
Multi-Agent Reinforcement Learning for
Cooperative Edge Caching in Internet of Vehicles

Kai Jiang∗, Huan Zhou∗, Deze Zeng†, and Jie Wu‡
∗College of Computer and Information Technology, China Three Gorges University, Yichang, China

†School of Computer Science, China University of Geosciences, Wuhan, China
‡ Department of Computer and Information Sciences, Temple University, Philadelphia, USA
jiangkai0112@gmail.com, zhouhuan117@gmail.com, deze@cug.edu.cn, jiewu@temple.edu

Abstract—Edge caching has been emerged as a promising
solution to alleviate the redundant traffic and the content
access latency in the future Internet of Vehicles (IoVs). Several
Reinforcement Learning (RL) based edge caching methods have
been proposed to improve the cache utilization and reduce the
backhaul traffic load. However, they can only obtain the local
sub-optimal solution, as they neglect the influence of environment
by other agents. In this paper, we investigate the edge caching
strategy with consideration of the content delivery and cache
replacement by exploiting the distributed Multi-Agent Reinforce-
ment Learning (MARL). We first propose a hierarchical edge
caching architecture for IoVs and formulate the corresponding
problem with the objective to minimize the long-term cost of
content delivery in the system. Then, we extend the Markov
Decision Process (MDP) in the single agent RL to the multi-
agent system, and propose a distributed MARL based edge
caching algorithm to tackle the optimization problem. Finally,
extensive simulations are conducted to evaluate the performance
of the proposed distributed MARL based edge caching method.
The simulation results show that the proposed MARL based
edge caching method significantly outperforms other benchmark
methods in terms of the total content access cost, edge hit rate and
average delay. Especially, our proposed method greatly reduces
an average of 32% total content access cost compared with the
conventional RL based edge caching methods.

Index Terms—edge caching; multi-agent reinforcement learn-
ing; content delivery; cache replacement; markov decision pro-
cess

I. INTRODUCTION

Along with the recent advances in wireless access tech-
nologies and the steady growing of vehicles on the roads, the
traditional technology-driven transportation system is evolving
from an era of providing simple transportation services into
a more powerful data-driven intelligent era. As an important
paradigm in the Fifth Generation (5G) networks, Internet of
Vehicles (IoVs) enable vehicles to provide reliable vehicular
multimedia services, cooperative cruise control and traffic-
related information management, which have paved a path
towards intelligent transportation, as well as enhanced driving
safety and travel comfort for drivers and passengers [1], [2]. In
the meanwhile, the flourishing vehicular applications require
vehicles to access huge amount of Internet data, especially
for some delay-sensitive contents (e.g., video, image-aided
navigation and live traffic information), leads to significant
redundant traffic loads and considerable delay for content
delivery in the network. Nevertheless, due to the centralized

characteristic of current cellular networks architectures, long
transmission distance and the limited channel bandwidth all
pose unprecedented challenges for supporting massive content
delivery while also satisfying the tight Quality of Service
(QoS) requirement in the future IoVs [3], [4], [5].

Indeed, the rapid increase in cost and latency driven by the
transmission distance in cloud-based processing has become
a severe issue in IoVs and attracted widespread academic
concern recently [6], [7]. Despite continuous efforts have
been spent on enhancing the channel bandwidth by adopting
sophisticated techniques, the utilization efficiency of the radio
spectrum is notably reaching its theoretical boundary [8].
Thus, such efforts will be not sufficient and a fundamental
innovation that breaks the bottleneck of massive content de-
livery in IoVs is urgently required.

Fortunately, stemming from the recent studies, different
popular contents require different levels of priority. Explicitly,
only a few popular contents are repeatedly downloaded upon
request from the majority of vehicles, whilst the remaining
large portion of the contents impose rather infrequent access
demands [9], [10]. This pattern has promoted the imple-
mentation of edge caching technique in IoVs. Specifically,
edge caching is emerged as a promising solution to alleviate
the redundant traffic and lower the content access latency
in the future IoVs, which caches popular contents in close
proximity to vehicles by utilizing the storage resources at
intermediate Roadside Units (RSUs). Hence, vehicles are able
to access popular contents from the caching-enabled nearby
RSUs directly, instead of downloading them from the remote
server via backhaul networks [11].

Extensive studies have focused on edge caching strategies
in IoVs [12]-[16]. However, these aforementioned typical edge
caching strategies cannot be applied to the dynamic IoVs
directly, due to the limited storage capacities of RSU in each
cell and the time-varying popularity of contents as well as
the tight constraint on content delivery deadline. In addition,
the neighboring RSUs are enabled to communicate and share
popular contents with each other, the synergies between their
cache should also be harnessed to achieve good performance.
Therefore, to improve the cache utilization in all cooperative
RSUs and reduce the backhaul traffic load, it is crucial that
an efficient edge caching strategy with content delivery and
cache replacement is available in the IoVs.

Recently, with the revival of Artificial Intelligence (AI),
emerging Reinforcement Learning (RL) has exhibited great
potential for efficient edge caching in IoVs. Without any
prior knowledge, RL can interact with the dynamic envi-
ronment to enhance the intelligence of IoVs, and thus learn
the optimal edge caching strategies. Specifically, the authors
in [17] utilized RL algorithm to investigate the flexible cache
decision-making strategies, so as to minimize the aggregate
cost across contents and time. In [18], a RL based method
was also exploited for dynamically orchestrate edge computing
and caching resources to improve system utility. In [19], a
RL based self-adaptive edge caching framework is proposed,
with the aim to reduce the access delay of users as well as
the traffic burden on the backhual. To jointly optimize the
content placement and content delivery in IoVs, a deep RL
based method is proposed to minimize the content access cost
in [20].

