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Abstract—Federated Learning (FL) is an emerging privacy-
preserving distributed computing paradigm that enables nu-
merous clients to collaboratively train machine learning models
without the need for transmitting the private datasets of clients
to the FL server. Unlike most existing research where the local
datasets of clients are considered to be unchanging over time
during the whole FL process, we consider such scenarios in this
paper where the local datasets of clients need to be updated
periodically, and the server can stimulate clients to use as fresh
as possible datasets to train their local models. Our objective
is to determine a client selection strategy to minimize the loss
of global model for FL. with a limited budget. To this end, we
leverage the concept of Age of Information (Aol) to quantify
the freshness of local datasets and theoretically analyze the
convergence bound of our Aol-aware FL system. Based on the
convergence bound, we formalize our problem as a restless multi-
armed bandit problem. Then, we devise a Whittle’s-Index-based
Client Selection algorithm, called WICS, to tackle the client
selection problem. Extensive simulations show that the proposed
algorithm can reduce the training loss and improve learning
accuracy compared to state-of-the-art algorithms.

Index Terms—Federated Learning, Age of Information, Rest-
less Multi-Armed Bandit, Whittle’s Index.

I. INTRODUCTION

Federated Learning (FL) [1] is an emerging and promis-
ing distributed machine learning paradigm, which enables a
potentially large number of clients to collaboratively train a
global model under the coordination of a central server. A
standard FL procedure usually consists of a certain number of
rounds until a satisfactory global model is obtained. On one
hand, FL can efficiently preserve clients’ privacy by allowing
their training datasets to remain local. On the other hand, since
only local model parameters rather than local datasets are sent
to the server, FL can greatly reduce communication costs.
Due to these advantages, there have been various industrial
applications of FL, e.g., WeBank for data analysis in finance
and insurance [2], Owkin for biomedical data analysis [3],
MELLODDY for drug discovery [4], etc. Meanwhile, much
effort has also been devoted to investigating different FL issues
[5], such as the convergence rate [6]-[8], accuracy [9]-[12],
security [13], [14], and resource allocation [15]-[18].

In most existing works, each client is assumed to hold a
dataset in advance and will always use the same dataset to
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Fig. 1. The architecture of FL training with fresh/stale local data

train its local model during the whole FL process. However,
in many real-world applications, especially in streaming data
scenarios, data are continuously generated along with the time.
When participating in FL, clients are encouraged to use as
fresh datasets as possible to train local models, since fresh
data can more accurately characterize the model parameters.
For example, a server coordinates some clients to jointly train
an object identification model through FL, e.g., recognizing
formulas on literature, identifying traffic signs on photos,
etc., where clients can adopt the crowdsourcing technique to
periodically recruit mobile users to generate labeled datasets.
Intuitively, the fresher the labeled datasets, the more effort
needs to be devoted to the data labelling, and thus the labeled
datasets will be more precise. In such FL scenarios, clients will
inevitably spend some extra costs in providing fresh datasets,
but the total budget from the server is generally limited. Thus,
an important problem that needs to be dealt with is how to
select clients in each round of FL under the limited budget,
and the server can minimize the loss of global model.

In this paper, we use the well-known “Age-of-Information”
(Aol [19]) metric to indicate the freshness of datasets, which
is defined as the elapsed time of data from being collected to
being trained for updating local models by clients. Accord-
ingly, the above-mentioned problem is actually instantiated as
determining a client selection strategy to minimize the loss
of the global model under a given budget, while considering
the Aol values of the datasets. Unlike most traditional optimal
selection issues with budget constraints, such a problem has
two special challenges as follows. Firstly, although the server
can reduce the loss of a global model by selecting some clients
in each round to update their local datasets and reduce the Aol



values, there is no obvious quantitative relationship between
the loss of the global model and the decrease of the Aol
values of clients’ datasets. Secondly, the Aol value of each
client’s dataset will increase along with the rounds of local
training and will return to zero until it is selected to update
the dataset. Both make the client selection problem much more
challenging, especially under the budget constraint.

To address the above challenges, we first derive a conver-
gence upper bound for the novel Aol-aware FL system. On
this basis, we transform the optimal client selection problem
to minimize the loss of global model to the problem of
optimal client selection with minimum average Aol value.
Furthermore, we model the problem as a Restless Multi-
Armed Bandit (RMAB) problem, where each client is seen
as an arm and the Aol values of clients’ local datasets are
regarded as the corresponding rewards. By solving the RMAB
problem, we propose a Whittle’s-Index-based Client Selection
algorithm, called WICS, in which we calculate the Whittle’s
Index for each client in each round of FL and then adopt
a greedy strategy based on Whittle’s Index to select clients,
while ensuring the budget is no larger than the given threshold.
More specifically, the major contributions are summarized as:

e We introduce an Aol-aware FL system, where the server
can select some clients to provide fresh datasets for
local model training so as to minimize the loss of the
global model under a budget constraint. To the best of
our knowledge, this is the first FL work that takes into
account the freshness of local datasets for client selection.

