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Abstract—Recent breakthroughs in wireless power transfer
make it possible to charge sensors over a long distance. Existing
works have mainly focused on maximizing network lifetime,
optimizing charging efficiency, and optimizing charging quality.
All these works use a linear superposition charging model, which
may not be accurate in real life situations. We use the actual
charging model, which has a nonlinear super-position and we
consider the charging scheduling problem (CSP): given multiple
chargers and a group of sensor nodes, how can the chargers be
optimally scheduled so that the total charging time is minimized
and each sensor node has at least energy E? We prove that CSP
is NP-hard, and propose a weight-greedy algorithm to solve the
problem. Unlike the algorithm proposed before, ours does not
need to calculate all charger groups utility in advance, which
reduces the complexity. Extensive simulations demonstrate that
the performance of our algorithm with sparse network is almost
as good as the optimal algorithm. In general cases, our algorithm
outperforms the random algorithm. Furthermore, our algorithm
obtains the best solution in two special cases.

Index Terms—Wireless charging, nonlinear superposition,
weight and minimum coverage set, sparse network.

I. INTRODUCTION

Nowadays, Wireless sensor networks and mobile computing
applications are well discussed [1–4]. Wireless sensor net-
works (WSNs) are powered by small batteries, and a con-
strained energy supply limits the lifetime of a WSN. Wireless
charging techniques have been proposed to provide WSNs
an additional energy supply that can prolong their lifetime
[5, 6]. The Wireless Power Consortium (WPC), established in
2008, has more than 200 members now, including IT leaders
such as Apple and Microsoft. As we can see, wireless power
transfer (WPT) is a promising technology to charge WSNs in
the future.

With recent breakthroughs in wireless power transfer, it
is possible to charge sensors over a long distance with a
fixed charger. However, long-distance charging leads to low
charging efficiency, which means that the energy harvested by
sensors is much less than the energy delivered by the charger.
To accelerate long-distance charging, the charger’s power can
be increased, but this may lead to electromagnetic radiation
(EMR) pollution and harm humans [7]. Another method is
adding more chargers at different positions in the WSNs to
charge sensors at the same time. This way, the power harvested
by sensors increases. To calculate the combined charging
power, almost all researchers just add them together. However,
this assumption may not be the most accurate. Naderi et al. [8]

Fig. 1. Scenario of charging with multiple chargers and sensors.

point out that there will be radio interference between charging
waves, so the aggregate power is not additive. Based on this
discovery, Guo et al. [9] proposed a concurrent charging model
and designed three algorithms to solve the concurrent charging
scheduling problem (CCSP). However, since each charger’s
charging utility cannot be calculated independently, Guo et al.
[9] have to calculate the charging utility of each charger set
at every sensor node in advance. As a result, the complexity
of this step grows exponentially with the number of charg-
ers, making it much more complex than previously thought.
However, we observe that, even though the combined energy is
nonlinear superposition, it still has some properties. With these
properties, we do not need to calculate the combined energy
of each charger set in advance, which reduces the complexity.

This paper focuses on CSP to prolong the lifetime of WSNs.
The scenario, which involves multiple chargers and a group of
sensor nodes, is shown in Fig. 1. Chargers and sensor nodes are
deployed in a common area. The chargers transmit energy with
certain power level, which results in multiple charging radii
[10]. Due to radio interference, multiple chargers’ aggregate
charging effect is a nonlinear superposition. In this paper,
we are concerned with the problem: given multiple chargers
and a group of sensor nodes, how can chargers be optimally
scheduled so that the total charging time is minimized and
each sensor node has at least energy E?