In general, most studies about RL based edge caching prob-
lems neglected the influence of environment by other agents
when a certain particular agent interacts and learns the envi-
ronment independently. Therefore, only the local sub-optimal
solution can be obtained in the system, not global optimal
solution, especially considering a long term optimization [21].
Besides, conventional centralized RL is easy to be trapped
in the curse of dimensionality by the exponential increase of
state-action space in practical dynamic scenarios [22], [23].
In this paper, we investigate the edge caching strategy with
consideration of the content delivery and cache replacement by
exploiting the distributed Multi-Agent Reinforcement Learn-
ing (MARL). We first propose a hierarchical edge caching
architecture for IoVs, where the cooperative caching among
multi-RSUs and Macro Base Station (MBS) is utilized to
minimize the content access cost and the backhaul traffic in the
system. Furthermore, we extend the Markov Decision Process
(MDP) in the single-agent RL to the multi-agent system and
tackle this optimization problem with a distributed MARL
based edge caching algorithm. The key contributions can be
summarized as follows:

1) We present the hierarchical edge caching architecture for
IoVs and formulate the corresponding problem with the
objective to minimize the long-term overhead of content
delivery in the system.

2) To address the overhead minimization problem, we first
introduce a MDP for the optimization of cache replace-
ment process in an available RSU.

3) Then, we extend the MDP to a multi-agent system, and
further tackle the optimization problem with a MARL
based edge caching method.

4) Simulation results demonstrate that our proposed method
greatly outperforms other caching strategies in different
scenarios.

The remainder of this paper is organized as follows. Sec-
tion II describes the system framework followed by the pro-
cess of content delivery and cache replacement. Section III
formulates the problem with the objective to minimize the

Core

Network

Content Service

Provider

RSU

MBS Vehicle

MBS-RSU Link

RSU-RSU Link

Content

Fig. 1. System Model.

long-term cost of content delivery in the system. Section IV
introduces our MARL based edge caching method and its
design in cooperative edge caching. Furthermore, we analyze
the simulation results in section V. Conclusion and future work
are introduced in section VI.

II. AI-EMPOWERED VEHICULAR EDGE NETWORK
ARCHITECTURE

In this section, we first present the network architecture
adopted in this paper, and then introduce the process of content
delivery and cache replacement in datails.

A. Network Infrastructure

We consider a cooperative edge caching-supported IoV
architecture of one macro-cell with an MBS and N small
cells, each of which with a RSU, as shown in Fig. 1. The
set of these RSUs is denoted by N = {A1, A2, . . . , AN}.
Considering the sufficient cache capacity, MBS is assumed to
be connected with the Service Providers (SPs) via the core
link and able to cache all available popular contents. Here,
we let F = {1, 2, . . . , F} denote the index set of F available
contents that are supported by the SPs, and sf denote the
size of content f(f ∈ F). In addition, each RSU is endowed
with limited available cache capacity of R, such that some
popular contents can be cached in the RSUs to reduce the
content delivery cost. All RSUs can be interoperable with each
other and connected to the MBS via wired line. I vehicles
(denoted as U = {1, 2, . . . , I}) randomly distribute in the
wireless coverage scope and request various popular contents
frequently via cellular links for a relatively long period. We
assume that those vehicles are located in at least one small cell
covered by a RSU. Furthermore, we assume that the system
operates in fixed length of time slots T = {0, 1, 2, . . . , t},
where t denotes the finite time horizon. In each time slot, a

vehicle can request only one content, while the caching and
delivery decisions of each RSU are also periodically updated.

Vehicles may have different preferences for popular con-
tents, we use content popularity ρf (f ∈ F) to reflect the
probability distribution of all requested contents in the content
library, i.e. ρf represents the probability of requesting the
content f among all the content requests by various vehicles.
Similar to the studies [12] [24], we assume that the content
popularity follows the Mandelbrot-Zipf distribution. Hence,
the expected probability of request for content f can be
expressed as:

ρf =
R−θf∑
i∈F R

−θ
i

, ∀f ∈ F (1)

where Rf is the rank of content f in the descending order
of content popularity; θ > 0 is the skewness factor, and the
content popularity will become more concentrated when θ
becomes larger.

Within the coverage of MBS, each RSU can cache various
contents to satisfy the demands of content services for vehi-
cles. Caching contents in RSUs allows the requested contents
much closer to vehicles, instead of excessively downloading
duplicated contents from remote MBS. Particularly, when a
vehicle sends a specific content request to the local RSU within
the range of the small cell, the local RSU will search its cache
space first to make sure whether the desired content is cached
in itself. If the requested content is not found in its cache,
the local RSU can obtain it either from the adjacent RSUs or
download it directly from the MBS through backhaul links,
and then deliver it to the vehicle. Meanwhile, all cooperative
RSUs may replace its cache with the popular contents based
on the vehicles’ requests in each time slot.