e We derive a convergence upper bound for the novel Aol-
aware FL system, whereby we analyze the relationship
between the training loss of the global model and the Aol
values of clients’ local datasets. Based on the analysis,
we model the client selection problem as a restless multi-
armed bandit problem to be solved.

e We deduct the RMAB problem into a decoupled model
and theoretically derive the corresponding optimal strat-
egy, based on which we propose the WICS algorithm
by applying Whittle’s index methodology. In addition,
we prove that the WICS algorithm can achieve nearly
optimal client selection performance.

e We conduct extensive simulations to verify the perfor-
mance of our proposed algorithm using two datasets:
MNIST and FMNIST. The results show that the perfor-
mance of WICS is better than comparison algorithms.

The remainder of the paper is organized as follows. In
Sec. II, we introduce our model and problem. We carry on
the convergence analysis in Sec. III. The WICS algorithm is
elaborated in Sec. IV. Then, we evaluation WICS in Sec. V.
After reviewing related works in Sec. VI, we conclude the
paper. Proofs of theorems are moved to the Appendix.

II. SYSTEM OVERVIEW AND PROBLEM FORMULATION
A. Federated Learning with Data Collection

We consider an Aol-aware FL system, as shown in Fig.1,
which is composed of a central server and a set of clients,
denoted by N' = {1,2,--- , N'}. In conventional FL systems,

the local dataset of each client is generally given in advance
and will remain unchanged during the FL process. Unlike
these systems, the clients in our system can update their local
datasets by spending some costs and can use fresh data to
train local models. The fresher the local datasets provided by
clients, the more accurate global model will be obtained by
the FL system. Besides, the time is divided into 7" equivalent-
length time slots, in each of which the server will conduct a
round of federated learning under a budget. For simplicity, we
assume the server has the same budget in each round, denoted
by B, which can be extended to the case of heterogeneous
budgets. Specifically, the whole FL system works as follows.

Firstly, the server selects a subset of clients N; (C N) to
update their local datasets at the beginning of each time slot
teT ={1,---,T}. For each client ¢ € N;, we denote its
local dataset as D}é, which can be regarded as the data collected
from some fixed Point of Interests (Pols) or purchased from
some preferred data owners by client ¢. The dataset might be
updated on-demand by the client, so that it might vary over
different time slots. For simplicity, we assume that the datasets
across different time slots remain the same size (otherwise,
we can randomly sample the same number of data items from
different sizes of datasets), i.e., |Di| = |Di| = n;, for any
two time slots ¢, € 7. Since each client might spend some
costs in obtaining its local dataset, the server will pay a reward,
denoted by p;, to client ¢ as the compensation. Meanwhile, the
server publicizes global model parameters, denoted by w;_1,
to all clients for their local trainings. Here, w;_1 is the result
of the (¢ — 1)-th round of federated learning. Specifically, wq
represents the initial global model parameter.

Secondly, each client i (€ N') performs local training after
receiving the global model parameter w;_; from the server.
Denote the loss function of local training as

, 1

Fri(w; Dy) = o7 2ven; (Wi ), M
where w is the model parameter, D} is the local training
dataset, and f(-) is a server-specified loss function, e.g., mean
absolute loss, mean squared loss, or cross entropy loss. Then,
based on the received global model parameter w,_1, client @
performs 7 steps of mini-batch stochastic gradient descent to
compute its local model parameter w; as follows:

wit Tt = Wt =V E (w6, 2
where £k =0,--- ,7—1, 52’]“ is the k-th mini-batch sampled
from D}, 1, is the learning rate in the ¢-th round, wy” = wj
and wz’ = w;_1. Finally, client ¢ uploads wi to the server.

Thirdly, the server aggregates the received local model

parameters to obtain the global model parameter w; as follows:

N n; i
Wy =D imy i 3)

where n = vazl n; is the total quantity of training data in
each time slot. Then, the server sends the updated global model
w; back to each client for the next round of local training.

Overall, the global loss function is defined as follows:

1 , ;
Fw) & 5 500 X0l % Fri(w D). (4)



The goal of the whole FL system is to obtain the optimal
model parameter vector w* so as to minimize F(w), i.e.,

®)

w* = argmin F(w).
w

B. Problem Formulation

In this paper, we focus on the data freshness in FL systems.
Inspired by sensing systems, we utilize the concept of Aol to
indicate the freshness of the local dataset, which is defined
by the elapsed time since the local data was generated.
Specifically, let the current round of FL be in the ¢-th time
slot and wu;(t) be the latest update time slot of client i’s local
dataset D!. Then, the Aol value of D} (hereafter called client
i’s Aol, for simplicity of presentation) is represented as

Especially, A;(0) = 0 for all clients. Further, the dynamics of
client 7’s Aol can be described as follows:

NPT I S T o
O 0, otherwise.

