

approaches [5] belong to this category.

With network coding [6, 7], intermediate nodes mix

packets using mathematical operations, which reduces the

number of transmitted packets. Network coding can be

combined with both the probabilistic and deterministic

approaches to improve the transmission efficiency in

wireless networks.
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Most of the works on network coding focus on

maximizing the throughput [8, 9], achieving fairness [10],

or minimizing the energy consumption [11, 2]. While these

metrics are important, delay and deadline metrics have

received less attention from the community. In this paper,

we take a different look at the network coding problem by

studying the problem of energy-efficient broadcasting in

wireless networks subject to deadline constraints. Network

coding reduces energy consumption, but increases the

delay of packets, as the intermediate nodes need to wait

until receiving all of the packets before coding. Thus, it is

crucial to specify the degree of network coding, such that

the packets can meet the deadlines. Network coding has

been studied with deadlines in [12, 13], but all of these

studies are for single-hop coding and broadcast channels.

In this paper, we consider multihop wireless networks,

and we have the following contributions.

• We show that the problem of minimum energy

broadcast, subject to the deadline constraints, is NP-

complete.

• We use linear network coding and propose a three-

phase heuristic for the problem.

• For the networks with limited computational power,

such as sensor networks, we propose a local

XOR network. To increase the energy efficiency

of network coding, we propose three methods,

Velocity-based Waiting Time (VWT), Random

Waiting Time (RWT), and Proportional Distribution

of Waiting time (PDWT) methods, to compute the

waiting times of the packets at relay nodes, such

that no packet misses its deadline. These waiting

times increase the chance of coding the packets,

which decreases the number of transmissions, and

increases the energy efficiency of network coding.

• We conduct simulations to show the benefits of our

proposed schemes in terms of meeting the deadlines

and energy efficiency.

The remainder of this paper is organized as follows:

In Section 2, we provide the necessary background about

network coding. Section 3 contains the problem definition,

settings, and motivation. In Section 4, we propose our

deadline-aware energy-efficient broadcast heuristic using

linear network coding. We extend the proposed method

in Section 4 to increase its efficiency. In Section 6, we

propose our deadline-aware local XOR coding schemes.

We evaluate the proposed methods through simulations in

Section 7. Section 8 concludes the paper.

2. RELATED WORK AND
BACKGROUND

Network coding can be classified into local and global

coding. In local network coding, each relay node decodes

the received coded packets, and it mixes the native (non-

coded) packets, such that its neighbors can decode the

coded packet using the packets in their buffer. This means

that the next hops can decode the received coded packets

immediately, and they do not need to wait to receive further

packets to be able to decode the coded packets. On the

other hand, in global network coding, the intermediate

nodes do not perform decoding; they just code the coded

packets again without considering the status of their

neighbors. In this approach, when a receiver node receives

a coded packet, it cannot decode the packet immediately,

and it has to wait to receive a sufficient number of packets

to be able to decode the coded packet. Usually, local

network coding protocols use XOR coding, and global

protocols perform random linear coding. Linear network

coding is introduced in [7], as it is shown to achieve

the capacity for the single multicast session problem.

A useful algebraic representation of the linear network

coding problem is provided in [14].

In linear network coding, each node generates and

sends a linear combination of the received packets over

a finite field. In Fig. 1 (a), the relay node has three

incoming links. Packets p1, p2, and p3 can be any linear

combination of the source packets, and the output packets

are also linear coded packets over a finite field. When a

node receives an innovative packet, it stores this packet

in its packet buffer, and the corresponding coefficients

vector in its coefficients buffer. An innovative packet is a

received packet, such that its coefficient vector increases

the rank of the matrix formed by the received coefficient

vectors. In other words, an innovative packet is a linearly

independent packet to the previously received packets.

Each forwarder node continues this process. Assume that

K single packets are coded together. When a destination

node receives K linearly independent coded packets, it

will be able to decode all of the coded packets and

retrieve all of the single packets. The decoding process
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Figure 1. (a):Linear coding. (b) Local coding.

is done using Gaussian elimination for solving a system

of linear equations. In [15], it is shown that selecting the

coefficients, in a distributed manner at random, achieves

the capacity asymptotically with respect to the finite field

size.

In local network coding, each node has local

information about the received packets by its neighbors.

Based on this information, the relay node decides which

packets should be coded together, such that all of the

neighbors will be able to decode the coded packet using

the packets in their buffers. Assume that in Fig. 1 (b) nodes

1 and 2 want to send their respective packets, p1 and p2

to nodes 3 and 4, respectively. Here, node 5 is the relay

node. Using two-hop information, node 5 knows that nodes

3 and 4 can overhear nodes 2 and 1, respectively. If node

5 does not use network coding, it has to send two packets.

However, this node can code packets p1 and p2 to send

coded packet P = p1 ⊕ p2, since each of the destination

nodes can overhear one of the packets directly. Node 3 can

recover packet p1 by performing P ⊕ p2, and node 4 can

recover p2 by performing P ⊕ p1.

Local XOR coding does not achieve optimality

compared to global linear coding, but it has some

advantages over linear network coding. First, the

computational complexity of coding and decoding

processes in local XOR coding is much less than in

global linear coding. Thus, for the nodes with limited

computational power, such as sensor networks, local XOR

coding is more attractive. Next, linear network coding has

more overhead than local coding because of the coefficient

vectors. In the rest of the paper, we refer to local XOR

coding and global linear coding as local coding and linear

coding, respectively.

From another perspective, network coding can be

classified into intra- and inter-session network coding.

Intra-session network coding uses the diversity of the

wireless links, and codes packets from the same sessions,

to address the packet loss problem and to provide

reliability. In contrast, inter-session network coding mixes

the packets from different sessions (sources) to solve

the bottleneck problem and reduce the number of

transmissions.

The MORE [16] and CCACK [17] are two opportunistic

routing methods that use intra-session network coding to

provide reliability in unicast and multicast applications.

Later, the authors in [18] improved MORE and solved

its Crying Babies problem. In [19] and [20], network

coding is applied to decrease the number of required

retransmissions due to packet loss in one-hop broadcasting

over packet-erasure channels. In single-hop broadcasting

over unreliable links, each destination node might lose

some of the packets that are received by the other receivers.