Due to the nonlinear superposition, it is impossible to
calculate the combined charging power of all the groups of
chargers at a sensor node in polynomial complexity. Fig. 2
illustrates why we cannot simply add all the charging utilities
together. Suppose that radio waves λ sent by two chargers c1
and c2 have the same phase. The phases of the two waves
arriving at s1 are always the same, so the waves combine



Fig. 2. Concurrent charging using two chargers. c1 and c2 are chargers; s1
and s2 are two sensors. l represents the length of radio wave.

constructively. However, the phases arriving at s2 are different
from each other, and the difference is λ/2. Therefore, the
two waves combine negatively at s2, and the total energy is
almost zero. The actual charging model brings challenges to
the scheduling algorithm design. Unlike the previous work
[9], we do not calculate all charger combinations utilities in
advance. Finding an algorithm to minimize charging time with
all the constraints mentioned above is challenging.

Our main contributions are summarized as follows:

• We apply a new charging model with nonlinear super-
position into the CSP problem, which is proved to be
NP-hard.

• We propose a weight-greedy scheduling algorithm to
solve CSP, which performs nearly as well as the optimal
algorithm in sparse network.

• Simulations are conducted to evaluate the proposed solu-
tions. The results are shown from different perspectives.

The rest of the paper are organized as follows. Section II
surveys related works. Section III describes the concurrent
charging model and then formulates the problem. Section
IV analyzes the problem and proposes solutions. Sections
V includes the simulation results, and conclusions follow in
Section VI.

II. RELATED WORK

In the past decade, wireless charging for WSNs has been
widely studied. Some works focused on fixed chargers. He et
al. [11] and Pang et al. [12] investigated the energy provision
problem of finding the minimum number of RFID readers to
cover a given WSN. Dai et al. also focused on charger location
problem but took safety into account and provided a near op-
timal solution to find the maximum electromagnetic radiation
point (MEP) in the network [10, 13]. Zhang et al. jointly
determined charger placement and power allocation to improve
the charging quality [6]. Soon after, mobile charger began to
attract much attention. Zhang et al. proposed a scheduling
algorithm called Pushwait to cover a one-dimensional WSN of
infinite length [14]. To prolong the lifetime of a WSN, Peng
et al. optimized the charging sequence for network lifetime
maximization [15]. All the algorithms above are based on
an assumption that the power received by one device from
multiple chargers is additive[11]. However, this assumption
may not be the most accurate.

In 2010 [15], Peng designed and implemented a wireless
charging system for sensor networks; they further built a proof-
of-concept prototype to evaluate its feasibility and perfor-
mance in small-scale networks. In 2011 [16], the joint routing
and charging scheme was proposed by Li to proactively guide
the routing activities of the network and to deliver energy to
where it was needed. In 2013 [11], He et al. studied how
to deploy readers in a network to ensure that the wireless
identification and sensing platform(WISP) tags could harvest
sufficient energy for continuous operation.

Naderi et al. [8] pointed out that radio interference occurs
when multiple chargers are used to charge one device, even if
all the chargers transfer energy with high power. Interference
may result in higher or lower levels of energy cancellation.
Guo et al. [9] proposed three algorithms to solve CCSP based
on the nonlinear superposition charging model [9]. To the
best of our knowledge, it is the first time that the nonlinear
superposition charging model has been used. However, their
algorithms had to calculate all charger sets utilities in advance.
The complexity would grow exponentially with the number of
chargers. Therefore, we propose an algorithm to solve FCS
without calculations beforehand.

III. MODEL AND PROBLEM FORMULATION

In this section, we first propose our models, including net-
work model, charging model and harvesting model. Different
from previous works, our charging model is nonlinear super-
position. Then we use these models to define CSP.

