
Poster: Vehicle Routing with Pickup and Delivery:

A Greedy Approach

Turash Mosharraf, Jie Wu, and Huanyang Zheng
Department of Computer and Information Sciences, Temple University

turash.mosharraf,jiewu,huanyang.zheng@temple.edu

ABSTRACT
Recently, bicycles have become popular in large cities and
many bicycle sharing companies have established their own
bike sharing systems. Extra vehicles are used to transport
bikes among di↵erent bike stations, such that the number of
bikes in each bike station can be balanced. This paper studies
a bike rebalancing schedule that minimizes the total vehicle
shipping distances. Starting with a minimum length path
covering all bike stations, the proposed algorithm iterative-
ly updates its configuration, whenever the vehicle capacity
constraint is violated. Finally, experiments demonstrate the
e�ciency and e↵ectiveness of the proposed algorithm.

CCS CONCEPTS
• Networks → Cyber-physical networks;

KEYWORDS
Vehicle routing; bike sharing systems; pickup and delivery.

1 INTRODUCTION
Nowadays sustainable transportation systems have earned
increasing attention. Sharing transportation systems, such as
car-pooling, car-sharing, and bike-sharing, have been imple-
mented in many industrialized countries. Accessibility and
a↵ordability promote a short-term bike rental systems as
win-wins for just about anyone willing to ditch his car for a
bike. The development of bike sharing systems (BSSs) is due
not only to the sustainability of the system, but also because
of its door-to-door feature. In general, BSSs are based on a
bike fleet, bike stations, and a number of users. Customers
arrive at rental stations of a company (e.g., Citi Bike), utilize
bicycles for some amount of time, and then return the bicy-
cles to the same station or to a di↵erent one run by the same
company. The success of a BSS, from a strategic planning
point of view, depends on the system design in terms of
number, location, and capacity of stations as well as on the
consistency of the available bike fleets.

The greater di↵usion and usage of the BSS is limited by
its own drawbacks. The BSS is mainly used for medium-short

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHANTS’17, , October 20, 2017, Snowbird, UT, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN ISBN 978-1-4503-5144-7/17/10.
https://doi.org/10.1145/3124087.3124101

Vehicle Capacity:4

Depot

2 -1

2-1

-2

2

(a) Single Company

Vehicle Capacity:4

Depot

2 -1

2-1

-2

2

(b) Multiple Companies

Figure 1: Vehicle paths to rebalance bikes

distances and for one-way trips, leading to to an unbalanced
distribution of the bikes over time and space. Therefore, in
order to increase the system capacity and user satisfaction, it
is necessary to properly relocate bikes among stations of the
BSS. Relocation is performed based on a desired inventory
level (determined by historical data) for each stations. A
significant number of works provide highly accurate predic-
tion for desired inventory level. Some researchers propose
determining a maximum and minimum inventory level to en-
sure more flexibility [2]. However, after obtaining the desired
inventory, it is important to optimally route the rebalancing
vehicles to reduce gas usage and service time while meeting
the need of every station. The rebalancing operation can be
performed during work time or break time. For simplicity,
most researchers assume that the number of incoming and
outgoing bikes during the rebalancing period is negligible.
Fig. 1(a) shows a simple scenario with one company. The
grey stations have more than enough bicycles, and they need
to be transferred to the white stations with shortages. The
amount of shortage or surplus is shown along with the sta-
tions. A feasible path for a rebalancing vehicle with capacity
4 is depicted in the figure.

In real life, there are often multiple companies exist in a
system, as shown in Fig. 1(b). This figure has the same set
of stations as in Fig. 1(a), but it has two companies. The
circle and square denote the stations of these two companies,
respectively. Note that the feasible path in Fig. 1(a) is no
longer feasible in Fig. 1(b) because of the additional constraint
that each bike must be collected and returned to the same
company. This constraint adds another level of complexity
to the vehicle routing problem, and the resulting tour may
be more costly than the single company case. We found
several existing solutions that perform very e�ciently in the
single company scenario. However, very few of them can be
e↵ectively scaled for the multiple companies scenario. Our
work can be considered as a step to fill this gap.

https://doi.org/10.1145/3124087.3124101

2 PROBLEM FORMULATION
The BSS is modeled as a graph G = (V,E), where V =
{v1, v2, ..., vn} is the set of nodes (bicycle stations) and E =
{(vi, vj) | vi, vj 2 V } is the set of edges (roads connecting
bicycle stations). Each station vi has a demand qi and belongs
to a company ti. Here, qi can be either positive or negative.
We mainly consider two companies, i.e., ti can be either 0 or
1. Bicycles of one company cannot be kept in the stations
of the other company. The weight of the edge from vi to
vj is denoted as dij , representing the distance between two
bike stations. A single vehicle with capacity Q is used to
transport bikes among all bike stations for all companies.
The objective is to find a Hamiltonian tour among all bike
stations to minimize the total bike shipping cost, in terms
of distances. The constraint is to satisfy the demand of each
bike station and the capacity of the vehicle.