The idea in [19] is to code as many packets as possible

together in each round of retransmissions, as to reduce the

total number of transmissions.

The work in [21] uses intra-session network coding

for the dissemination of data from a source node to the

sensor nodes in wireless sensor networks. The R-Code

method [22], constructs a minimum spanning tree, based

on the reliability of the links, in which each non-leaf node

works as a relay node. In R-Code, each parent node is

responsible for delivering a sufficient number of intra-

session linear coded packets to its children nodes, until

they are all capable of decoding the coded packets..

The COPE method is a practical forwarding architecture

for multiple unicast sessions [8, 9]. The nodes in COPE

opportunistically listen to the transmissions and the relay

nodes that are intersection of unicast flows use the

advantage of inter-session network coding to reduce the

number of transmissions. The authors in [2] show that,

for fixed networks, inter-session network coding can, at

most, offer a constant factor of benefits in terms of energy

efficiency. They also propose a probabilistic network

coding-based broadcasting algorithm. The work in [23]

combines the partial dominant pruning (PDP) forwarding

approach [5], which is a deterministic approach, with

network coding. The algorithm uses local, two-hop

topology information, and makes use of opportunistic

listening to reduce the number of transmissions. Using

network coding with directional antennas is considered

in [11]. The work is based on the deterministic forwarding

approach that uses directional CDS. It can be noted that

the works that use the deterministic approach with network

coding limit coding to XOR operations, and exploit only

local coding opportunities.
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3. SETTING AND MOTIVATION

We consider a multi-hop wireless network with multiple

broadcast sessions, where a subset of the nodes are sources,

and all of the nodes are destinations. Every packet has

a deadline to reach each of the destinations. All of the

nodes are synchronized, and all of the links are reliable.

We assume that the nodes have multi-channel multi-radio

capability. Thus, all of the nodes can transmit and receive

simultaneously, and there is no conflict among the links.

Also, we assume that each transmission takes one time slot

to reach the next hop. Table I shows the set of symbols used

in this paper.

Notation Definition
si/dj The i-th source node/ The j-th destination

node
Ti Broadcasting tree rooted at source node si
pi Packet that originated at source node si
Dij Deadline of the packet pi to be received by

node dj
ui The i-th node
tji Receiving time of a coded packet that

contains packet pi to node dj
δ(u, v) The overlap-degree of node u to v

∆u The maximum overlap-degree of node u

M Total number of nodes
N(u) The neighbors of node u, including node u.
Rij The remaining time of the packet pi in node

uj .
Eij The extra time of packet pi in node uj .
Hij The maximum remaining hops of the

longest branch from node uj in tree Ti.
Wij The waiting time of the packet pi in node

uj .
fi The number of outgoing flows from node

uj .
fij The average value of the summation of fk’s

of the branches from node uj .
d The diameter of the network.
G The packet generation period.
t The current time slot.

Table I. The set of symbols used in this paper.

Network coding reduces the number of transmissions,

but increases the delay. The reason is that each node has

to wait until it has received all of the incoming packets to

code them together; the sending time of the coded packet

should be at least the maximum arriving time of all of the

received packets. In Fig. 2 (a), nodes 3, 6 and 5 are sources

for packets p3, p6 and p5, respectively. The deadline of the
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Figure 2. Broadcasting (a): without coding (b): coding p3 and p6

(c): coding all of the packets together.

packets p3, p6 and p5 are time slots 5, 5 and 6, respectively.

The sending time of each packet is shown in the box

beside the packet. In this case, since there is no coding,

all of the packets meet their deadlines, and the number of

transmissions is 11. In Fig. 2 (b) all of the packets are

coded together. Node 1 receives packets p6, p3 and p5

at time slots 2, 3 and 5, respectively. Thus, in order to

code these packets together, node 1 has to postpone the

transmission of packets to time slot 5. Coding all of the

packets together reduces the number of transmissions to 8,

but causes a missed deadlines as node 3 receives packet

p6 after the packet’s deadline. Therefore, we have to find

another solution in which we reduce the number of the

transmitted packets, while meeting the deadlines.

In Fig. 2 (c) we code only packets p3 and p6 together.

The number of transmissions in Fig. 2 (c) is equal to 9,

which is more than in Fig. 2 (b), but in Fig. 2 (c) there

is no deadline miss. Therefore, an efficient solution for

the problem of energy-efficient broadcasting with deadline

constraints should be partitioning the set of packets such

that coding the packets of each partition does not result

missing a deadline. Thus, our problem becomes finding

the set of partitions that minimize the total number of

transmissions such that all of the packets meet their

deadlines.
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Figure 3. (a): A given topology. (b): Two broadcasting trees

4. DEALINE-AWARE LINEAR NETWORK
CODING

In the appendix, we prove that the problem of energy-

efficient broadcasting, subject to the deadline constraints,

is NP-complete. Therefore, in this section, we propose a

deadline-aware network coding (DANC) heuristic to solve

the problem. For simplicity, we assume that each packet

has the same deadline to reach all of the destinations. Our

algorithm contains the following three phases:

• Constructing broadcasting trees: This phase ensures

the decodability of the coded packets at the

destination nodes. This phase is done once in the

initializing phase.

• Partitioning the set of packets: The purpose of this

phase is to guarantee meeting all the deadlines. This

phase is done once in the initializing phase.

• Performing coding: In this phase, the relay nodes

do the actual coding. This phase is repeated

periodically.

By using broadcasting trees, each node receives enough

linearly independent packets, so the nodes are able to

decode the coded packets. If we allow all of the packets

to be coded together, we can decrease the number of

transmissions, but the delay increases, and some packets

may miss their deadlines. Therefore, we partition the set of

packets such that coding the packets of each partition does

not result in deadline misses.

We assume that the broadcasting operation is periodic;

we run the first two phases only once, then the third phase

runs periodically. Thus, the complexity for the first two

phases is not a major issue (however it is polynomial),

though their performance is important, because they decide

the operations of the third phase.

4.1. Constructing Broadcasting Trees

We use broadcasting trees to broadcast the packets. A

broadcasting tree is a spanning tree rooted at one source

node to reach all of the other nodes. Fig. 3 (b) shows

three broadcasting trees. If a node is a non-leaf node in

more than one broadcasting tree, it has the opportunity to

code the received packets in order to send fewer packets.