A. Charging Model

We consider a set of M stationary rechargeable devices
S={s1, s2, ..., sm} distributed in a two-dimensional plane.
There are also N chargers C={c1, c2, ..., cn} distributed in
this scenario. We also use dij to denote the Euclidean distance
between the charger ci and the sensor sj . According to [9],
we suppose that the amplitude of the frequency component ω0

in the chargers’ power spectral density (PSD) curve is A0 and
that the corresponding initial phase is ϕ0. Therefore, the power
density of each charger at ω0 is p0=A2

0

2 . Since the charging
powers from wireless chargers are nonlinear with distance,
we assume, for simplicity, that the power attenuation factor is
2. The radio signal of the frequency component ω0 arriving at
the sensor node sj from the charger ci is expressed as :

ai0(t) =
A0

4πdij/λω0

cos(ω0t+ ϕ0 − 2π
dij
λω0

) (1)

Based on this, Guo [9] proposed the power of compound
radio signal at sensor si:
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From this equation, we can see the nonlinear superposition
charging effect in the concurrent charging. The equation above
considers only distance and assumes that all sensors initial
phases are the same. With an adjustable initial phase, a new
problem can be derived: how can the chargers initial phases
be optimally controlled so that the total charging time is
minimized? We use this model as our charging model to solve
CSP.

B. Harvesting Model

Denote PG
j |c as the harvesting power of sensor sj charged

by a group of chargers C. We assume PG
j |c = α∗Pj |C , where

α (0 < α < 1) is the transition coefficient. From the previous
work [11], we know that if the radio power is lower than a
threshold, then the energy received by sensors is zero. Taking
this into account, we present the harvesting model as follows:

ej |C, t =

{
0 if Pj |C < ε

αt(Pj |C − ε) otherwise

where ej |C, t denotes the energy that sj harvested from a set
of chargers C during time t, and ε is the threshold of the radio
power.

Each sensor also has an electric capacity. We set this
capacity as E, which is the energy we set in the problem.
So the energy harvesting model can be expanded as follows:

ej |C, t =


0 if Pj |C < ε

0 if Pj |C > ε and e′j > E

αt(Pj |C − ε) otherwise

where e′j denotes the energy sj has now, and ε is the threshold
of the radio power.

C. Problem Formulation

We use Hi to denote ith charging period. Although different
periods’ durations ∆ can be different, in this paper, we only
consider the same charging duration. Therefore, the main
problem studied in this paper is:

Problem 1: Given a set C of chargers with fixed position, a
set S of rechargeable sensors, a set {dij |1 ≤ i ≤ N, 1 ≤ j ≤
M} of distance between ci and sj , and an energy capacity
E of each sensor, CSP is to find a set of multiple charging
periods {H1, H2, ...,Hk} to charge each sensor with energy
no less than E, and k is minimized.

IV. SOLUTION

In this sectionwe first show that CSP is NP-complete, and
then we propose an algorithm to solve it.

A. Hardness Analysis

Theorem 1: The CSP is NP-complete.
Proof: We prove this by using the decision version of the

problem: given a number of charging periods k, does there
exist a collection of charger sets {C1, C2, . . . , Ch}(Ci ⊆
C, i = 1, 2, . . . , h) and a corresponding number of charging

periods H1, . . . ,Hk that satisfy the constraint above and h is
equal or less than k?

We prove this decision problem by reduction from the
Knapsack Problem [17], which is NP-hard. The decision
version of the knapsack problem is as follows: given a set of
items U = {e1, e2, . . . , em}, each with a weight and a value,
and an integer K, does there exist a collection of these items
so that the total weight is less than or equal to the limit T and
the total value is V ? Given an instance of the decision version
of the knapsack, we construct an instance of CSP as follows:
• For each element ej in U, we construct a charging period
Hi in CSP. The item’s weight is the charging period’s
duration, and the value is the total energy harvested by the
network in this period; we assume all charging periods’
durations are the same and are equal to ∆. For knapsack’s
weight, we define k ∗∆ equal to T . For the given value
V , we set M ∗ E as the total value.

• After we pick a period Hi, we need to recalculate
other periods’ value, because while some sensors in this
period may harvest energy it is not sufficient to reach E.
Therefore, we need to reduce other periods’ value. And
this complexity is the number of periods.

Combining these elements, we get the following special case
of the decision version of the CSP problem: given a limited
time k ∗ ∆ and a period set, does there exist a collection of
periods whose total size is less than or equal to k so that all
the sensors will harvest no less than E energy (total is ME)?