B. Content Delivery Model

In this paper, we use T1, T2, T3 to denote the content trans-
mission delay among MBS, cooperative RSUs and vehicles,
respectively. Specifically, T1 denotes the transmission delay
from a requested vehicle to its local RSUs, which is equal to
the value of content size divided by the wireless downlink
data rate between local RSU and the vehicle; T2 denotes
the transmission delay through RSU-RSU link; T3 denotes
the transmission delay through RSU-MBS link. Note that we
neglect the transmission delay of sending request identifier by
the vehicle due to its tiny data size and the high link rate in
most instance. Here, the wireless downlink rate can be derived
by

rn,i = Bn log2

(
1 +

Pigi,n
σ2 +

∑
v∈U\{i} Pvgv,n

)
(2)

where Bn denotes the channel bandwidth, Pi is the trans-
mission power, σ2 represents the power of intricate white
Gaussian noise, and gi,n is the channel gain of wireless prop-
agation channel. Without loss of generality, the interference
management is also considered for this wireless communica-
tion scenario.

Naturally, caching nodes (cooperative RSUs or MBS) will
incur certain costs for delivering the requested contents to the
vehicles. Here we use C1, C2, and C3 to denote the incurred
transmission cost through Vehicle-RSU, RSU-RSU, and MBS-
RSU links, respectively, shown in Fig. 2. Specifically, the
incurred transmission cost through different links can be
calculated as the product of the link bandwidth times the
content delivery delay and the price of unit leased commu-
nication resource of the corresponding link. We assume that
the communications of MBS-RSU and RSU-RSU are all via
wired optical cables.

The decision of any local RSU i(i ∈ N) for the requested
content f can be represented by the binary decision variable
atf,i,j ∈ {0, 1} in time slot t. When a content request occurs,
the aggregate overhead through different links can be analyzed
in detail as follows:
• atf,i,i = 1 means that the content f is cached in the local

RSU i at time slot t, and it can be delivered to the vehicle
directly. In this case, the total overhead Ci,i is just the
transmission cost C1 from the local RSU to the vehicle;

• atf,i,j = 1 means that the content f is not cached in the
local RSU i, but at least one of cooperative RSUs have
cached the desired content, and then the local RSU can
inquire and obtain it from the cooperative RSU j for the
vehicle. Therefore, the total overhead Ci,j consists of the
transmission cost C2 from the RSU j to the local RSU i
and the transmission cost C1;

• atf,i,N+1 = 1 means that there is no desired content in the
local RSU i and cooperative RSUs, and then local RSU i
will forward the request identifier to MBS for processing,
i.e. local RSU i can download the content f from MBS
directly in time slot t. In this way, the total overhead
Ci,N+1 consists of the transmission cost C3 from MBS
to the local RSU i and the transmission cost C1.

C. Cache Replacement Model

Considering the practical dynamic property of content re-
quest in IoVs, a wise content replacement strategy is indis-
pensable to efficiently manage the cache space. In the cache
replacement phase, each cooperative RSU is able to update
its cached contents to improve the overall cache utilization
and effectiveness, as well as reduce the long-term overhead of
content delivery in the system.

Once the new requested contents come from other adjacent
RSUs or MBS in a time slot, the local RSU is supported to
determine whether these contents need to be cached, and if
needed, some contents in its existing cache may be replaced
due to the finite cache capacity. Therefore, the problem is
whether and which content should be replaced with the new
ones when the cache capacity is fully occupied? In this paper,
the content replacement control in RSU i can be represented
by ctf,i,i =

[
ct1,i,i, c

t
2,i,i, . . . , c

t
F,i,i

]
in time slot t, where

ctf,i,i ∈ {0, 1} (f ∈ F) indicates whether and which
content in RSU i should be replaced by the current content.
Furthermore, in order to utilize the cooperative multipoint
caching between RSUs efficiently, we will introducte a utility

. . .

Service Providers

Tier 1: MBS CachingTier 2: RSU CachingTier 3: Vehicular Terminals

Fig. 2. Content Delivery Process in Hierarchical Networks.

based cache replacement strategy in subsequent sections. The
utility value can be calculated based on the content delivery
cost incorporating different factors.

III. PROBLEM FORMULATION

A. Objective Function

The RSUs can cooperatively provide distributed edge
caching to make full use of the available cache resources.
This paper aims to minimize the long-term overhead of
content delivery in the system while satisfying some specific
constraints, and the objective function of the optimal cache
replacement is formulated as follows:

min
af,i,j

lim
T→∞

1

T

T∑
t=1

F∑
f=1

N∑
i=1

N+1∑
j=1

ρfa
t
f,i,jCi,j

s. t. C1 : atf,i,j ∈ {0, 1}, ∀f, ∀i,∀j
C2 : atf,i,j ≤ atf,j,j , ∀f, ∀i,∀j
C3 : atf,N+1,N+1 = 1, ∀f

C4 :

N+1∑
j=1

atf,i,j = 1, ∀f, ∀i

C5 :

F∑
f=1

atf,i,i · sf ≤ Ri, ∀i.

(3)

Here, C1 is the integer nature of the binary caching decision;
C2 guarantees that the content request can be answered by the
cooperative RSUs or MBS which have cached the requested
content; C3 denotes that the MBS has cached all available
popular contents by its sufficient cache capacity; C4 ensures

that the content requested by a certain vehicle can only be
handled by a RSU or MBS ultimately at one time slot; C5 is
the limitation of RSU’s cache capacity, which guarantees that
the total data size of the cached contents on a RSU should not
exceed its cache capacity.