Assuming that there are K sources, we will have K

broadcasting trees, so each destination node receives K

coded packets, each of them from a different broadcasting

tree. In order to ensure the decodability of the packets at

the destination nodes, the K received packets have to be

linearly independent.

We define the overlap-degree of node u to v as the the

number of trees that use link (u, v), and we represent it as

δ(u, v). Also, we define the maximum overlap-degree of

node u as ∆(u) = maxv(δ(u, v)). In Fig. 3 (b), δ(6, 1) =

1, δ(6, 5) = 1, and δ(6, 7) = 2, so ∆(6) = 2. In order to

guarantee decodability, node 6 has to send two linearly

independent coded packets to node 7. Each of these packets

has to contain both of the packets p4 and p6. To make

sure that the coefficient vectors in the buffers of all of

the nodes achieve full rank, the number of transmissions

at node u has to be at least equal to ∆(u). Consequently,

if we can reduce ∆ of each node, we can reduce the total

number of transmissions. If we select the coefficients in

a distributed manner at random, destination nodes will

receive K linearly independent coded packets with high

probability, almost 1 [15].

Our heuristic sequentially constructs broadcasting trees,

each of them rooted at a source node. First, this approach

sorts the sources in increasing order of the deadline of

their packets. Then, in each iteration, our algorithm starts

from a new source and traverses the network using the

BFS algorithm. During traversal, each node not in the

tree selects a node in the tree as its parent, based on the

following two rules:

• Rule1: Node v selects the parent u that has the

maximum number of effective neighbors.

• Rule2: Node v selects the parent u, where selecting

that node does not increase ∆(u).

Effective neighbors of node u are the neighbors that

do not have a parent in the tree. While constructing the

broadcasting trees, we give more priority to Rule1 over

Rule2. The reason is that a node with the maximum
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Algorithm 1 Constructing broadcasting trees

for each source node u in ascending order of deadlines
do

Add node u to tree T (u)
while there is a node /∈ T (u) do

Select the next node v /∈ T (u) using the BFS
algorithm
Select node w ∈ T (u) as v’s parent, based on
Rule1 and Rule2
Select w as the parent of its neighbors /∈ T (u)

(a) (b)
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Figure 4. (a): A given topology. (b):Broadcasting tree con-
structed using Rule1 and Rule2. (c): Shortest path tree.

number of effective neighbors can cover more nodes by a

single transmission. Algorithm 1 describes our algorithm.

Fig. 4 (b) shows a constructed broadcasting tree using

our heuristic. The depth of nodes 6 and 7 in the constructed

tree is 3, but the depth of the shortest path tree is 2. If

the depth of a constructed broadcasting tree is more than

the deadline of the packet of its source node, we will

reconstruct that tree by adding a new rule to the algorithm.

Rule3: node u selects a parent with the minimum depth.

We give more priority to this rule than the previous rules

to guarantee meeting the deadline. The output of the new

algorithm is a shortest path tree. The constructed tree is

shown in Fig. 4 (c). The number of transmissions in Fig.

4 (b) is 3 and in Fig. 4 (c) is 4. Therefore, we cannot start

from Rule3, and we only use Rule3 if we find that using

Rule1 and Rule2 does not guarantee meeting the deadline.

Assume that in Fig. 3 we have constructed tree 5, and

we want to construct tree 6. First, node 1 selects node 6

as its parent, and nodes 5 and 7 connect to node 6. Then,

node 2 can select node 1 or 6 as its parent. Node 2 selects

node 1, which has more (two) effective neighbors. If node

3 selects node 2, ∆(2) increases. Therefore, node 3 selects

node 4 as the parent.

Algorithm 2 Partitioning the set of packets

Sort list of packets L in increasing order of deadlines
while L ̸= empty do

i← i+ 1, Create new partition Pi

Transfer the first packet of L to Pi

for each packet p of L in ascending order do
Using the RT algorithm, compute receiving times
of the packets in Pi ∪ {p}
if no deadline misses then

Delete p from L, Add p to Pi

Return {P1, .., Pi}

4.2. Partitioning the Set of Packets

So far, we have discussed the first phase, which guarantees

the decodability of the packets at the destination nodes.

However, it does not guarantee meeting the deadlines. To

prevent missing the deadlines, we have to decide which

packets to code together. For this purpose, we use a

greedy heuristic to partition the set of packets into different

partitions, such that coding all of the packets of each set

together does not result in deadline misses.

Our Deadline-Aware Network Coding (DANC) heuris-

tic uses the constructed broadcasting trees. First, the algo-

rithm sorts the list of the packets in increasing order of their

deadlines (each packet belongs to the root of one tree).

Then, the algorithm places the first packet of the list to the

first partition. After that, the algorithm finds which packets

can be added to the partition without causing deadline

misses. The algorithm finds the remaining partitions using

the same operation. The detailed algorithm is shown in

Algorithm 2.

To compute the receiving times of the packets, we

use the Receiving Time (RT) algorithm. First, for each

relay node u, the RT algorithm finds the set of packets in

partition P that node u is a relay node of. We represent this

set as RP (u). Using the BFS algorithm, the RT algorithm

traverses the trees of a given partition P simultaneously.

If all of the traversal trees that their respective packets

are in RP (u) have reached node u, the algorithm assigns

the maximum arriving time of the trees, plus one (each

transmission takes one time slot to reach the next hop),

to the receiving time of the corresponding packets by the

children nodes of node u.

In Fig. 2, the deadlines of the packet p3, p6 and p5 are

5, 5 and 6, respectively. First, we add packet p3 to partition

P1. Then we code packet p6 with p3 and compute the

receiving times of the packets. The sending time of the
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Algorithm 3 Performing coding

On receiving packet p by node u
if u ∈ relay nodes of p then

Find the partition P such that p ∈ P
wait until receiving all of the packets ∈ RP (u)
send ∆P (u) random combination of the packets ∈
RP (u)

packets are shown in Fig. 2 (c). Because all of the nodes

receive both packets on-time, we add packet p6 to partition

P1. Next, we code packet p5 with the packets in P1. Fig. 2

(b) shows the sending time of the packets. We cannot add

packet p5 to partition P1, as nodes 1 and 5 receive packets

p3 and p6 after their deadlines. Therefore, the partitions are

{3,6} and {5}.