It is not hard to see that the construction can be finished
in polynomial time; thus, we reduce solving the NP-hard
knapsack problem to a special case of CSP, implying that CSP
is NP-hard.

B. Algorithmic Design

In this subsection, we propose a weight-greedy algorithm
to solve the CSP. Then we show that our greedy algorithm
performs well in sparse networks and is the optimal solution
in two extreme cases.

Our goal is to use the minimal time to charge each sensor
with at least E energy, therefore, the energy charged in
each period should be maximized. Some sensors can only be
charged by one or two chargers, so it takes them a longer time
to fully charged than those sensors that can harvest energy
from multiple chargers at the same time. Consequently, the
number of chargers that are able to charge a sensor should be
taken into account when designing an algorithm. In this paper,
we only discuss instances where the charging periods are the
same.

In order to balance sensors received energy and the net-
work’s total harvesting energy, we give each sensor a weight
w which set to be E′/r, where E′ is the remaining energy that
is not charged yet (E − ej) and r is the number of chargers
that can charge this sensor. We also give each charger a weight
w which set to be the sum of the weights of the sensors that
can be charged by this charger.

The main idea of our algorithm is shown as follows: we
find a maximum unique covering set (MCS) first and then



Algorithm 1 Weight-Greedy Picking (WGP)
Input: C: Charger set, S: Sensor set, E: Energy capacity
Output: The time schedule

1: Initialize W , and set W ′1 to be 1,i=1.
2: while S 6= ∅ do
3: Find a MCS, and divide chargers into two groups Hi,

C ′.
4: while W ′1 is over 0 do
5: for each charger ci in C ′ do
6: Compute the w′i.
7: sort from largest to smallest in W’.
8: if W ′1 is over 0 then
9: Add C ′1 in Hi.

10: Make chargers in Hi work for time ∆.
11: for every sensor in S do
12: if si is fully charged then
13: remove si from S.
14: i++, W ′1=1,compute W ;

expand this set by adding more chargers. Maximum unique
coverage means every item can be covered at most once, and
total weight of the set is maximized. As we all know, MCS
is a NP-complete problem [18] and there is not a polynomial
way to solve it. We propose a weight-greedy way to find a
MCS. We give each charger a weight defined above. Every
time we pick or add a charger, we pick or add the charger
with the maximum weight.

We show why using the weight we designed to select charg-
er can balance both individual and overall energy. Supposing
sensor si can be charged only by one charger named ck
while sj can be charged by 4 chargers, and ck weakens other
chargers. It is obvious that ck should be opened for E/p(ck)
time so that sj can be fully charged. By setting sensors’ weight
as E′/r, sj’s weight is divided into 4 parts while si’s weight
remains the same. So the priority to select ck is increased.
After we select a charger, we need to remove covered sensors
from the universal set and also remove chargers that can
charger these covered sensors. As a result, every sensor is
covered by at most one charger. Then we need to calculate
every charger’s weight again. The complexity to find a MCS
is O(NM ).

In order to be clearer, we define C ′ = C −H , and we use
W ′ to denote chargers weight in C ′, which means the positive
effect to the whole network when adding this charger.

According to Algorithm 1, we first initialize W as a set of
all chargers weights in line 1. we also set the remaining charger
set’s weight W ′1 to be positive because we need to use it to start
our iteration. The algorithm iteratively decides each charging
schedule (line 2 to 14). The iteration terminates when all the
sensors are fully charged, which means that harvest energy at
least E (S 6= ∅ line 2). In each iteration, the algorithm finds
a minimum coverage set (MCS) and then puts chargers in Hi

during this charging period. When W ′1 is over 0, which means
a new charger can be added, we use Equ. (2) to recalculate

Fig. 3. Example of the placement of 4 chargers and 3 sensor nodes.