B. Problem and Challenges

To address the above problem in (3), it is necessary
to find the optimal results of caching decision variables{
atf,1,j , a

t
f,2,j , · · · , atf,N,j

}
in the current time slot, which can

be used to minimize the overall overhead of content delivery
in the system with the given constraints. However, the caching
decision variable atf,i,j of any RSU is a binary variable and
dynamically changing. The system needs to collect a large
amount of network state information, and makes the global de-
cision on cache replacement and content delivery for each RSU
based on the network’s current state. Moreover, we devote to a
more practical case in which the prior information of content
request pattern within a time period is unknown in advance.
Therefore, the objective function is NP-hard undoubtedly. The
feasible set of the problem is not convex and the complexity
is very enormous, so conventional methods may not adapt to
the dynamic property and make intelligent caching decisions.

C. Markov Decision Process

We approximate the optimization of cache replacement
process in an available RSU as a Markov Decision Process
(MDP) to minimize the overhead of content delivery.

Three critical elements are identified in MDP as follows:
• State Space : The state in RL is a space to reflect the

IoVs environment. Accordingly, in our proposed system,
the current state of an available RSU i can be given

as zt =
(
at
f,i,i, q

t
i,r

)
. As described earlier, the former

at
f,i,i =

(
at1,i,i, a

t
2,i,i, . . . , a

t
F,i,i

)
denotes the current

cache status respect to the content f ∈ F in RSU i. The
latter qt

i,r is the arrived content requests in the current
time slot t. Above information will be assembled as a
state and sent to the agent in each slot.

• Action Space : The objective of an agent is to map
the space of states to the space of actions. In this system,
the action consists of two parts, at

f,i,i and ctf,i,i, where
matrix at

f,i,iF×N+1
indicates the decision of RSU i for

the current requested content f ∈ F , and the vector ctf,i,i
is the content replacement control in RSU i in slot t.

• Reward Function : In general, the immediate net-
work reward function is related to the objective function.
In the considered optimization problem, our objective is
to obtain the minimum long-term overhead of content
delivery in the system, and the goal of RL is to achieve
the maximum reward. Thus, the value of reward needs to
be negatively correlated to the value of the overhead. To
minimize the long-term overhead of content delivery in
system, we define the immediate reward as normalized
R(zi(t), di(t)) = e−

∑F
f

∑N+1
j ρfa

t
f,i,jCi,j , where nega-

tive exponential function is used to transform the problem
successfully.

IV. MARL-EMPOWERED VEHICULAR EDGE CACHING

Most programming problems which are controlled by deci-
sion making in dynamic system can be described in terms of
MDP. In general, MDP can be solved by linear programming
or dynamic programming algorithms. But when the transition
probability and the immediate reward are time-varying and
unknown in discrete time steps, the RL based methods are
more suitable to deal with these problems. There are many
mature algorithms in RL. Thereinto, Q-learning is widely
used because of its straightforward structure, fast convergence
speed and ease of use. In this section, we briefly introduce the
classical Q-learning algorithm, and then extend Q-learning to
a multi-agent system to optimize the caching strategy under
the stochastic game framework.

A. Reinforcement Learning : Q-Learning

Q-learning is an effective model-free RL approach based on
value iteration, for which both environment and the state tran-
sition probability are not explicit [25]. Q-learning enables the
agent to automatically learn the optimal behaviour separately
within a specific context in each time step. The agent of Q-
learning needs to compute the result of Q-function of each
state-action pair, and updates the Q value in a maintained
dimension Q-table after each interaction. Specifically, the
agent observes current state of the environment as zt, then
selects and executes an action dt from its admissible action
space D according to a policy π in each time step. After
that, the agent will transfer into the next new state zt+1 with
the transition probability pztzt+1

(dt), and obtain an immediate
reward rt = r(zt, dt). The goal of the agent is to find an

optimal policy π∗ (zt) = d∗t ∈ D, so that it can obtain the
maximum cumulative discounted reward Rtmax =

∑∞
0 γtrt,

where γ ∈ (0, 1) is the discounting factor indicating the
importance of the predicted future rewards. The state value
function V π (zt) is defined by the expected cumulative dis-
counted reward value. Thus, under the optimal policy π∗ (zt),
a recursive optimal V π

∗
(zt) based on any initial state z0 can

be expressed as:

V π
∗

(zt) = Eπ
[
Rtmax | z0 = zt

]
= max

π
Eπ

[(∞∑
t=0

γtrt

)
| z0 = zt

]

= max
π

Eπ

[(
r (zt, dt) +

∞∑
t=1

γtrt

)
| z0 = zt+1

]

= max
π

r (zt, dt) + γ
∑
zt+1

pztzt+1
(dt)V

π∗ (zt+1)

(4)

Then, we apply the state-action function Q(zt, dt) to es-
timate the V π

∗
(zt) under the state zt, and the relationship

between them is V π
∗

(zt) = max
π
Qπ(zt, dt). Therefore, the

expected cumulative reward after conducting an action dt is:

Qπ(zt, dt) = r(zt, dt) + γ
∑
zt+1

pztzt+1
(dt)V

π∗ (zt+1) (5)

It iteratively approximates a Q-function Q(zt, dt) of each
state-action pair instead of modeling the dynamic knowledge
of MDP. The agent will select and execute an admissible action
dt with the highest Q value under the state zt. The core of
Q-learning is the process of value iteration, and the iterative
formula can be obtained as follows:

Q (zt, dt)
new

= Q (zt, dt) + β

[
r (zt, dt) + γmax

d
Q (zt+1, d)

−Q (zt, dt)

]
(6)

where β ∈ (0, 1) is the learning rate parameter.