It is worth noting that different client selection strategies
will lead to various local data freshness even for the same
client. Furthermore, different client selection strategies will
also influence the loss of the global model, since the local
data freshness affects the quality of local training. Our goal is
to minimize the loss of the global model after the whole FL
process by selecting the optimal client set A, for each time slot
t € T under the limited budget B. The client selection strate-
gies considered in this paper are non-anticipative, i.e., these are
strategies that do not use future knowledge in selecting clients.
Let IT be the class of non-anticipative strategies and 7 € II be
an arbitrary admissible strategy. More specifically, we utilize
A™(t) = [aT(t), -+ ,a%(t)] (t € T) to indicate whether each
client is selected in the ¢-th time slot, i.e., a;(t) = 1 means
1 € N; otherwise, a;(t) = 0 means 7 ¢ N;. Then, we can
formalize the problem as follows:

P1: rnelhl E[F(wr)] — F*, )
s.t. al(t) € {0,1},Vi e NVt €T, (8a)
Ai(t) = Liar =0y [Ai(t = 1) + 1], (8b)
vazl af (t)pi < B, VteT. (8c)

Here, wp in Eq. (8) is the aggregated global model after
T rounds, F* = F(w*) is the optimal global loss, and
E[F(wr)] — F* is the gap between the expected global loss
after T' rounds and F*. Naturally, the closer E[F'(wy)] — F™* is
to zero, the better is the performance of wr, Eq. (8a) represents
that each client can only be selected at most once by the server
for updating its local dataset in each time slot, Eq. (8b) is the
reformulation of Eq. (7), i.e., the dynamics of each client’s
Aol, where 1, is an indicator function, and Eq. (8c) indicates
that the budget constraint in each round of FL. For ease of
reference, we list major notations in Table L.

III. CONVERGENCE ANALYSIS

To identify how each client’s Aol affects the global model,
we conduct a rigorous convergence analysis of our Aol-aware

TABLE I
DESCRIPTION OF MAJOR NOTATIONS
Variable | Description
1,1 the index of client and time slot, respectively.
N, T the set of clients and time slots, respectively.
N the set of selected clients to in time slot ¢.
D;,|Di| | the dataset of client ¢ in time slot ¢ and its size.
F(w) the global loss function with parameter vector w.
F;i(w) | the loss function of client 4 in time slot ¢.
wo, w™ the initial and optimal model parameter vector.
i the global model parameter vector and the local
Wt Wy model parameter vector of client ¢ in time slot ¢.
N the size of client 4’s local dataset and the total size
v of all clients’ local datasets, respectively.
k,T the index and total number of local iterations.
[ the k-th mini-batch sampled from D:.
ur the learning rate in time slot ¢.
7,M the minimum and maximum of the learning rate.
Di the payment of client ¢ for obtaining fresh data.
B the budget of the server per time slot.
u; (t) the latest update time slot of the dataset Dj.
A;(t) the Aol value of client ¢ in time slot ¢.

FL system. We start with several significant assumptions on
the local loss function F} ;(w).

Assumption 1 : For all ¢t € {1,2,---,T}, i €
{1,2,--- N}, F,,; is [-smooth, that is, for V wq, wo,
Fii(wg) — Fyi(w1) < (VFi(wr),ws —wr) + g”wz —wi %

Assumption 2 : For all ¢t € {1,2,---,T}, @i €
{1,2,--- ,N}, F;, is p-strongly convex, i.e., for V wy, wo,
Fyi(we) — Fyi(wr) > (VE i(w1), w2 — wi) + & llws — wi ||

Assumption 3 : For all ¢t € {1,2,---,T}, i €
{1,2,---, N}, the stochastic gradients of the loss function
is unbiased, i.e., E¢[VF ;(w;§)] = VF;(w).

Assumption 4 : For all ¢t € {1,2,---,T}, i €
{1,2,---, N}, the expected squared norm of stochastic gra-
dients is bounded, i.e. E¢|[|VF; ;(w;&)||? < G7 + A,(t)o?.

Assumptions 1-3 are widely-used assumptions in many
existing convex FL works [8], [20], [21], which ensure that
the gradient of F;;(w) does not change arbitrarily quickly
or slowly with respect to w and the stochastic gradients
sampled from local datasets are unbiased. It is noteworthy
that models with convex loss functions, such as Logistic
Regression (LR [22]) and Support Vector Machines (SVM
[23]), satisfy Assumption 2. The evaluation results in Section
VI show that our algorithm can also work well for the models
(e.g., CNN [24]) whose loss functions are non-convex.