4.3. Performing Coding

We extend ∆(u) to ∆P (u). ∆P (u) represents the

maximum overlap-degree of node u for the packets in

partition P . From the first two phases, each node u

knows which packets it has to forward, and also it knows

∆P (u) of each partition which specifies the number of

transmissions of the coded packets of that partition. When

a relay node u receives a packet p, it finds the partition P

such that p ∈ P . Then, node u waits until it hase received

all of the packets of partition P , so that the node is a

relay node of (RP (u)). Assuming that ∆P (u) = m, node

u sends m random linear combinations of the packets.

The relay nodes perform similar operations for the other

partitions.

5. EXTENSIONS

5.1. Deadlock Detection and Recovery

Since there is more than one source in our problem, it is

likely that deadlock occurs in the network. When there is a

circular waiting among the processes (nodes) to access the

resources (packets), a deadlock happens. Fig. 5 (a) shows

a deadlock between two trees. In this figure, nodes 3 and

6 are sources. Node 4 receives a packet from node 3 and

waits to receive the other packet from node 1. On the other

hand, node 1 waits to receive a packet from node 4. As a

result, we have a deadlock in this network.

We resolve the deadlock problem in the partitioning

phase. To address the deadlock problem, we use a

5 6

2 1

7

4

3
· Tree 5

· Tree 6

· Tree 3 

6

2 1 4

(a) (b)

Figure 5. (a): A cycle between two trees. (b): Coding
optimization.

distributed deadlock detection and recovery scheme [24].

We allow deadlocks to happen, then we resolve them. To

resolve that deadlock, at least one node among the nodes

that causes the deadlock has to forward a packet without

waiting for other packets. In Fig. 2, node 4 can break the

deadlock by forwarding packet 3.

Using convolutional codes [25], is another way to

resolve the deadlocks. However, the complexity of

convolutional codes limits their applicability. In our

heuristic, we use linear coding which is less complex

than convolutional codes, and can be implemented in a

decentralized way. We also use deadlock detection and

recovery to resolve the deadlocks.

5.2. Coding Optimization

Fig. 5 (b) shows a part of a network. Assume that the

deadlines are set such that all of the packets can be

coded together. Also, assume that node 1 has received

packet p5. In our former coding algorithm, node 1 has

to wait to receive all of the packets. However, node 1

does not need to wait for other packets, and it can send

packet p5 immediately. Then, the next transmission covers

packets p3 and p6. Therefore, node 1 can send the packets

with the same number of transmissions and less delay.

Only, we need to ensure that the sent packets are linearly

independent and collectively cover all of the packets.

To reduce the coding delay, while preserving the

number of transmissions required for each node u to

be equal to ∆(u), we define the following rule. Node

u can perform a transmission if for each child node v

of u, at least one of the following conditions is true.

Condition1: the coded packet contains a new packet pi,

such that there is a link from nodes u to node v in tree Ti.

Condition2: node u has sent all of the packets that there

is a link in their respective trees to node v. Condition3:

node u has transmitted less than ∆(u)− δ(u, v) packets.
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Condition1 means that node u has a new packet for node

v. When node v has received all of the necessary packets

from node u, Condition2 is true; node u does not need to

send any more packets to node v. Condition3 is related

to the example in Fig. 5 (b). It means that ∆(u)− δ(u, v)

of the transmissions do not need to contain a new packet

for node v. As a result, these transmissions can contain

packets for only the children of u, such that the maximum

overlap-degree of node u is to that node (node 4 in Fig. 5

(b)).

6. DEADLINE-AWARE LOCAL XOR
CODING

6.1. Partial Dominant Pruning

The proposed deadline-aware linear network coding has

two disadvantages. First, due to computational complexity

of linear network coding, the DANC approach is not

applicable to the nodes with limited computational power.

Also, the first phase of the DANC method is a centralized

approach. Therefore, in this section, we use local network

coding instead of linear coding. The complexity and

overhead of local coding is much less than that of linear

coding. Also, all the phases of our proposed local network

coding approaches are distributed. It should be noted that,

in contrast with the proposed linear coding approach, our

deadline-aware local network coding is applicable in both

periodic and non-periodic broadcasting applications.

To prevent broadcast flooding, we can use global or

local approaches. Since we want to address local network

coding, we use the Partial Dominant Pruning (PDP) [5]

broadcasting approach, which is a local method. However,

in our local network coding methods, PDP can be replaced

by other deterministic broadcasting methods. PDP is

a local deterministic forwarding method. In PDP, each

source node broadcasts its packet and selects a set of

its one-hop neighbors as relay nodes, such that this set

covers two-hop neighbors of the source. Each relay node

performs the same process, and all of the nodes receive

the broadcasted packet. This approach forms a tree from a

source node to all other nodes.

We represent the set of neighbors of node u (including

u) as N(u), and the set of neighbors of N(u) as N(N(u))

(nodes that are within two-hops from u). Assume that node

Algorithm 4 Coding

P ← pi
for each remaining packet pk in the queue do

if all neighbors can decode P ⊕ pk then
P ← P ⊕ pk

u sends a broadcast packet to node v, and chooses this

node as a relay node. Now, node v has to relay the packet

and select a set of its one-hop neighbors as relay nodes to

cover its two-hop neighbors. To minimize the number of

transmissions, this set has to contain the minimum number

of nodes. Nodes in N(v) will receive the packet when

node v broadcasts the packet, and nodes in N(u) have

already received it. Also, neighbors of common neighbors

of nodes N(u) and N(v), will receive it. Therefore, node

v has to select its relay nodes R(u, v) from nodes in

B(u, v) = N(v)−N(u) to cover the nodes in U(u, v) =

N(N(v))−N(u)−N(v)−N(N(u) ∩N(V )). To find

this set, a greedy set cover algorithm is used in [5]. At each

step, the node in set B that covers the maximum number

of nodes in U is added to the relay nodes. This process is

repeated until all of the nodes of set U are covered.

In our problem, all of the nodes can be a source.

