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Abstract—With the success of voice recognition techniques,
users can easily control any device in smart home environments
by simply saying a voice command. Based on this idea, a new
group of smart devices are designed and released, which are
called voice assistant. However, the voice itself is not secure and
can be attacked in many ways. To defend against various types
of voice replay attacks, we present a new voice liveness detection
system. The basic insight of our system is that mouth opening
movements will change the space size in the ear canal, which
further changes the air pressure in ear canals. In this paper,
we propose solutions to detect mouth opening movements using
the noisy air pressure data and match them with the voices
to validate the liveness of the voice source. To evaluate the
effectiveness of our system, we develop a prototype on Raspberry
Pi and conduct comprehensive evaluations. Experiments with
ten volunteers show that our system can accurately accept
voice commands from legitimate users with an accuracy of
91.72%. Moreover, our system can effectively defend current
voice assistant devices from replay attacks with an accuracy of
97.2%.

Index Terms—Voice replay attack, liveness detection, ear canal
pressure

I. INTRODUCTION

Voice-related techniques are becoming more important in
current smart home devices. With the success of voice recog-
nition techniques, users can easily control any device in smart
home environments by simply saying a voice command. Based
on this idea, a new group of smart devices are designed and
released, which are called voice assistants. In general, a voice
assistant first receives a voice command from a user. Then, the
voice is processed to recover the text content either locally or
on the remote server. Based on the predicted text content, the
voice assistant device connects associated smart home devices
(e.g. smart bulb) and performs a set of actions. Due to the
important role of voice assistants in the future smart home
environment, the industry has presented various voice assistant
products. For example, Google released its voice assistant in
2016, and Apple released its HomePod in early 2018.

However, as a major component of voice assistants, the
human voice is not secure. First, most voice assistants do
not validate the identity of the voice source, which means
any audio signal that sounds like a voice can be accepted
by the voice assistant. For example, a recent report shows
that the Apple Siri can be activated by Apple’s new AirPods
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Fig. 1. The idea voice assistant should accept voice commands from legitimate
users while rejecting any replayed voices from attackers.

advertisement [8]. Even if we protect the voice assistant using
voice authentication techniques, they still suffer from various
voice replay attacks. Since the human voice is always exposed
to the public, an attacker can easily steal the victim’s voices
and replay it to voice assistant. Moreover, by collecting enough
training data, strong attackers can generate synthetic voices
of the victim even if they did not hear the victim say a
certain command. For instance, with state-of-the-art speech
synthesis techniques (e.g., Adobe Voco [12]), an adversary
could impersonate the victim to spoof the voice-based au-
thentication system once they acquire enough of the victim’s
voice samples. These recorded voices and synthetic voices can
then be replayed to voice assistants through either audible
or inaudible ways. Since voice is considered as a unique
biometric of a person, and thereby, it is characterized as a basis
for personal authentication [5], these voice-spoofing attacks
would result in severe consequences harmful to the victim’s
safety, reputation, and property [11], [19], [28].

To defend against voice replay attacks, researchers have
proposed various liveness detection systems in the past few
years. As shown in Fig. 1, the objective of these systems is to
validate whether a voice is produced by a live human being.
To achieve this goal, these systems leverage key differences
between human vocal systems and loudspeakers. However,
most current liveness detection systems are designed for
smartphones and wearable devices. Therefore, their operation
ranges (less than 50 cm) are too short, which limits their
implementation in voice assistant devices. To improve the
range of voice liveness detection systems, researchers study
to build new liveness detection systems for voice assistant
devices with the help of extra sensors [4], [7], [9], [26]. For
example, Wang et al. leverage WiFi signals to detect mouth
movement during speech. However, their systems require that
a WiFi transmitter and a receiver are always available near the
user, which largely limits its deployment in real smart home
environments. Lee et al. implement microphone and speaker



matrixes in the voice assistant and use them as a Doppler radar
to associate the voice command to a moving human being [7].
However, their methods are sensitive to ambient audio noise.

Considering the limitations of current solutions, we propose
a new voice liveness detection system that can achieve two
major objectives. First, the liveness detection system should
be able to accurately and robustly reject any voice commands
from replay attackers while ensuring good user experiences of
legitimate users. Second, the system should be easily deployed
in the smart home environment, which means that a user
can use our system at any position in the room. We notice
that the average volume per capita of headphones has risen
quickly worldwide. Based on the data from Statista [20],
the average number of headphones per user is 0.49 in 2020.
Moreover, more headphones, especially in-ear headphones, are
equipped with an air pressure sensor. The original purpose of
this sensor is to determine whether the earphones are worn
by the user. In this paper, we reuse the air pressure sensor
in in-ear headphones to validate the liveness of voices. The
basic insight behind our system is that the mouth movements
of a user speaking some special phonemes can influence the
air pressure in ear canals. For replay attackers, they are not
able to generate changes in the air pressure in the victim’s ear
canal. Therefore, by matching the air pressure signal with the
received voice, we can determine whether the voice is from a
human being.