Assumption 4, however, is a novel assumption we made for
our Aol-aware FL systems. Distinctly from the assumptions
made in other FL systems, where those works have assumed
that E¢ || VF; ;(w; €)||? is bounded by an inherent bound G? of
client ¢, we take into account the impact of the clients’s Aol
on model training. Specifically, we assume the upper bound
of E¢||VF;;(w;€)||? is positively correlated to A;(t), and
the coefficient o2 represents the sensitivity of client i’s local
dataset to freshness. The potential insight is that a smaller Aol
value means a fresher local dataset and that better models can
be trained, which is consistent with a smaller gradient norm



indicating a better model performance when the loss function
is convex. In particular, if client ¢ is selected by the server
to update its local dataset in round ¢, i.e., A;(¢t) = 0, then
Assumption 4 will degrade to E¢ ||V Fy ;(w; €)||* < GZ, which
is the same as the assumptions in [8], [20], [21]. It is worth
noting that all three loss functions (mean absolute loss, mean
squared loss, or cross entropy loss) satisfy Assumptions 1-4.

Theorem 1 (Convergence Upper Bound). For ease of expres-
sion, we define 7 = ming{n:} and 7 = max;{n;}. Suppose
that Assumptions 1 to 4 hold and the step size meets 7 < 2.
Then, the FL training loss after the initial global model wy is
updated by Eq. (3) for T' rounds satisfies:

E[F(wr)] ~ F* < 50— BT o,

T 5D A (e BRI Y

—OJ*”Q

where o; = "”f + N7 (7‘ n+ (T 1) n2)'

Theorem 1 clearly presents the relatlonship between various
factors and global loss in our Aol-aware FL system.

IV. PROBLEM DEDUCTION AND ALGORITHM DESIGN

In this section, we propose the client selection algorithm,
called WICS. First, we harness the convergence upper bound
to convert the optimization objective of Problem P1. In order
to minimize the average Aol value, we then model the Aol
minimization problem as a RMAB problem [25]. Next, we
relax the RMAB problem and apply the Lagrangian Dual
approach to decouple it into subproblems. Then, we obtain
the optimal strategy for each decoupled problem. Finally, we
derive the closed-form expression for the Whittle’s Index and
present the detailed algorithm.

A. Using the Convergence Bound to Convert Problem

According to Theorem 1, we obtain the convergence bound
of the global model after 7" rounds. It is not difficult to observe
that we can control the convergence of the FL process by
controlling the right side of Eq. (9). Therefore, we can convert
Problem P1 by minimizing the right side of Eq. (9). After
neglecting the constant term, the objective of Problem P1 can
be converted as follows:

min —

rell TN Zt 121 1¢2

Note that ¢; is dependent on «; and UZ.Q, and «; is closely
related to n;. This indicates that the size of the local dataset
and its sensitivity to data freshness will affect the client
selection of the FL process.

As a result, we can convert Problem P1 as follows:

ONIEES

. (10)

P2: Ernellr"ll TNZt 127, 1¢1 1() (11)
s.t. al(t) € {0,1},Vie N,Vt € T, (11b)
Ai(t) = Tgary=oy [Ai(t = 1) +1],  (llc)

SN ar(tp; < B, VteT. (11d)

B. RMAB Modeling and Solution

To solve Problem P2, we cast it as a Restless Multi-Armed
Bandit (RMAB) problem [25] by means of the stochastic
control theory. Distinct from classic MAB problems [26],
where the unused arms neither yield rewards nor change states
and the states of all arms are known at any time, the arms in
RMAB might continue to change states according to different
transition rules even if they are not being pulled. In this paper,
we regard each client as a restless bandit and the Aol value as
its state since the Aol value changes in every time slot even
if the client is not selected. However, the RMAB problem is
usually PSPACE-hard [25]. To this end, we adopt the Whittle’s
methodology to solve this problem [27].

Firstly, we relax Problem P2 by replacing the constraint
Eq. (11d) with a relaxed version: —~ S SN a7 ()2 <
%7 Vt € T. Then, we apply the Lagrangian Dual approach to
transform Problem P2 into a max-min problem, i.e., Problem
P3, which is shown as follows:

P3: max ) minger £(m, A), (12)
s.t. alf(t) €{0,1},Vie N, Vt € T, (12b)
Ai(t) = Liar(p=oy [Ai(t = 1) + 1], (12¢)

A>0. (12d)

Here, the lagrange dual function £(m, \) is given by

1
£(m2) = g Tima Lt [06i(t) + 2aT (] - %
1
a2 RO NGRSO IS
where )\ is the lagrange multiplier.