All of the sources broadcast their packets based on the

PDP algorithm, which is a local deterministic broadcasting

approach. If a node is a relay node of more than one

packet, it has opportunity to mix the received packets. In

local network coding, if node u sends a coded packet P ,

a neighbor v of u should be able to decode the packet

without waiting for further packets. In other words, each

node u with a set of native packets p in its sending buffer

seeks to find a subset of the native packets q to XOR. To

decrease the number of transmissions, for each transmitted

packet, node u has to maximize the number of neighbors

which can decode a missing packet. In [23], it is proven

that this problem is NP-complete. Therefore, a greedy

algorithm is used to address this problem. This algorithm

takes the packet p at the head of the sending queue and

sequentially looks for other packets in the queue such that,

if they are combined with p, all neighbors of node u will

be able to decode the coded packet. If it finds such a

packet, that packet is added to the set of coding packets.

The procedure is described in Algorithm 4.

To increase coding opportunities, instead of sending

the packets immediately, each forwarder node has to wait

for a given time to receive more packets. Choosing the
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Figure 6. Waiting time and deadline.

appropriate waiting times is critical in this approach. Long

waiting times can result in deadline misses, and short

waiting times decrease coding opportunities. Fig. 6 (a)

shows a given topology. Assume that nodes 1 and 2 are

sources. Fig. 6 (b) shows the paths from the sources to the

destinations. Assume that the sending time of p1 and p2

are 1 and 3, respectively. Also, assume that the deadline

of p1 and p2 is time slot 6. Node 3 receives p1 and p2 at

times 2 and 4, respectively. If we set the waiting time of

p1 at node 3 to 1, this node sends packet p1 at time slot

3. Therefore, node 3 has to send two non-coded packets.

On the other hand, if we set the waiting time to 4, node 4

receives p1 at time slot 7, which is after the deadline. By

choosing a waiting time of packet p1 equal to 3, node 3

sends one coded packet instead of two non-coded packets.

To address the problem of choosing waiting times, we

propose three approaches in the following sections.

6.2. Velocity-Based Waiting Time

Our constraint is meeting all of the deadlines. Thus, a relay

node uj can postpone the transmission of a packet if it finds

that, by postponing the transmission, none of the nodes

will receive that packet after the deadline. To make sure

that all of the next-hop nodes receive packet pi on-time,

node uj has to consider the receiving time of the packet by

the deepest leaf node. The deepest leaf node is the farthest

node of all of the branches in tree Ti that node uj is the root

of. Based on the maximum remaining hops, node uj can

calculate the extra time, which is the maximum allowable

waiting time, and can use a portion of this time as its

waiting time.

The Velocity-based Waiting Time approach (VWT)

contains two phases, the initialization and running phases.

In the first phase, based on the PDP algorithm, each source

node us sends a packet to construct a tree Ts. Then, for

each tree Ti, each leaf node uk sends feedback, which

contains the length of the longest branch from node uk.

We call this value the maximum remaining hops, and we

represent it by Hik. For the leaf nodes, we set Hik = 0,

Algorithm 5 Velocity (Initializing phase)

if Node uj is a leaf node then
Send feedback Hij = 0

else
On receiving a feedback from node uk to node uj

Store Hik

if Received feedback from all children nodes then
Hij ← max(Hik) + 1, Forward Hij to the parent
node

since there is no remaining hop from node uk. Node uj

collects the feedback from all of its children nodes. It adds

1 to the maximum received value, stores it as Hij , and

relays it to its parent. Based on the feedback, each relay

node uj knows the remaining hops of the longest branch

in tree Ti. The pseudo-code of the feedback part of the

initializing phase is shown in Algorithm 5.

In the running phase (Algorithm 6), when a relay node

receives a packet, it computes the remaining time of that

packet by subtracting the current time from the deadline.

Then, it subtracts the number of maximum remaining hops

from the remaining time to compute the extra time. At the

end, using a velocity-based approach [26], it computes the

waiting time of the packet. Velocity-based approach means

that the waiting time of the packet is calculated based

on both the deadline and the maximum remaining hops.

When the waiting time of a packet expires, the node uses

Algorithm 4 to code the packet with other packets in its

buffer and transmit it. The relay node computes the waiting

time using equation Wij = ⌊Eij

Hij
⌋, where Eij = Rij −

Hij and Rij = Di − t. Here, Di and t are the deadline

of the packet pi and the current time, respectively. The

remaining time of the packet pi, when it is at node, uj is

represented as Rij . We use Hij to represent the maximum

remaining hops from node uj . Based on our assumption,

the nodes have the multi-channel multi-radio capability,

and each transmission takes one time slot. Therefore, Hij

is equal to the remaining transmission time. Therefore, Eij

represents the extra time of packet pi at node uj . The

waiting time for packet pi at node uj is represented by

Wij .

The selected paths based on the PDP approach from

nodes 1 and 4 to other nodes are shown in Figs. 7 (a) and

7 (b). Assume that 1 and 4 send packets p1 and p4 at time

slots 1 and 3, respectively. Also, assume that D1 = 7 and

D4 = 8. Nodes 2 and 3 receive packet p1 at time slot 2.

Node 2 is a relay node in only one tree. Thus, it does

Wirel. Commun. Mob. Comput. 0000; 00:1–16 c⃝ 0000 John Wiley & Sons, Ltd. 9
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Algorithm 6 Velocity (Running phase)

On receiving a packet P by node uj

for each Native packet pi ∈ P do
if uj ∈ Forwarders(pi) then

Rij = Di − t, Eij = Rij −Hij

Wij = ⌊Eij

Hij
⌋, Timeri ←Wij

(a) (b) (c)
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Figure 7. Velocity-based approach.

Algorithm 7 PDWT (Initialization phase)

if Node uj is a leaf node then
Send feedback Hij = 0 and fij = 0

else
On receiving a feedback from node uk to node uj

store Hik and fik
if feedback has been received from all child nodes
then

Hij ← max(Hik) + 1
if fi > 1 then

fi,j ← mean(fik) + fi
Forward Hij and fij to the parent node

not have a coding opportunity, and forwards the received

packet immediately. In contrast, node 3 is a forwarder node

in both trees, so it computes the waiting time of the packet.