B. Markov Game Model

As described above, the process of cache replacement in an
available RSU can be formulated as an MDP. Nevertheless,
conventional RL has not considered the influence of environ-
ment by other agents when a certain agent interacts separately,
so that only the local sub-optimal solution can be obtained in
the distributed edge caching system. Concerning this issue,
we extend the MDP to a multi-agent system, and further
formulate the process of cache replacement as a Markov (a.k.a.
Stochastic) Game (MG) model. In MG, the optimal decision of
a single agent cannot guarantee the global optimal solution of
system since agents interact with each other. The agent in the
multi-agent system has to observe not only its own reward, but
those of others as well. Accordingly, a joint decision among

all agents is needed to maximize the total reward of the whole
system.

In an MG, agents choose actions simultaneously and the
agents’ rewards are arbitrarily related in general. A standard
formal definition of MG can be characterized by a tuple
{N,Z, D1, · · · , DN , p, r1, · · · , rN , γ}, where N is the num-
ber of agents; Z is the system state space, Di is a discrete
action space of i-th (i = 1, · · · , N) agent, the joint action
space of all agents can be represented as D = D1×· · ·×DN ;
p : Z × D × Z → [0, 1] is the state transition probability
map, the joint action dt :=

(
d1t , d

2
t , . . . , d

N
t

)
∈ D causes

the transition from state zt to zt+1 based on a probability
pztzt+1

(dt); ri : Z ×D → R is the reward function for agent
i. Similar to MDP, given common state zt, each agent i can
execute an admissible joint action dt ∈ D and receives the
immediate reward rit in new state zt+1. MG also obeys the
Markov property, for which the reward and next state of an
agent only depends on the current state and the joint behavior
of all agents [26].

C. Distributed MARL based Edge Caching Method

This part expands the above Q-learning into the MG model,
and proposes a distributed MARL based edge caching method
to obtain the optimal caching strategy.

(π1, π2, · · · , πN) is used to denote the joint strategy of
N agents. Similar to Q-learning, the expected cumulative
discounted reward for agent i of the joint strategy under the
current state zt can be expressed by the state value function
Vi (zt, π1, π2, · · · , πN) = Eπ

(∑∞
t=0 γ

trit
)
, and the objective

for each agent is to learn a local πi to maximize it.
As the maximal state value Vi (zt, π

∗
1 , · · · , π∗N) of an agent

cannot be done over private strategy and the return depends on
the joint strategy of all agents in the MG model, the concept of
Nash equilibrium becomes very important. Nash equilibrium
strategy (π∗1 , · · · , π∗i , · · · , π∗N) is considered as an optimal
joint strategy of the system, of which each agent’s strategy
π∗i is the best response to the others’. In other words, any
agent cannot achieve a higer reward by changing to any other
strategy. Such that for ∀zt ∈ Z, i = {1, · · · , N}, we have:

Vi (zt, π
∗
1 , · · · , π∗i , · · · , π∗N) ≥ Vi (zt, π

∗
1 , · · · , πi, · · · , π∗N)

(7)
where ∀πi ∈ Πi, Πi is the set of strategies for agent i.

Then we redefine Q-function Qi
(
zt, d

1
t , · · · , dNt

)
as the

expected sum of discounted reward for agent i under the state
zt. Specially, we refer to Q∗i

(
zt, d

1
t , · · · , dNt

)
as Nash Q-

function for agent i when all agents follow specified Nash
equilibrium strategies. That is,

Vi (zt, π
∗
1 , · · · , π∗N)

= Nash · Q∗i
(
zt, d

1
t , · · · , dNt

)
= Q∗i

(
zt, d

1
t , · · · , dNt

)
π∗1
(
zt, d

i
t

)
· · ·π∗N

(
zt, d

N
t

) (8)

Algorithm 1 Distributed Multi-Agent Reinforcement Learning
based Edge Caching Algorithm
Input: agent set N , state space Z , joint action space D,

learning rate β, discount factor γ, exploration factor ε
Output: each agent’s strategy π∗i

1: Initialize: set t=0, obtain the initial stste z0.
let the learning agent be indexed by i.
∀ z ∈ Z,∀ i ∈ N ,∀ di ∈ D1,
Q1
t

(
z, d1t , · · · , dit, · · · , dNt

)
← 0.

2: for each episode do
3: Choose an action dit using the ε-greedy policy in the

current zt
4: for Qi

(
zt, d

1
t , · · · , dNt

)
6= Q∗i

(
zt, d

1
t , · · · , dNt

)
do

5: Observe the rewards r1t , · · · , rNt ; the actions
d1t , · · · , dNt and the next state zt+1

6: Update new Qit+1

(
st, d

i
t, · · · , dNt

)
:= (1− βt) ·

Qit
(
zt, d

1
t , · · · , dNt

)
+ βt

[
rit + γNash · Qit (zt+1)

]
7: Let t← t+ 1;
8: end for
9: Execute cache strategy according to π∗i

10: end for

and

Q∗i
(
zt, d

1
t , · · · , dNt

)
= [rit + β

∑
zt+1∈Z

pztzt+1
(d1, . . . , dN)Vi (zt+1, π

∗
1 , · · · , π∗N)

(9)
Therefore, we can rewrite Nash equilibrium with the fol-

lowing form:

Q∗i (zt)π
∗
1 , · · · , π∗i , · · · , π∗N ≥ Q∗i (zt)π

∗
1 , · · · , πi, · · · , π∗N

(10)
At time slot t, each agent i executes its action under the

current state. After that, it observes its own immediate reward,
all other agents’ actions and rewards, as well as the new state
zt+1. Each agent i then updates its own Q-values and cal-
culates a Nash equilibrium π∗1 (zt+1) , · · · , π∗N (zt+1) for the
stage game (Q1

t (zt+1) , · · · , Qit (zt+1) , · · · , QNt (zt+1)). The
strategies that constitute a Nash equilibrium can be the optimal
behavior under the current state. Existing studies [26] [27]
show that there always exists at least one Nash equilibrium
point in stationary strategies. In each time slot, the iterative
formula of Q-value of agent i can be obtained by Eq. (11) and
each Q function will converge to the Nash Q-value through
the repeated interaction. More details of the proposed method
is summarized in Algorithm 1.