A binary decision variable, xij , is used to indicate whether
a vehicle travels directly from node vi to vj . Let ✓

t
ij denote

the number of bicycles of company t carried by the vehicle
from vi to vj . The problem is formulated as follows:

min
X

i

X
j
dijxij

s.t.
X

i
xij = 1, 8j and

X
j
xij = 1, 8 i, j (1)

X

i2U,j /2U

xij � 1, and
X

i/2U,j2U

xij � 1, 8U ✓ V (2)

X
j
✓tij �

X
k
✓tki = qi, 8 i, j, k, t = ti (3)

✓tij � 0, 8t and
X

t
✓tij Q · xij (4)

xij 2 {0, 1} (5)

Constraint (1) ensures that each vehicle visits a station ex-
actly once. Constraint (2) ensures that the tour becomes a
disconnected cycle covering all the stations rather than be
partitioned into di↵erent subtours. Constraint (3) ensures the
demand of each bike station. Constraint (4) is the capacity
constraint that ensures that the balance of bicycles from each
company is non-negative and that the total balance does not
exceed the vehicle capacity at any instance. Constraint (5)
means that the decision variable xij is binary. Our problem
is NP-hard by a simple reduction from [3]. Therefore, we use
a heuristic approach to provide a reasonably good solution.

3 METHODOLOGY

3.1 Idea and Algorithm
We start with the definition of the feasibility:

Definition 3.1. A path is feasible if constraints (3)-(5) can
hold for each station on the path. A set of stations is feasible
if there is a feasible path that covers this set of stations.

Our idea is to gradually build paths from a set of starting
bike stations. We start with an approximate tour for the
TSP, considering all the bike stations but ignoring the vehicle
capacity constraint. This is because the more closely the TSP
tour is followed, the smaller the total distance is [5]. We have
one more definition:

Algorithm 1 ALG1

Input: set of stations V = {v1, v2, ..., vn}, their geographic
locations and their demands, vehicle capacity Q, and
number of random start k

Output: a feasible path p⇤

1: Create edges between all pairs of stations (edge weight is
the corresponding geographic distance)

2: Find approximate TSP path T without considering de-
mand, using Christofides’ algorithm [1]

3: Initialize S random subset of size k from V
4: for each starting bike station s 2 S do
5: set p ;, set s0 the last biking station on T starting

from s without violating constraints (3)-(5)
6: for each bike station vi on T from s to s0 do
7: add vi to p, update ✓ ✓ + qi and T T \ {vi}
8: while T 6= ; do
9: s00 and s000 the forwarding path from s00 to s000 is

feasible and longest among all feasible ones, if p goes
to s00 as the next station

10: for each bike station vi on T from s00 to s000 do
11: add vi to p, update ✓ ✓ + qi and T T \ {vi}
12: Update p⇤ p if p⇤ has a smaller path length than p
13: return p⇤ as a feasible path

Definition 3.2. Given a TSP tour T , a current state s, and
a station v, a forwarding path is a path that starts at v and
follows T as long as it does not violate constraints (3)-(5). If
visiting v from current state s results in an infeasible path,
then no forwarding path exists for s.

We greedily favor the bike station with the longest forward-
ing path. The forwarding path is followed until the capacity
constraint is violated. In this case, the current path becomes
fixed and the remaining capacity of the vehicle is updated.
Consequently, next starting point is searched with respect to
the longest forwarding path under the capacity constraint.
Algorithm 1 (or ALG1 for short) is proposed for the scenario,
in which all bike stations belong to a single company. In
line 1, ALG1 determines the geographic distances among
bike stations. In line 2, an approximate TSP tour T using
Christofides’ algorithm [1] is computed. In line 3, k random
starting points are selected and are checked later. A feasible
path is obtained for each of these starting points, and the
final solution is the shortest one of these feasible paths (lines
4 to 12). In lines 5 to 7, a feasible path is initialized. Given
the starting point, the vehicle will go as far as possible under
the capacity constraint. In lines 8 to 11, forwarding paths are
searched iteratively. In each iteration, ALG1 greedily finds
the forwarding path that is feasible and longest of all the
feasible paths in line 9. In lines 10 to 12, the forwarding path
above is used as the next station for the vehicle. A feasible
solution is reached when the fixed path contains all stations.
Once a solution is found for each of the starting stations in
S, the solutions are compared and the best path is stored in
line 12. Finally, the resulting path is returned in line 13.