At time slot 2, the remaining hops from node 3 in tree T1 is

1. Therefore, R1,3 = 7− 2 = 5, E1,3 = 5− 1 = 4, and

W1,3 = 4. Node 7 receives packet p1 at time slot 3, and its

waiting time W1,7 = (7−3)−1
1

= 3. Node 3 and 7 receive

packet p4 at time slots 4 and 5, respectively. The waiting

times of packet p4 at nodes 3 and 7 are W4,3 = (8−4)−1
1

=

3, and W4,7 = (8−6)−1
1

= 1. Fig. 7 (c) shows that at nodes

p3 and p7 the timers of packet p1 expire after receiving

packet p7 and before the expiration of the timers of p7. As

a result, when the timer of p3 is expired, nodes p3 and p7

check to see if they can mix packet p1 with p4. Since all of

their neighbors can decode p1 ⊕ p4, they send this coded

packet.

6.3. Proportional Distribution of Waiting Time

There is a higher chance of coding at nodes that are

relay nodes in more trees than other nodes, since they

receive packets more frequently than other nodes. Also,

the chance of mixing many packets together at these nodes

is more than at other nodes. Therefore, in our second

method, which is based on the Proportional Distribution of

Waiting Time (PDWT), we distribute the extra time among

different nodes in a way that is proportional to the number

of outgoing flows that pass from these nodes. This means

that if node u is a relay node of more flows than node v,

we assign more waiting time to node u than to node v. We

represent the number of outgoing flows from node ui as fi.

Similar to the previous approach, the new approach has

the initialization and the running phases. The feedback

part of the initialization phase is described in Algorithm

7. The only difference between the initialization phase of

the PDWT and the VWT approaches is in the feedback.

Similar to the previous approach, after constructing all of

the trees, the leaf nodes of each tree Ti send back the

number of remaining hops to their parent. They also send

the number of outgoing flows that pass from them. When

a parent node uj receives all of the feedback from its

children nodes in tree Ti, it records the average received

value of fik’s. We represent the average received value

from the children nodes of node uj in tree Ti as fij . If

fj is more than one, it means that uj is a coding node.

In this case, node uj adds fj to fij , and if fj is less than

one, it does not change fij . Then, this node forwards fij

to its parent. Also, node uj forwards Hij . This process

is repeated until the source node of tree Ti receives this

feedback. After the initialization phase, each node uj

knows Hij and fij .

When a relay node receives a packet in the running

phase, it uses the following equation to compute the

waiting time of the packet (Algorithm 8):

Wij = ⌊Eij × fj
fij

⌋ (1)

Fig. 8 shows a part of tree T1 and the outgoing flows

from each node. We do not show the complete topology

and all of the trees for brevity. In this example, after

constructing all of the trees, node 6 sends f6 = 0 as

feedback. Node 4 receives this feedback. This node has two

outgoing flows. Therefore, it stores and sends f1,4 = 0 +

f4 = 2. Node 3 has one outgoing flow, so it is not a coding

node. Thus, it does not change the receiving feedback and

sends f1,3 = 2. Then, node 2 forwards f1,2 = 2 + 3 = 5.

This process is repeated for nodes 10 and 11. Node 7
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Algorithm 8 PDWT (Running phase)

On receiving a packet P by node uj

for each Native packet pi ∈ P do
if uj ∈ Forwarders(pi) then

Rij = Di − t, Eij = Rij −Hij

Wij = ⌊Eij×fj
fij

⌋, Timeri ←Wij

Algorithm 9 Random (Running phase)

On receiving a packet P by node uj

for each Native packet pi ∈ P do
if uj ∈ Forwarders(pi) then

Rij = Di − t, Eij = Rij −Hij , Zij =

⌊Eij×fj
fij

⌋

Wij ← rand(
Zij

2
,
Zij+Eij

2
), Timeri ←Wij

receives two feedbacks f1,8 = 4, and f1,9 = 2. This node

sends f1,7 = 4+2
2

+ 2 = 5 to node 12. At the end, node 12

computes and sends f1,12 = 5+5
2

+ 2 = 7. Assume that

E1,12 = 7. In this case, W1,12 = ⌊ 7×2
7
⌋ = 2, so E1,7 =

5. Thus, W1,7 = ⌊ 5×2
5
⌋ = 2 and, W1,8 = ⌊ 3×4

4
⌋ = 3.

6.4. Random Waiting Time

The third proposed method is Random Waiting Time

(RWT). The initialization phase of this approach is similar

to the PDWT method. In this approach, each node

computes a range of waiting time values and selects a

random value from this range. To prevent deadline misses,

node uj cannot postpone the transmission of packet pi

more than Eij . Also, it is not logical to use Eij as the upper

bound of the range, since it is possible to use the entire

waiting time at the first nodes, which results in a much

smaller waiting time at the remaining nodes. Therefore, we

use Zij+Eij

2
as the upper bound. Here, Zij represents the

waiting time of packet pi at node uj that is computed by

the PDWT approach. On the other hand, we use Zij

2
as the

lower bound of the waiting time range. In conclusion, in

the RWT approach, the initialization phase is similar to the

PDWT approach. Then, in the running phase, each node

uses Equation 1 to compute Zij , which is similar to the

PDWT approach. Next, the node selects a random waiting

time within the range of (
Zij

2
,
Zij+Eij

2
). Algorithm 9

shows the running phase of this method.

6.5. Unreliable Links

As mentioned in Section 3, we assume that the links

are reliable, and addressing the problem of unreliable

links is beyond the scope of this work. However, we

give some hints that can be used to extend out proposed

methods to address the case of unreliable links. In the

proposed local network coding approaches, we use the

maximum remaining hops Hij from node uj to calculate

the remaining time Eij . When the links are unreliable,

each one-hop transmission might take more than one time

slot. As a result, instead of the maximum hop counts Hij ,

the expected total number of required time slots should

be used. The expected required time slot for successful

one-hop transmissions from node ui to uj is equal to 1
rij

,

where rij is the reliability of the link between node ui and

uj . The expected delivery time of a path C is equal to the

summation of the expected required time slots of each link

in the path C. A similar idea can be used to extend the

proposed linear network coding approach.