To address Problem P3, we first solve the problem
ming e £(7, A), which means that we need to derive the op-
timal client selection strategy 7* to minimize £(7, A) for any
given \. Notice that we can ignore the constant item % and
let £(m, A) be solved for each individual client separately. The
problem associated with each client is actually a decoupled
problem, whose goal is to determine whether or not the client
should be selected to update its local dataset in each time
slot. Specifically, we formalize the decoupled problem over
an infinite time-horizon as:

(13)

P4: ggg{ngloo 7 D |G A )+Aa:¢<t>}} (14)
s.t. al(t) € {0,11,Vie N,Vt € T, (14b)
Ai(t) = Liar(t)=oy [Ai(t — 1) + 1], (14c¢)

2> 0. (14d)

Then, to address the decoupled problem, we model it as a
Markov Decision Process (MDP), which consists of the Aol
state A;(t), the control variable a7 (t), the state transition
functions P(-), and the cost function C,(-). Specifically, the
state transition from time slot ¢ to time slot ¢ + 1 in MDP is
deterministic as follows:

P(Ai(t+1) = Ai(t) + 1]af (1) = 0) = L
P(Ai(t+1) =0laf (t) =0) =0;

P(A;(t+1) = A;(t) + 1]a] (t) = 1) = 0;
P(A;(t+1)=0[a](t) =1) = 1; (15)



Algorithm 1: Whittle’s Index based Client Selection

Input: Aol value of each client {Aq(¢), -, An(t)},
weight of each client {¢1,--- , ¢}, payment of each
client {p1,--- ,pn}, budget B

Output: The index set of selected clients A1

1: for each client 7 in N do

2:  Calculates its WI value W1, ; according to Eq.(18)

and sends it to the server

3: end for

4: The server sorts the clients into (71,42, -+ ,inx) such
that WI;, , > WU, >--- > WI;, ;, and initializes an
empty set NV;y1, an initial index k = 1

5: while >, - pi+pi, < B do

: M+1(*./\/<:+1U{Zk},k:k'+1

7. end while

Moreover, we can see the objective of Problem P4 as the
cost function of MDP. The cost function on the transition from
time slot ¢ to time slot ¢ + 1 is defined as

B,

2

Ci(Ai(t), a7 (1)) =

; A (t) + Aaf (t), (16)
where the first part is associated with the resulting Aol value
in time slot ¢. Hereafter, for better presentation, we regard the
Lagrange multiplier A as a kind of service charge for client @
under the MDP model, which is generated only when a7 (t)
1. Note that cost fuction and service charge are not the real
charge and cost, which will only be mentioned in MDP.
Finally, we derive the optimal strategy of this MDP and

prove that it is a special type of deterministic strategy.

Theorem 2 (Optimal Strategy for Problem P4). Consider the
decoupled model over an infinite time-horizon. The optimal
strategy T* is selecting client i in each time slot t to update
its local dataset only when A;(t) > H; — 1, where

1 1 2A\p;
Hi—\\—Q'F 4+B¢iJ.

Note that the threshold H; is a function of the service charge
A. Intuitively, we expect that the server selects client ¢ when
A;(t) is high to reduce the Aol value and does not select client
¢ when A;(t) is low so as to avoid the service charge .

a7

C. The WICS Algorithm

Our goal is to solve the Lagrange dual function for Problem
P3, i.e., max) min;er £(7, A). Now, Theorem 2 has provided
the solution of min,crp £(m,A) for any given A, i.e., the
optimal strategy 7*. Then, we need only to focus on the
problem of maxy £(7*,\), i.e., finding an optimal A to
maximize L£(7*, \). However, it is hard to find the optimal
solution to solve this problem. We can only approximately
deal with the problem by applying the Whittle’s Index method-
ology [27]. More specifically, we still decouple the problem
maxy £(7*,\) to find an individual A\ parameter for each
client ¢ separately, denoted by \;.

- 4 A
lv i Pat<y
[on 03 0.4 0.5 06 0.7
pi 15 3 35 2 25
Wl =020 Wiy =013 Wlo=014 Wl =030 - Wiz, =028
W, =120 0 Wl; =080 i Wiy, =086 Wiy, =030 Wi;; =028
Wl =020 Wi, =150 ‘W, =014 Wi, =180 Wi, =120
Wi3 =120 Wiy; =013 - Wiy3 =086 Wl;=030 Wi =336
- N4 v

Fig. 2. An example for Algorithm with B =5

After decoupling the problem, we turn to maximize
T Zf:l {Bf Ai(t) + Nal (t) — ﬁ;} for each client ¢ sep-
arately, where )\; might not be same for different clients. Ac-
tually, it is a monotonic increasing function of A; when given
initial state A;(0) = 0. In addition, A\; needs to satisfy the
condition of Theorem 2, i.e., A;(t) > H; — 1, which indicates
that \; is bounded in each time slot. Therefore, \; maximizes
the average value of 4 Zf:l [Bp‘b’ Ai(t) + Nl (t) — ﬁ—;j
when A,(t) = H; — 1. Expressing this critical value as W, ,,
we can get the closed-form expression of W1I;; as follows:
(Ait) + 1)(Ai(t) +2)Boi
2p;

where WI;; stands for the Whittle’s Index. Note that af, n;
are included in ¢;, so W1I;; is dependent on aiz,ni, B, and
A;(t). Since 02, n;, and B are constants, W1, ; is a function
of A;(t), which means that A; can also be seen as a function
of A,(t). In general, the Whittle’s Index is not the same for
different clients, which indicates that the \; that optimizes the
different decoupled problem is different.