Qit+1

(
st, d

i
t, · · · , dNt

)
= (1− βt) ·Qit

(
zt, d

1
t , · · · , dNt

)
+ βt

[
rit + γNash · Qit (zt+1)

]
(11)

V. PERFORMANCE EVALUATION

In this section, we illustrate the performance of the pro-
posed MARL-empowered vehicular edge caching and content
delivery method through extensive simulations. Specifically,

TABLE I
SIMULATION PARAMETERS

Parameter Definition Value
N The number of RSUs in the system 5
R The initial cache capacity of RSU 100MB
Pi The transmission power of RSUs 38dBm
σ2 The power of backgound noise -95 dBm
Bn The bandwidth of wireless links 10MHz
W The bandwidth of optical fibre link 20MHz
sf The size of requested content [4, 12] Mbit
T2 The delay through RSU-RSU link 10ms
T3 The delay through RSU-MBS link 60ms

we anayze the superiority of the proposed method over other
benchmark methods.

A. Simulation Setup

We consider a vehicular network consists of one MBS
and 5 RSUs where the coverage area of each RSU is 200
m. The initial cache capability of RSU is set to 100 MB,
and the transmission power for content delivery of RSUs is
38 dBm. It should be noted that the model can be easily
generalized to scenarios where the cache capability of RSU
is inconsistent. There are 10, 000 contents in the system and
the size of each content is within the range of [4, 12] Mbit.
The content popularity is modeled by a MZipf distribution
with θ = 0.75. Similar to [19], the channel gain is modeled as
30.6 + 36.7 log10(d), and the noise power σ2 = -95 dBm. The
bandwidths of wireless links and optical fibre link are 10 MHz
and 20 MHz, respectively. The transmission delay between
the MBS and the RSU is 60 ms, while the transmission
delay between cooperative RSUs is 10 ms. Accordingly, the
price of unit leased communication resource of wireless links
and optical fibre link are 0.005$ / MB and 0.009$ / MB,
respectively. Detailed evaluation parameters are summarized
in Table I.

For performance comparison, we introduce the following
three benchmark algorithms:

1) Independent Reinforcement Learning (IRL) : IRL ignores
the the multi-agent nature in MDP. Each agent learns and
makes decision separately through the repeated interac-
tion with the unknow environment, without considering
the influence of other agents.

2) Least Frequently Used (LFU) [28]: When the cache
capacity of each RSU is full, replace the content with
the least requested times firstly.

3) Least Recently Used (LRU) [29]: When the cache capac-
ity of each RSU is full, replace the least recently used
content firstly.

Besides, for quantitatively evaluating the performance of our
proposed method, the following performance metrics are used.
1) The total access cost: the average total access cost of all
requested contents for each time slot. 2) Edge hit rate: the rate
of requested contents that are served by RSUs instead of the
remote MBS. 3) Average delay: the average access delay for
all requested contents within a time slot.

Fig. 3. Content access cost versus the number of epsiodes.

B. Performance Comparison

1) The convergence performance: Figure 3 shows the total
content access cost versus the number of episodes when the
cache capability of each RSU is fixed as 100 MB and the
number of contents is 10, 000 in the system. It can be
observed that for the IRL based edge caching method and the
proposed MARL based edge caching method, the total content
access cost of each episode decreases rapidly and gradually
maintains in a relatively stable value with the increase of
training episodes. Meanwhile, for the rule-based LFU and
LRU method, there are no significant changes occurred over
total content access cost with the increase of episodes. Overall,
the proposed MARL based edge caching method performs best
as it converges to a relatively stable value after running about
2500 episodes. Although the convergence speed of MARL is
slightly slower than that of IRL, it can reduces about 51%
total access cost in the training episodes and then obtains a
lower value compared to the centralized IRL.

2) The impact of cache capability of RSUs: Then, we
compare the content access cost, the average delay and the
edge hit rate for different cache capability of RSUs. We change
the cache capacity of each RSU from 100MB to 1000MB
and display the results in Fig. 4 (in this case, the number of
contents in the system is 10, 000). As shown in Fig. 4 (a)
and (c), it can be observed that the proposed MARL based
edge caching method always shows the best performance over
other baseline methods in terms of content access cost and
average delay with the increase of the cache capacity of
RSUs. Specifically, it achieves the lowest average delay of
36.2ms in the initial stage, reducing about 32% total access
cost compared with the state-of-the-art IRL, not mentioning
the simple rule-based method LFU and LRU. Besides, the
total content access cost and the average delay both have a
decreasing trend for all caching methods as the cache capacity
increases. This is reasonable because larger cache capacity
enables RSUs to cache more popular contents simultaneously
under this situation, so that most content requests can be

(a) (b) (c)

Fig. 4. (a) Content access cost versus the cache capacity of RSUs. (b) Edge hit rate versus the cache capacity of RSUs. (c) Average Delay versus the cache
capacity of RSUs.