7. SIMULATION RESULTS

First, we study the performance of the proposed linear

network coding approach, the DANC (Deadline-Aware

Network Coding) method. Then, we compare the proposed

deadline-aware local network coding heuristics. Also, we

will compare the performance of the linear network coding

to the proposed local network coding. To the best of our

knowledge, there are just two all-to-all broadcast methods

that use inter-session network coding to reduce the number

of transmissions. We compare the DANC method with the

proposed method in [2], which uses random linear network

coding. Moreover, we compare our local network coding

methods with the work in [23] which, similarly to ours,

applies local XOR coding.

As mentioned in the related work section, lots of

intra-session methods have been proposed for unicast

and multicast applications to provide reliability. Also,

there are many inter-session network coding approaches

for multiple unicast flows. However, none of them
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Figure 9. (a): Packets received on-time. (b): Total number of
transmissions.

works for all-to-all broadcasting (or multiple broadcasting)

applications.

7.1. Simulation Setting

We implemented a simulator in the MATLAB environ-

ment, since working with vectors, which are the core part

of network coding, is easy in MATLAB. We assume that

the nodes are synchronized and the nodes have multi-

channel multi-radio capability. Therefore, there is no inter-

ference between the links. Based on this assumption, we

implemented a simple MAC layer. We construct PDP and

broadcasting trees, and perform network coding at the

network layers. We evaluate the methods on 100 random

topologies. The nodes are randomly scattered in a square

field, 40m× 40m, and the communication range is 9m.

We perform our simulation on random topologies with

30, 35, 40 and 45 nodes, and with random deadlines in

the range of 1.5r and 2r, where r is the diameter∗ of

the network. We also run the last simulation on a large

network with 100 nodes to compare our local XOR and

linear network coding methods. We assume that each node

is a source of a broadcast packet. The plots in this paper

are based on the average output of 100 runs.

7.2. Proposed Deadline-Aware Linear Coding
Approach

In addition to the DANC approach, we simulate a Non

Deadline-Aware Network Coding (NDANC) approach. In

the NDANC approach, we put all of the packets in the

same partition, and allow all of the packets to be coded

together. We evaluate the DANC and NDANC approaches

∗The diameter of the network is the distance in terms of hop count between the
farthest nodes of the network.

by comparing the number of transmissions, the on-time

received packets, and the decodable packets. To find the

number of decodable packets, we ignore the deadlines

and compute the number of received packets that can be

decoded at the destination nodes.

We compare our proposed methods with the Probabilis-

tic Forwarding with Network Coding (PFNC) approach

in [2], which uses random linear network coding. In [2],

when a node receives an innovative packet, it sends a coded

packet, of the innovative packets it has in its buffer, with a

given probability. The value of this probability is called the

Forwarding Factor (FF). We also simulate a deterministic,

non-coding protocol. In this protocol, we use broadcasting

trees to broadcast the packets, and we call it the Non-

Coding Tree (NONCT) approach in the plots.

In the first experiment, we compare the number of

packets received on-time. As is shown in Fig. 9 (a), the

DANC method guarantees meeting the deadlines. Also, in

the NONCT approach, all nodes receive the packets on-

time because there is no coding. The number of on-time

received packets increases as we increase the forwarding

factor since, by increasing FF, each node forwards more

packets. Because all of the packets are coded together in

the NDANC, the delay increases as the number of nodes

increases; as a result, more packets miss their deadlines.

As we increase the number of nodes, the density and

the degree of the nodes increases, which results in a

larger number of transmissions in the PFNC approaches.

Consequently, the ratio of the on-time received packets

increases in the PFNC approaches.

Fig. 9 (b) shows the total number of transmissions

for different approaches. Both of our heuristics have

fewer transmissions than the PFNC approach. The reason

is that the redundant transmissions are removed in our

methods. Only the PFNC approach with FF = 0.4 has

less transmissions than the DANC approach in the case of

30 nodes, but in this case, the number of packets received

on-time with the PFNC approach is more than 20% less

than that of the DANC approach. The DANC method has

more transmissions than the NDANC approach since, in

the NDANC approach, we code all of the packets together.

As it is anticipated, the number of transmissions of the

NONCT approach is more than the DANC and NDANC

approaches, and the NDANC approach has the fewest

number of transmissions.
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Figure 10. (a): Total number of decodable packets. (b):
Empirical CDF of performance DANC, compared with PFNC

approach with forwarding factor 0.4.

In the next experiment, we ignore the deadline

constraints and compare the number of decodable packets

at the nodes. Fig. 10 (a) shows that in the DANC, NDANC,

and NONCT approaches, all of the nodes can decode

all of the packets, as using broadcasting trees guarantees

decodability. In contrast, some of the received packets

in the PFNC approach are not decodable. By increasing

the forwarding factor, due to the increase in the number

of transmissions, the number of decodable packets in the

PFNC approach increases.

Fig. 10 (b) shows the performance of the DANC

method. For each simulation run, we calculate the ratio

of the number of on-time received packets in the DANC

method and in the PFNC approach with a forwarding factor

of 0.4, and we show the empirical CDF of the result. It

can be seen that the performance of the DANC approach

is always better than that of the PFNC approach. In about

20% of the cases, the performance of the DANC approach

is more that two times that of the PFNC approach.

7.3. Proposed Deadline-Aware Local Coding
Approach

We compare our proposed local network coding methods

with the network coding method in [23], called CODEB.

CODEB constructs PDP as the broadcasting structure.

The relay nodes in this method use inter-session network

to reduce the number of transmissions. CODEB sets

a random waiting time for the packets in the case

of delay tolerant networks. For the case of non-delay

tolerant networks, there is no waiting time for the packets,

but coding is still performed. We represent the packet

generation period by G. This means that each node in

every G time slots generates one packet. Therefore, G is

inversely proportional to that of the packet generation rate.
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Figure 11. Effect of packet generation period on the number
of transmissions- M=30. (a):D ∈ (d, 1.5 × d). (b):D ∈ (1.5 ×

d, 2 × d)

We vary the packet generating period from M
2

to 2×M .

Here, M is the number of nodes.

In the first experiment, we study the effect of packet

generation period on the number of transmissions. In Fig.

11 (a) the deadlines are in the range of 1 to 1.5 times the

diameter of the network. The number of transmissions of

the methods increases as we increase G. The reason is

that, by increasing the generation period of the packets,

the expected number of received packets at each time slot

decreases. Thus, the coding opportunity decreases. In Fig.