20 50 80 110 140 170 200
3

9

15

21

Number of stations

To
ta

l d
is

ta
nc

e
(k

m
) NN

ALG1
ALG2
ALG3

(a) Impact of number of stations

1 2 3 4 5 6 7 8
6

6.5

7

7.5

Number of starting points

To
ta

l d
is

ta
nc

e
(k

m
) NN

ALG1
ALG2
ALG3

(b) Starting points for 40 stations

1 2 3 4 5 6 7 8
14

16

18

20

22

24

Number of starting points

To
ta

l d
is

ta
nc

e
(k

m
) NN

ALG1
ALG2
ALG3

(c) Starting points for 200 stations

Figure 2: Performance comparison for single company case

The time complexity is O(n3). The initial TSP tour takes
O(n3). After that, there can be at most O(n) iterations. At
each iteration, at most O(n) forwarding lengths are computed,
and each computation can take at most O(n). Therefore, the
total complexity is O(n3) and is the same as the TSP.

3.2 Algorithm Variations
ALG1 has two variations using other greedy metrics. The
first variation is ALG2. Instead of using the longest feasible
path in line 9, ALG2 uses the feasible path that minimizes
the ratio of (i) the distance from the current station to the
furthest station in this path to (ii) the length of this path.
The second variation is ALG3, which uses the feasible path
that minimizes the ratio of (i) the distance from the current
station to the starting station of this path to (ii) the length
of this path. Moreover, ALG1, ALG2, and ALG3 can be
extended to scenarios with multiple companies. Note that
bicycles of one company cannot be kept in stations of the
other company, but the vehicle can carry bicycles of di↵erent
companies under its capacity constraint. Our key observation
is that the forwarding path does not interact with the number
of companies. As a result, we only need to modify lines 5 and
9 for multiple companies.

4 EXPERIMENTS

4.1 Experimental Setup
The experiments are performed on both real and simulated
datasets. We chose 200 bike stations of Citi Bike and Cycle
Central Park located at New York city. The demands are
placed following a normal distribution from [10, -10]. Each
vehicle can carry 40 bicycles. We generate the demand of
each stations using normal distribution. We ran experiments
for both small and large instances of the problem by selecting
di↵erent subsets of stations. We run two types of experiments.
First, we vary the number of stations from 20 to 200. Second,
we vary the number of starting points from 1 to 8. Nearest
Neighbor (NN) [4] is the baseline.

4.2 Distance and stations
The results are shown in Fig. 2(a). As we increase the number
of stations, the performance of our algorithms improves. AL-
G3 has the best performance. This is because ALG3 considers

both the forwarding lengths and the distance traversed to
achieve that forwarding. Therefore, ALG3 provides a better
estimation of per unit distance than other algorithms. For
example, if any station has a large forwarding length but is
very far away from the current position, choosing this sta-
tion as the next starting point will involve a large rewiring
distance. This will, in turn, hurt the overall performance.

4.3 Distance and starting points
The results are shown in Figs. 2(b) and 2(c) for small and
large data, respectively. For any number of stations, using
multiple starting points gives a better solution. However, the
rate of performance improvement decreases and eventually
becomes saturated. Therefore, a large number of starting
points is not necessary to get a reasonably good solution.
When the number of stations is as small as 40, NN sometimes
outperforms ALG1. However, for, reasonably large number
of stations (like 200), ALG1, ALG2, and ALG3 significantly
outperform NN. Among the extensions, ALG3 shows the best
performance due to its greedy metric.

5 CONCLUSION
This paper presents a greedy algorithm to rebalance bikes in
bike-sharing systems. The proposed algorithm is applicable
to a variety of other related problems, such as the airline crew
scheduling problem. Experiments demonstrate the e�ciency
and e↵ectiveness of the proposed algorithm.

REFERENCES
[1] Hyung-Chan An, Robert Kleinberg, and David B Shmoys. 2015.

Improving Christofides’ algorithm for the S-T path TSP. J. ACM
62, 5 (2015), 34.

[2] Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kan-
n, Alberto Marchetti-Spaccamela, and Marco Protasi. 2012. Com-
plexity and approximation: Combinatorial optimization prob-
lems and their approximability properties. Springer Science &
Business Media.

[3] Hipólito Hernández-Pérez and Juan-José Salazar-González. 2004.
A branch-and-cut algorithm for a traveling salesman problem with
pickup and delivery. Discrete Applied Mathematics 145, 1 (2004),
126–139.

[4] Hipólito Hernández-Pérez and Juan-José Salazar-González. 2007.
The one-commodity pickup-and-delivery traveling salesman prob-
lem: Inequalities and algorithms. Networks 50, 4 (2007), 258–272.

[5] Ning Wang and Jie Wu. 2016. Opportunistic wifi o✏oading in a
vehicular environment: Waiting or downloading now?. In IEEE
INFOCOM. 1–9.

	Abstract
	1 introduction
	2 Problem Formulation
	3 Methodology
	3.1 Idea and Algorithm
	3.2 Algorithm Variations

	4 Experiments
	4.1 Experimental Setup
	4.2 Distance and stations
	4.3 Distance and starting points

	5 Conclusion
	References