TABLE I
EXAMPLE OF THE CHARGING UTILITIES OF 4 CHARGER SETS AT 3 SENSOR

NODES.

s1 s2 s3

c1 3 0 0

c2 2 3 2

c3 0 3 3

c4 0 0 2

c2, c3 2 0 1

c3, c4 0 3 5

c1, c2 4 3 2

c2, c4 4 3 0

c2, c3, c4 2 0 2

every charger’s increasing energy for the whole network,
and we sort the energies from large to small. When W ′1
is over 0, we put the first charger in Hi. After adding a
charger, the algorithm recalculates W because of the changing
interference. This operation continues until no chargers are
able to be added; which means adding any charger would have
negative effect on the whole network (line 4-9). The algorithm
makes the chargers in Hi charge for ∆ time (line 10). After
each charging period, the algorithm removes the fully charged
sensors from S (line 11 to 13). Finally, we reset W ′1 to be 1
and increase 1 to i (line 14).

C. Example and Analysis

In this subsection, a simple example of the algorithm is
shown in Fig. 3, and Table 1 shows the actual charging energy.
Suppose the energy capacity of each node E = 10.

According to Algorithm 1, we first find a MCS which is
c2, then we add other chargers if the total energy harvested
by the network increases after adding this charger. So we add
c1 and this iteration ends. After charging, the current energy
harvested in the node is {4, 3, 2}. In the next period, we first
check if any sensor is fully charged. Then, we continue this
operation. Obviously, c1 and c2 will be picked in the next two
periods. The current energy of each sensor increases to be {10,
9, 6}. Now, sensor s1 is fully charged, and we remove it and
find MCS again, which is c2 or c3. Suppose we choose c3;
then c4 will be added. After this charging period, all sensors
are fully charged. The total charging period is 4.

Our algorithm would obtain the optimal solution in two
extreme cases. The first is when all chargers strengthen each



(a) The Placement with N=12, M=50. (b) A MCS of a WSN with N=12, M=50.

Fig. 4. A WSN with N=12, M=50.

other. Obviously, the optimal method is to turn on all the
chargers, which is the same answer that our algorithm would
give. The other case is when all chargers weaken each other.
In this case, we should make the interference the smallest
possible in each period. The answer is the MCS, which is
also the same answer that our algorithm gives.

The drawback of this algorithm is how it finds a MCS.
The MCS itself may have many negative effects in bad
situations, and we cannot limit this drawback to a bound.
However, in sparse networks, our algorithm operates well
because interferences are rare and our way to choose a MCS
is almost optimal.

The complexity of this algorithm is O(M2N2). The while-
loop runs at most O(M ) iterations, we can make this by
increasing the charging time of each period. In each iteration,
while-loop runs at most N times and for-loop runs at most
O(N ) times because the complexity of calculating the weight
w′ of one charger is O(MN ). The complexity of finding a
MCS is O(MN ). The total complexity is O(M2N2).

V. EXPERIMENTS

In this section, we conduct a series of simulations with
Matlab tool to evaluate the performance of the proposed algo-
rithm. After presenting the setup and parameters, the results
are shown from different perspectives to provide insightful
conclusions.

A. Experiment Setup

We assume wireless devices and chargers are randomly
distributed over a 50m × 50m area. In the simulations, we
employed the energy harvesting model present in Section III.
For the deployments and the harvesting model, the time is
calculated and the procedures for the proposed algorithm are
executed in Matlab. We set the threshold of harvesting power
as ε = 15µW , transition efficiency as α = 0.25, each charging
period as ∆ = 20s, and the wave length as λ = 0.33m.

Based on these parameters, we calculate the distance thresh-
old, 0.25∗4/(4π ∗d)2 = 0.015mW (watt). Then we calculate
that d ≈ 6.78, which means that when the distance between
a sensor and a charger is over 6.78m, the sensor will harvest
no energy from that charger. In this simulation, the default
number of chargers is N = 12. The default number of sensors

is M = 50, and the default energy capacity is E = 4mJ .
Fig. 4(a) gives an example of the default placement. Fig. 4(b)
illustrates the MCS that the algorithm finds in the first itera-
tion.