11 (b) we change the deadlines to be in the the range of 1.5

and 2 times the diameter. It can be inferred from this figure

that the difference between our proposed methods and the

CODEB method increases as we increase the generation

period of the packets.

In the next experiment, we study the effect of deadlines

on the number of transmissions. When the deadlines of the

packets are in the range of 0.5 to 1 times the diameter of

the network, the extra time of the most of the packets at

relay nodes is near zero. Thus, the number of transmissions

of all of the methods are close, which can be seen in

Figs. 12 (a) and (b). In this case, all of the methods

have misses, but since they are exactly the same, we

exclude this case. The number of transmissions is inversely

proportional to the the deadlines. The reason is that by

increasing the deadlines, the packets have more waiting

time, which increases the chance of coding. The number of

transmissions of the CODEB method is fixed, since relay

nodes forward the received packets immediately, without

considering the deadlines. It can be inferred from Fig.

12 (a) that the PDWT method has the lowest number of

transmissions compared to the other approaches.

The period of generating packets in Fig. 12 (b) is half of

the period in Fig. 12 (a). The number of transmissions in
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Figure 12. Effect of deadlines on the number of transmissions-
M=30. (a):G = 60. (b):G = 30.
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Figure 13. Effect of number of nodes on the number of
transmissions- D ∈ (1.5 × d, 2 × d). (a): G = M . (b): G = 2 ×

M

Fig. 12 (b) is less than that in Fig. 12 (a). The reason is that

the relay nodes have more chances of coding the received

packets.

Figs. 13 (a) and (b) show the effect of the number

of nodes on the number of transmissions. The number

of transmissions of all of the methods increases as we

increase the number of nodes, since the number of

generated packets increases. The packet generation period

in Fig. 13 (b) is half of that in Fig. 13 (a); the number of

transmissions is less than that in Fig. 13 (a).

Fig. 14 (a) shows the number of transmissions in the

DANC and PDWT approaches. We set the deadlines

randomly in the range of 1.5r and 2r. This figure shows

that linear network coding is up to 27% more efficient than

local network coding. The CDF of the performance (in

terms of number of transmissions) of the DANC approach

over the PDWT method in the case of 100 nodes is shown

in Fig. 14 (b). It can be inferred from this figure that the

performance of our linear network coding method (DANC)

is always more that that of our local XOR coding (PDWT).
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Figure 14. Linear network coding VS. local XOR network
coding.

8. CONCLUSION

In this paper, we study the problem of energy-efficient

broadcasting with deadline constraints. We prove that this

problem is NP-complete. Thus, we propose a deadline-

aware heuristic to solve this problem. We use the concept

of broadcasting trees to select forwarder nodes. Our DANC

heuristic classifies the packets into sets, such that coding

all of the packets of each set does not result in a deadline

miss. Our heuristic also works for the case when packets

do not have deadline constraints. In wireless networks with

periodic broadcasting, our protocol computes the coding

decision once, and based on that, each node determines its

responsibility in future rounds. Also, for the networks with

limited computational power, we provide three heuristics

to compute the local waiting time of the packets at relay

nodes to improve the efficiency of local network coding

without missing deadlines.
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Figure 15. A reduction from an instance of a vector packing
problem to an energy-efficient broadcast with deadline
constraints. (Bjc represents the decoding delay for the packets

of the set c at node dj .)

for large-scale wireless sensor networks,” in Proc. of
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A. COMPLEXITY

Theorem 1

The problem of energy-efficient broadcasting, subject to

the deadline constraints, is NP-complete.

Proof

In order to show that the problem is NP-complete, we need

to show that it is NP and NP-hard.

It is easy to show that this problem is NP; if we are

given the topology, the set of sources and destinations,

and the energy consumption at every node, we can verify

in polynomial time, using the BFS algorithm, that these

parameters solve the problem.

In order to show that it is NP-hard, we need to provide

a polynomial time reduction from a well known NP-

complete problem. We choose the vector packing problem

as the known NP-complete problem. In vector packing,

we have K vectors, each with N positive integers. The i-

th vector can be represented by Vi = [vi1, . . . , viN ]. We

also have identical bin vectors. Each bin vector contains

N integers and can be represented by [b1, . . . , bN ].

The problem is packing the vectors in as few bins as

possible. The constraint is that the sum of the vectors

in each bin cannot exceed the size of the bin. Formally,

the problem can be described as minimizing L, subject

to:
∑

i∈l vij ≤ bj , ∀l ∈ {1, . . . , L}, ∀j ∈ {1, . . . , N},
where i ∈ l means that the i-th vector is packed in the l-

th bin.

The reduction is as follows. For every instance of the

vector packing problem, we generate an instance of our

problem according to the following rules. First, we place

K sources, N intermediate nodes ui, i ∈ {1, . . . , N}, and

N destination nodes in the graph. We connect each source

to all intermediate nodes and each intermediate node to K

different destinations, such that each destination node has

K input links from K different intermediate nodes. Then,

we set the delay of the link between si and uj to vij , ∀i, j,

the delay for the links connecting the u and d nodes to

zero, and all of the transmission costs to zero except for

the u nodes, where we set the cost to 1, per sent packet.

Let M =
maxij(vij)

minij(vij)
and let Djc represent the delay for

receiving the |c| linearly independednt packets from the set

c at node j when we choose to code the packets in the set

c. We set the decoding delay for the packets of the set c

at node dj as M
∑

i∈c vij −Dic. Note that, due to the

multiplication by M , the decoding delay is always ≥ 0.

Therefore, the total delay at node dj to receive and decode

the packets in the set c would be M
∑

i∈c vij . Also, the

total cost of transmissions is proportional to the number of

partitions where coding is allowed. This is due to setting

the cost of all transmissions to zero, except the cost of

transmissions at the u nodes.

After doing this reduction, if we set the deadline of

packet pi to reach dj to Mbj , it is easy to see that the

vector packing problem is solvable iff the minimum cost

deadline-aware problem is solvable on the constructed

graph.

Fig. 15 shows a reduction from a vector packing

problem with three 2-dimensional vectors to an energy-

efficient broadcasting problem with deadline constraints.
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