Now, based on the Whittle’s Index, we can design the WICS
algorithm for Problem P3 (and also for Problem P2 based on
the Lagrange duality). The basic idea is to select the clients
with higher WI values in each time slot, while ensuring that
the budget is not exceeded. As shown in Algorithm 1, we
first calculate the WI value for each client according to Eq.
(18) and then sort all clients in A into the set (i1,72, - ,iN)
such that WI; > Wi, s > --- > W1, ; (Steps 1-3). Next,
we greedily select the clients into a winning set NV; and give
the corresponding payments for the winning clients until the
remaining budget cannot afford the next client (Steps 4-6). We
illustrate an simple example in Fig. 2.

Finally, we analyze the performance of the WICS algo-
rithm. Obviously, the computational complexity of WICS is
dominated by the sorting operation on clients’ WI values, i.e.,
O(Nlog N). In addition, we define the ratio p™ = gé to
indicate the performance of strategy m, where Lp is a lower
bound to the optimal performance of Problem P2 and Ug
is an upper bound to the performance of Problem P2 under
strategy 7, and we say that strategy 7 is p™-optimal. Then,
the WICS algorithm satisfies the following theorem.
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Theorem 3 (Approximate Optimality). The solution produced

by the WICS algorithm to Problem P2 over an infinite time-

horizon is p"V!-optimal, where

18N —2
M-1"

J and Ppa. = max;{p; }.

M= |2

Prmaz

Note that the objective of Problem P2 (i.e., Eq. (11))

is derived from the objective of Problem P1 (i.e., Eq. (8))

according to the convergence bound analysis. Thus, the WICS
algorithm is at least p"V/-optimal for Problem P1.

V. PERFORMANCE EVALUATION
A. Evaluation Methodology

1) Simulation Setup: We conduct extensive simulations on
two widely-used real datasets: MNIST [28] and Fashion-
MNIST (FMNIST [29]). The MNIST dataset contains 60,000
handwritten digits for training and 10,000 for the test, while
the Fashion-MNIST dataset contains 60,000 fashion clothes
for training and 10,000 for the test. We adopt both the
convex model (i.e., LR) and the non-convex model (i.e., CNN).
The CNN consists of two 5 x 5 convolution layers (32, 64
channels), each of which is followed by 2 x 2 max pooling,
two fully-connected layers with 3136 and 512 units, and a
ReLU layer with 10 units. We first let the number of clients
N = 10 and the number of time slots 7' = 200. Next, we
generate the simplified budget in each time slot (i.e., B) from
{25,40,55,70}. Then, we determine the cost p;. We assume
that the cost p; is proportional to the number of local data
and let the cost for each client not exceed [5,15]. For all
experiments, we initialize our model with wy = 0 and use
an SGD batch size of b = 16. Without loss of generality, we
set the learning rate of LR to be 7, = 0.005 and the learning
rate of CNN to be 7; = 0.01 for all time slots and each client
performing 7 = 10 local iterations. After that, we randomly
select the weight ¢; € (0,1) according to Eq. (10), which is
similar to the method in [30]. In order to reflect the impact
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Round Round

(a) Accuracy of CNN on FMNIST (b) Loss of CNN on FMNIST
Fig. 6. Performance of CNN on FMNIST

150 200

of Aol on the local data, we mislabel some local data of each
client according to its Aol value in each time slot. Specifically,
we will mislabel more data if the client has a larger Aol value.
2) Algorithms for Comparison: Since WICS considers the
freshness of local datasets in FL, there are no existing al-
gorithms that can be directly applied to our problem. To
the best of our knowledge, the closest algorithm that can
be adapted to our setting is the ABS algorithm proposed by
[31], which is also an index-based strategy. However, since
the ABS algorithm considers the age-of-update (AoU) rather
than Aol, we need to modify it to deal with the Aol in our
model. More specifically, the modified ABS index of client
1 in time slot ¢ is given by m Similarly to our WICS
strategy, the ABS algorithm greecfily selects clients with larger
modified ABS index values while ensuring that the budget is
not exceeded in each time slot. The difference is that only
selected clients can participate in this round of FL training.
Moreover, we implement the MaxPack algorithm [32] and
the Random algorithm for better comparison. The MaxPack
algorithm is the comparison algorithm of the ABS algorithm
in [31], which selects clients with larger Aol values while
ensuring that the budget is not exceeded in each time slot.

B. Evaluation Results

In this section, we train different models (i.e., LR, CNN)
on both MNIST and FMNIST to compare the performance
of different algorithms. Notably, we conduct experiments with
variant budget B, which shows a similar performance. Due to
the limited space, we only illustrate the result of B = 40.