B. Baseline Setup
Currently there is only one algorithm available for CSP

with an actual charging model. The algorithms proposed in [9]
calculate all the charger groups’ charging abilities in advance,
and the performance of the Genetic Algorithm (GA) they
proposed is almost as good as the brute force algorithm.
We consider the GA as the optimal Algorithm (OPT). We
also introduce a random algorithm (RA) for comparison.
We compare our simulation with the random algorithm that
consists of two phases. The first phase is removing k chargers
(which cannot charge any sensor because some sensors may be
fully charged after some periods) from C. The second phase
is to randomly selecting β(N − k) (0 < β < 1) chargers in
each period. In this simulation, we set β to be 0.8.

C. Performance Comparison
In general, WGP achieves a near optimal solution and

outperforms the random algorithm. In Fig. 5(a), when the
number of chargers goes up, the number of charging periods
goes down. It is obvious that with more chargers, the total
charging energy in the same duration increases. In Fig. 5(b),
when the number of sensors goes up, interference will become
more common and as a result, charging periods lengthen. In
Fig. 5(c), when the energy capacity goes up, the number of
charging periods goes up; it is obvious that the total harvesting
energy grows.

In Fig. 5(a) and Fig. 5(b), when the number of sensors or
chargers decreases, the chance of charging interferences goes
down. As a result, the total charging periods our algorithm
calculates approaches the optimal one. However when the
number of sensors or chargers goes up, the performance of
our algorithm is bad because the interference becomes more
common and is hard to be controlled. The only way to make
the best choice is calculate each group of chargers when
interference occurs.

In summary, the proposed algorithm WGP performs very
similarly to GA (which is considered as OPT) in sparse
network, and outperforms the random algorithm.



(a) Charging periods vs charger number. (b) Charging periods vs sensor number. (c) Charging periods vs energy capacity.

Fig. 5. Simulation Results.

VI. CONCLUSION

In this paper, we study the charging schedule problem
(CSP), addressing the nonlinear super-position charging effect
caused by radio interference. We prove that this problem is
NP-hard by reduction from the knapsack problem. To solve
this problem, we propose a near weight-greedy algorithm. The
simulation results show that the WGA can achieve a good
performance that is close to that of GA at sparse network and
that outperforms the random algorithm.

VII. ACKNOWLEDGEMENT

This work was supported in part by NSFC (61502224),
National Key R&D Program of China (2017YFB1001800),
and Collaborative Innovation Center of Novel Software Tech-
nology and Industrialization. The work of Zhi Ma was done
when he was as intern at Temple University. The work is
supported in part by NSF CNS 1629746, CNS 1564128, CNS
1461932 and CNF 1460971.

REFERENCES

[1] M. Xiao, J. Wu, S. Zhang, and J. Yu, “Secret-sharing-based
secure user recruitment protocol for mobile crowdsensing,” in
INFOCOM 2017-IEEE Conference on Computer Communica-
tions, IEEE. IEEE, 2017, pp. 1–9.

[2] G. Gao, M. Xiao, J. Wu, K. Han, L. Huang, and Z. Zhao, “Op-
portunistic mobile data offloading with deadline constraints,”
IEEE Transactions on Parallel and Distributed Systems, vol. 28,
no. 12, pp. 3584–3599, 2017.

[3] M. Xiao, J. Wu, L. Huang, R. Cheng, and Y. Wang, “Online
task assignment for crowdsensing in predictable mobile social
networks,” IEEE Transactions on Mobile Computing, vol. 16,
no. 8, pp. 2306–2320, 2017.

[4] N. Wang and J. Wu, “Opportunistic wifi offloading in a vehic-
ular environment: Waiting or downloading now?” in Comput-
er Communications, IEEE INFOCOM 2016-The 35th Annual
IEEE International Conference on. IEEE, 2016, pp. 1–9.