(a) (b) (c)

Fig. 5. (a) Content access cost versus the number of contents. (b) Edge hit rate versus the number of contents. (c) Average Delay versus the number of
contents.

satisfied by edge RSUs.

Similarly, the increasing cache capacity has positive impacts
on the metric of the edge hit rate. As shown in Fig. 4(b),
it can be found that the edge hit rate increases with the
increase of the cache capacity of each RSU for all caching
methods, especially for our proposed MARL based edge
caching method. This is because MARL jointly considers both
local state and the influence of environment by other agents’
behavior. In general, the proposed MARL based edge caching
method will sacrifice some local hit rate and share a portion
of cache capacity to process the content requests from other
RSUs. This tradeoff actually reduces the average delay and
the total access cost since MBS processing can be effectively
avoided. In particular, the proposed MARL based edge caching
method outperforms IRL, LFU and LRU caching methods with
the improvement on the edge hit rate approximately 19%,
44% and 36%, respectively when the cache capacity is up
to 1, 000 MB. It is worth noting that the performance of the
proposed MARL based edge caching method is not always
better when the cache capacity of RSUs is larger in real
edge caching system. In order to reduce the resource usage
cost, the available cache cooperation among RSUs should
be fully utilized and considering too large cache capacity is
not so cost-efficient.

3) The impact of the number of contents in the system: In
the following, we change the number of contents to compare
the content access cost, the average delay and the edge hit rate
of different methods. We vary the number of contents from 10,
000 to 100, 000 and the initial cache capacity of RSUs is 100
MB. As shown in Fig. 5, the total content access costs and
the average delay of the four methods all marginally increase
with the increase of the number of contents. This is because
more popular contents need to be cached in RSUs with the
increase of the number of contents, which naturally causes
frequent cache replacement as the cache capacity is finite. As
expected, the proposed MARL based edge caching method
performs well with various numbers of contents. As shown
in Fig. 5 (a) and (c), it can be found that even when there
are massive contents in the system (100, 000), the proposed
MARL based edge caching method can still reduce 25%, 46%,
45% average delay and 21%, 39%, 42% access cost compared
with IRL, LRU, and LFU caching methods, respectively. To
this end, it can be inferred that the proposed MARL based
edge caching method turns out to be effective under different
number of contents.

Besides, for the edge hit rate, the trends of the curves are
exactly the opposite. When the number of contents increases,
the edge hit rate decreases for all methods. Among them, LFU
and LRU still perform worst, and the corresponding edge hit

rates are only 20% and 22% respectively when the number
of contents increases to 100, 000. This may due to the fact
that LFU and LRU caching methods learn only from one-
step past and operate based on simple rules, while IRL and
MARL based edge caching methods can learn from the history
of observed content demands and concentrate more on the
reward that agents can obtain rather than users’ requests. In
addition, the variation of edge hit rate also demonstrates the
aforementioned analysis, that the proposed MARL based edge
caching method can better harness the utilization of available
cache resources. Hence, the edge hit rate degrades much more
slowly with the increase of the number of contents. With the
increase of the number of contents in the system, only about
7% reduction of edge hit rate is observed in the proposed
MARL based edge caching method, which also shows the
stability of the proposed method.

To summarize, it can be found that the proposed MARL
based edge caching method can not only reduce the total cost
of content delivery, but also achieve desirable average delay
and edge hit rate. Therefore, we demonstrate that the proposed
MARL based edge caching method is effective under different
scenarios.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a cooperative edge caching
architecture for IoVs, where the cooperation caching among
multi-RSUs and MBS is utilized to reduce the content delivery
cost and traffic burden in the system. We formulated the
corresponding optimization problem to minimize the long-
term overhead of content delivery, and extended the MDP to
the multi-agent system. Then, we proposed an MARL based
edge caching method to tackle the optimization problem. Sim-
ulation results demonstrate that our proposed method greatly
outperforms other caching strategies in different scenarios.

In the future, we plan to consider vehicle-to-vehicle caching
in the system, where each cache capability-enabled vehicle is
able to act as a collaborative caching node for sharing content
cache with RSUs and other vehicles.

ACKNOWLEDGMENT

This work was supported in part by NSFC grant (61872221),
and NSF grants (CNS 1824440, CNS 1828363, CNS 1757533,
CNS 1629746, CNS1651947, and CNS 1564128). The corre-
sponding author is H. Zhou.

REFERENCES

[1] N. Abbas, Y. Zhang, and A. Taherkordi, “Mobile edge computing: A
survey,” IEEE Internet of Things J., vol. 5, no. 1, pp. 450-465, Feb.
2018.

[2] Z. Zhou, et al., “Social big data based content dissemination in internet
of vehicles,” IEEE Trans. Ind. Informat., vol. 14, no. 2, pp. 768-777,
Feb. 2018.

[3] S. Wang, et al., “A survey on mobile edge networks: convergence of
conputing caching and communications,” IEEE Access, vol. 5, pp. 6757
- 6779, Mar. 2017.

[4] H. Zhou, et al., “DRAIM: A Novel Delay-constraint and Reverse
Auction-based Incentive Mechanism for WiFi Offloading,” IEEE J. Sel.
Areas Commun., vol. 38, no. 4, pp. 711-722, 2020.

[5] X. Wang, et al., “Cache in the air: Exploiting content caching and
delivery techniques for 5g systems,” IEEE Commun. Mag., vol. 52, no.
2, pp. 131-139, 2014.