First, we exhibit the performance of different algorithms for
LR on MNIST and FMNIST in terms of both accuracy and
loss, as shown in Fig. 3 and Fig. 4, respectively. Accuracy
measures the number of correct predictions, and loss measures
the difference between the prediction and actual output. In
Fig. 3, we can observe that the achieved accuracy of all four
algorithms rises along with the increase of rounds, while the
achieved loss of all four algorithms decreases with the increas-
ing of rounds. Moreover, the performance of WICS in terms
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of both accuracy and loss is better than the three compared
algorithms. In Fig. 4, we conduct the same experiments of LR
on FMNIST and obtain similar results. We see that WICS can
also achieve the best results in all algorithms. This means that
WICS is effective for models with a convex loss function,
which matches with the theoretical convergence bound. To
verify the effectiveness of WICS when the loss function is
non-convex, we further train CNN on MNIST and FMNIST.
Figs. 5-6 show that the performances of WICS are still better
than those of other algorithms when the loss function does not
satisfy the convex assumption.

Furthermore, we analyze the influence of different budgets
B on all four algorithms in terms of loss, where we set the
number of clients N = 10. We take WICS as an example,
and display the results in Figs. 7-8. The figures indicate that
whether the loss function of the model is convex or not, the
larger B is, the smaller the achieved loss of the model. This
can be explained by the reason that a larger B allows more
clients to update their local datasets in each time slot, so as
to make the local datasets fresher and achieve better learning
performance, which also matches with the convergence upper
bound analysis of Section III.

Finally, we evaluate the performance of all four algorithms
in terms of average Aol, which is computed by A =

~7 Zt 1 Z 1 % A(t). The evaluation results are depicted
in Figs. 9-10, Where we scale B from 25 to 70 with an
increment of 15 and evaluate the effects of the number of
clients N. The figures show that WICS can achieve the lowest
weighted average Aol in all four algorithms. More specifically,
ABS, MaxPack, and WICS are far better than the Random
algorithm, and the performance of ABS is the closest when
compared to WICS. In addition, the weighted average Aol
exhibits an uptrend with the increasing of N. This is because
when we keep the budget fixed, the number of clients who
are not selected by the server in each time slot will increase
with N, i.e., the increment of Aol values in each time slot
will become larger. Hence, the weighted average Aol is also
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increasing with the increment of N. Moreover, the results in
Figs. 9-10 are consistent with those in Figs. 3-6, which verifies
the correctness of our Assumption 4.

VI. RELATED WORK

Client Selection for FL: Client selection has been widely
investigated in the literature of FL [1], [33], [34], considering
various facets of the system, such as statistical heterogeneity
and system heterogeneity. Different optimization objectives
like importance sampling and resource-aware optimization-
based approaches have also been considered. The goal of
importance sampling is to reduce the variance in traditional
optimization algorithms based on stochastic gradient descent
(SGD). For example, most existing works make use of clients’
local gradient [33] or local loss [34] information to measure
the importance of clients’ local data, and then select the
clients according to the data importance. In addition, resource-
aware optimization-based approaches, such as CPU frequency
allocation [35], communication bandwidth allocation [36]
and straggler-aware client scheduling [37], select appropriate
clients to optimize the different aspects of the federated
learning system. However, most of these works assume that
the local data of clients do not change during the FL process,
while our work focuses on the scenario where clients’ local
data need to be updated periodically.

Age of Information: Aol is a novel application-layer
metric for measuring freshness that was initially conceived
by [19]. Since its inception, there has been a lot of studies on
Aol optimization (see an online bibliography in [38]), which
includes a wide range of problems. An important class of
problems that has attracted much attention is how to design
schedulers to minimize Aol [19], [38]-[42]. For instance,
Kaul et al. [19] develops a new analytical model for mobile
crowd-learning, which takes into account the strong couplings
between the stochastic arrivals of participating users, Pols
information evolutions, and reward mechanisms. Sun et al.
[38] considers how to minimize Aol when scheduling deci-



sions are restricted to both bandwidth and power consumption
constraints. Dai et al. [39] studies how to minimize the average
Aol of the deployed sensor nodes in data collection by mobile
crowdsensing. The authors in [40] studies the problem of
minimizing Aol in general single-hop and multi-hop wireless
networks. Fang et al. [41] studies how to design a joint
preprocessing and transmission policy to minimize the average
Aol at the destination and the energy consumption at the
IoT device. Tang et al. [42] considers how to minimize Aol
when scheduling decisions are restricted to both bandwidth
and power consumption constraint. However, none of these
existing works consider the problem of minimizing the average
Aol value of local datasets in FL systems.