[5] Z. Li, Y. Peng, D. Qiao, and W. Zhang, “Joint charging and
rate allocation for utility maximization in sustainable sensor
networks,” in Sensing, Communication, and Networking (SEC-
ON), 2014 Eleventh Annual IEEE International Conference on.
IEEE, 2014, pp. 459–467.

[6] S. Zhang, Z. Qian, F. Kong, J. Wu, and S. Lu, “P 3: Joint
optimization of charger placement and power allocation for
wireless power transfer,” in INFOCOM, 2015 IEEE Conference
on. IEEE, 2015, pp. 2344–2352.

[7] O. P. Gandhi, L. L. Morgan, A. A. de Salles, Y.-Y. Han,
R. B. Herberman, and D. L. Davis, “Exposure limits: the
underestimation of absorbed cell phone radiation, especially in
children,” Electromagnetic Biology and Medicine, vol. 31, no. 1,
pp. 34–51, 2012.

[8] M. Y. Naderi, K. R. Chowdhury, S. Basagni, W. Heinzelman,
S. De, and S. Jana, “Experimental study of concurrent data and
wireless energy transfer for sensor networks,” in Global Com-
munications Conference (GLOBECOM), 2014 IEEE. IEEE,
2014, pp. 2543–2549.

[9] P. Guo, X. Liu, S. Tang, and J. Cao, “Concurrently wire-
less charging sensor networks with efficient scheduling,” IEEE
Transactions on Mobile Computing, 2016.

[10] H. Dai, Y. Liu, A. X. Liu, L. Kong, G. Chen, and T. He, “Ra-
diation constrained wireless charger placement,” in INFOCOM,
2016 IEEE Conference on. IEEE, 2016, pp. 1–9.

[11] S. He, J. Chen, F. Jiang, D. K. Yau, G. Xing, and Y. Sun,
“Energy provisioning in wireless rechargeable sensor networks,”
IEEE Transactions on Mobile Computing, vol. 12, no. 10, pp.
1931–1942, 2013.

[12] Y. Pang, Z. Lu, M. Pan, and W. W. Li, “Charging cover-
age for energy replenishment in wireless sensor networks,” in
Networking, Sensing and Control (ICNSC), 2014 IEEE 11th
International Conference on. IEEE, 2014, pp. 251–254.

[13] H. Dai, Y. Liu, G. Chen, X. Wu, and T. He, “Scape: Safe
charging with adjustable power,” in Distributed Computing
Systems (ICDCS), 2014 IEEE 34th International Conference on.
IEEE, 2014, pp. 439–448.

[14] S. Zhang and J. Wu, “Collaborative mobile charging,” in Wire-
less Power Transfer Algorithms, Technologies and Applications
in Ad Hoc Communication Networks. Springer, 2016, pp. 505–
531.

[15] Y. Peng, Z. Li, W. Zhang, and D. Qiao, “Prolonging sensor net-
work lifetime through wireless charging,” in Real-time systems
symposium (RTSS), 2010 IEEE 31st. IEEE, 2010, pp. 129–139.

[16] Z. Li, Y. Peng, W. Zhang, and D. Qiao, “J-roc: A joint routing
and charging scheme to prolong sensor network lifetime,”
in Network Protocols (ICNP), 2011 19th IEEE International
Conference on. IEEE, 2011, pp. 373–382.

[17] S. Martello, D. Pisinger, and P. Toth, “New trends in exact
algorithms for the 0–1 knapsack problem,” European Journal
of Operational Research, vol. 123, no. 2, pp. 325–332, 2000.

[18] E. D. Demaine, U. Feige, M. Hajiaghayi, and M. R.
Salavatipour, “Combination can be hard: Approximability of
the unique coverage problem,” SIAM Journal on Computing,
vol. 38, no. 4, pp. 1464–1483, 2008.