[6] Z. Sanaei, et al., “Heterogeneity in mobile cloud computing: taxonomy
and open challenges,” IEEE Commun. Surv. Tuts., vol. 16, no. 1, pp.
369-392, 1st Quart. 2014.

[7] J. P. Sheu, and Y. C. Chuo, “Wildcard Rules Caching and Cache
Replacement Algorithms in Software-Defined Networking,” IEEE Trans.
Netw. Service Manage., vol. 13, no. 1, pp. 19–29, Mar. 2016.

[8] W. Zhang, et al., “Energy-optimal mobile cloud computing under
stochastic wireless channel,” IEEE Trans. Wireless Commun., vol. 12,
no. 9, pp. 4569-4581, Sep. 2014.

[9] H. Zhou, et al., “Predicting Temporal Social Contact Patterns for
Data Forwarding in Opportunistic Mobile Networks,” IEEE Trans. Veh.
Technol., vol. 66, no. 11, pp. 10372-10383, 2017.

[10] W. Jiang, et al., “Multi-Agent Reinforcement Learning for Efficient
Content Caching in Mobile D2D Networks,” IEEE Trans. Wireless
Commun., vol. 18, no. 3, pp. 1610-1622, Mar. 2019.

[11] J. Hachem, et al., “Content caching and delivery over heterogeneous
wireless networks,” Proc. IEEE Int. Conf. Comput. Commun. (INFO-
COM), pp. 756–764, 2015.

[12] B. Blaszczyszyn, and A. Giovanidis, “Optimal geographic caching
in cellular networks,” Proc. IEEE Int. Conf. Commun. (ICC), pp.
3358–3363, Jun. 2015.

[13] M. Yan, et al., “Assessing the energy consumption of proactive mobile
edge caching in wireless networks,” IEEE Access, vol. 7, pp. 104394 -
104404, Feb. 2019.

[14] Z. Zhao, et al., “Cluster content caching: An energy-efficient approach
to improve quality of service in cloud radio access networks,” IEEE J.
Sel. Areas Commun., vol. 34, no. 5, pp. 1207-1221, May 2016.

[15] C. Ma, et al., “Socially Aware Caching Strategy in Device-to-Device
Communication Networks,” IEEE Trans. Veh. Technol., vol. 67, no. 5,
pp. 4615-4629, May 2018.

[16] C. Yang, et al., “Efficient Mobility-Aware Task Offloading for Vehicular
Edge Computing Networks,” IEEE Access, vol. 7, pp. 26652 - 26664,
Feb. 2019.

[17] A. Sadeghi, et al., “Reinforcement learning for adaptive caching with
dynamic storage pricing,” IEEE J. Sel. Areas Commun., vol. 37, no. 10,
pp. 2267-2281, Aug. 2019.

[18] Y. Dai, et al., “Artificial intelligence empowered edge computing and
caching for internet of vehicles,” IEEE Wireless Commun. Mag., vol.
26, no. 3, pp. 12-18, Jun. 2019.

[19] D. Li, et al., “Deep Reinforcement Learning for Cooperative Edge
Caching in Future Mobile Networks,” Proc. IEEE Wireless Commun.
Netw. Conf. (WCNC), pp. 1-6, Apr. 2019.

[20] G. Qiao, et al., “Deep Reinforcement Learning for Cooperative Content
Caching in Vehicular Edge Computing and Networks,” IEEE Internet of
Things J., vol. 7, no. 1, pp. 247-257, Jan. 2020.

[21] C. Zhong, et al., “Deep Multi-Agent Reinforcement Learning Based
Cooperative Edge Caching in Wireless Networks,” Proc. IEEE Int. Conf.
Commun. (ICC), pp. 1-6, May 2019.

[22] Y. Dai, et al., “Deep reinforcement learning and permissioned blockchain
for content caching in vehicular edge computing and networks,” IEEE
Trans. Veh. Technol., vol. 69, no. 4, pp. 4312–4324, Apr. 2020.

[23] N. Luong, et al., “Applications of deep reinforcement learning in
communications and networking: A survey,” IEEE Commun. Surveys
Tuts., vol. 21, no. 4, pp. 3133–3174, May 2019.

[24] X. Li, et al., “Hierarchical Edge Caching in Device-to-Device Aided
Mobile Networks: Modeling, Optimization, and Design,” IEEE J. Sel.
Areas Commun., vol. 36, no. 8, pp. 1768-1785, Aug. 2018.

[25] B. Jang, M. Kim, G. Harerimana, and J. W. Kim, “Q-learning algorithms:
A comprehensive classification and applications,” IEEE Access, vol. 7,
pp. 133653-133667, Feb. 2019.

[26] J. Hu, and M. P. Wellman, “Nash Q-learning for general-sum stochastic
games,” J. Mach. Learn. Res., vol. 4, pp. 1039–1069, 2003.

[27] J. Hu, and M. P. Wellman, “Multiagent reinforcement learning: theoreti-
cal framework and an algorithm,” Proc. Int. Conf. Mach. Learn. (ICML),
pp. 242–250, 1998.

[28] M. Arlitt, et al., “Evaluating content management techniques for web
proxy caches,” ACM SIGMETRICS Perform. Eval. Rev., vol. 27, no. 4,
pp. 3–11, 2000.

[29] L. Breslau, et al., “Web caching and Zipf-like distributions: Evidence and
implications,” Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM),
pp. 126–134, 1999.