VII. CONCLUSION

In this paper, we introduce a novel Aol-aware FL system,
where clients might use fresh datasets to perform local model
training and the server tries to select some clients to provide
fresh datasets in each time slot but is constrained by a limited
budget. We use Aol to indicate the freshness of datasets and
theoretically analyze the convergence upper bound of the Aol-
aware FL system. On this basis, we model the corresponding
client selection issue as a restless multi-armed bandit problem,
and propose a Whittle’s-Index-based client selection algo-
rithm, i.e., WICS, to solve this problem. Moreover, we prove
that the WICS can achieve nearly optimal performance on
client selection. Finally, we also conduct extensive simulations
on two real datasets and the simulation results demonstrate
the effectiveness of our algorithm. Future investigations will
consider the fine-grained integration of fresh data and stale
data, as well as the discount factor based on time, which gives
more weight to fresh information.

APPENDIX
A. Proof of Theorem 1

Proof. First, we analyze how the difference between E[F(w;)]
and F* (i.e., F(w*)) changes in each round. Due to 3-smooth
and by using the fact that VF (w*) = 0, we have

Q= Q4 1+EHZZ 1 n(wt—wt E
+2E<wt 11— w* ZZ 12 (wf — wi 1)> (20)

We use A; and A, to denote the second and third terms
in (20), respectively. For A;, we can bound it by using the
AM-GM inequality and the Cauchy-Schwarz inequality:

N  n;n T—1 ik, ~i
Al:H*Zi 1%2 VFtv'(Wt 751‘,)“2

<N7'Zz 1nn727t Zk 0 |VFH( ,§£)||2
Further, according to Assumption 4, it follows:

N n?
ni iz b (G + Di(t)o?] .
For As, we have the following equation:
A2:<wt_1—w*,—2£vl ;;mVFft(wt 1a£t)>
N niNt T— ', 7
7_21‘:1 Tn k:i VFt,i(wi §£t)>'

21

E[A,] < N7 (22)

n <wt_1 —w* (23)

Then, we use By and B; to denote the first and second
terms in (23), respectively. Next, we bound E[B;] and E[Bs],
respectively. Using the p-strongly convex of F; ;(-) and the
fact that Fy; < Fyi(wi—1), we can bound E[B4] as follows:

E[B] = 7251 R (wp g — w*, VI i(we-1))
<YL, B (G 4+ Ai(t)o?] - 0, . (24)

For E[B5], we utilize the p-strongly convex in assumption
2 and have the following inequality:

E[Ba] < L E w1 — |
1 N NNt T— ’Z, 1
+ B L 5 00 V(e €D
KN
N —1)2
“T’tQ_ le L [G2 A ()0?] . (25)
Comblnlng the above equations, we can obtain that:
Q< (1= B0+ D, 5 (6 4 Ao
2neu+2(r — 1 n2
4 g T2 D N 2y A (10
(1—th1+Z a; [GF + Ai(t)o?] . (26)

Then, by induction, we can prove
QOr < (1—%)%204&)?:1 SN o [G2+Ai(1)e?] . 27)

Finally, we have the following bound:

ELF(wr)] ~ F* < 5 (01— BTy — |2
+ 3 T S (G Al)e?] . (28)
Therefore, the theorem holds. O

B. Proof of Theorem 2
Proof. Due to limited space, we present our proof sketch of
Theorem 2. Consider the decoupled model with Aol state A;
and control variable a;. Then, Bellman equations are given by
the following equation: "

S(A) +¢ Hl{lg}l}{pi A+ S(A; +1), b —A; + A},

a;
where A; € {0,1,---} and S(A,;) is the differential cost-to-
go function. Note that the first part of Eq. (29) corresponds to
a; = 0, while the second part is opposite.

In fact, any selection strategy can be regarded as a threshold
strategy. Therefore, we start the proof by assuming that the
optimal strategy 7* is a threshold strategy that selects client ¢
when 0 < A;(¢t) < H — 1, and does not select when A;(t) >
H, for a given value of H € {1,2,---}.

First, we analyze the case A; > H. According to Eq. (29),
we can easily get the condition for the strategy 7 to select
client 7 with state A; > H, which is as follows:

S(A; +1)> X, S(A) =\ — ¢+¢Z (30)

Next, we analyze the case 0 < A; < H — 1. Slmllarly, the
condition for the strategy 7 that does not select client %

S(A;+1) <A, S(A) = S(A; +1) — ‘f’f

(29)

¢+ 3D

Now, we can derive Theorem 2 according to [43] ]



C. Proof Sketch of Theorem 3
Proof. Due to limited space, we borrow the basic idea in [43]
to present our proof sketch. We denote the low bound of the
performance of Problem P2 as Lp and the upper bound of
the performance of Problem P2 under WICS as U}éVI .

First, UY'! will be smaller than the upper bound in [43]
since selecting more clients in each time slot will get a smaller
average Aol value, i.e., we have:

Up <(9-1/N)XN, ¢ (32)

For L g, we use the same method in [43], which will lead
to a smaller optimal performance of Problem P2. Similarly
to [43], we employ Fatou’s lemma and have

Lp>(M—-1)3N, ¢:/2N. (33)

Next, we can derive the following bound pV! =U}! /Ly <
(18N —2)/(M — 1) Thus, the theorem holds. O
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