To build such a system, we address three major challenges.
First, the commercial air pressure sensor does not always
report sensor data at a fixed rate. To solve this problem, we
leverage signal processing techniques to resample the raw air
pressure data to a uniform sampling rate while keeping useful
information. Second, the air pressure data contain much noise
from sensor hardware and the environment. In our system, we
first leverage Discrete Wavelet Transform-based techniques to
filter out high-frequency noise. Then, we study the variance
features of the filtered signal to accurately locate the positions
of mouth opening activities of interest. Third, a recent study
shows that the air pressure in ear canals can also be influence
by other facial activities like turning the head [2]. To remove
the impacts of these facial activities, we further build a binary
classifier based on Mulitple Additive Regression to validate
whether the pressure change is indeed caused by opening of
the mouth.

Our contributions are as follows:
• Our work serves as a feasibility assessment to show that

air pressure changes in the ear canal can be used to detect
mouth opening activity, which can be further used to
validate the liveness of the voice source.

• We propose solutions to detect mouth opening activities
from noisy air pressure data. We also extract useful
information from the pressure data and build a classifier
to further enhance the detection.

• We develope a prototype and conduct comprehensive
evaluations. Experiments with ten volunteers show that
our system can accurately accept voice commands from
legitimate users with an accuracy of 91.72%. Moreover,
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Fig. 2. Changes in ear canal when the mouth is open and closed.

our system can effectively defend current voice assistant
devices from replay attacks with an accuracy of 97.2%.

II. RELATED WORK

A. Voice assistants in smart homes

In smart home environments, a voice assistant refers to a
group of devices that can convert users’ voices to text, predict
users’ needs, and perform corresponding actions together with
other smart devices in the environment [13]. To achieve this
goal, these devices are built on voice recognition, neural
language processing, and speech synthesis technologies. In
the past few years, many voice assistant devices have been
designed and released. For example, Apple announced its
HomePod in June 2017, and Amazon has also released its
voice assistant AI technology called Amazon Alexa. Based
on a recent report by voicebot.ai, more than 3 billion voice
assistants were in use in 2019 [15]. Therefore, the security of
voice assistants is very important.

B. Attacks on voice service

The voice service on voice assistants can be divided into two
major categories: voice recognition and speaker verification.
Voice recognition focuses on translating voice into text, and
speaker verification focuses on validating the identity of the
voice. However, both the voice recognition [21], [23], [29],
[30] and speaker verification [11], [24] suffer from attacks. In
terms of the attacks on voice recognition systems, [30] showed
that it is feasible to replay malicious voice commands to the
device of the victim in an inaudible channel. In terms of the
attacks on speaker verification systems, a recent work shows
that an attacker can break voice recognition systems by con-
catenating speech samples from multiple short voice segments
of the victim [24]. To defend against these attacks, researchers
have proposed various countermeasures by studying the dif-
ferences between human vocal systems and loudspeakers [1],
[3], [10], [17], [18], [22], [25], [27]. However, existing defense
systems are all designed for smartphones and AR headsets.
The significantly different usage scenarios make current de-
fense systems hard to be implemented on voice assistants.
For example, the liveness detection system proposed in [?]
rejects replayed voice by measuring the relationship between
mouth voice and throat voice. Apparently, this work cannot
be implemented on voice assistants since voice assistants are
usually far away from the user in the room.



“I have a hat”

Fig. 3. Results of feasibility experiments.

III. PRELIMINARY

A. Air pressure in ear canal

When users do not wear earphones, the air of the open
ear canal is in direct contact with the atmosphere outside the
body, which means the air pressure is the same as that in the
environment. However, when users wear in-ear headphones,
the ear canal becomes an enclosed space, so that the air
pressure is largely influenced by the size of the enclosed space.
Recently, research has shown that human facial activities can
change the size of the enclosed space of the ear canal [2],
which further introduces changes to the air pressure in it.
As shown in Fig. 2, when the mouth is closed during non-
speech periods, the earmold is with satisfactory retention.
When the user opens the mouth, the positional relationship
between the ear canal and the mandibular condyle changes
correspondingly, which makes the earmold lack retention. As
a result, the shape of the ear canal becomes bigger. Since
the ear canal is a enclosed space when user wears the in-ear
earphone, the air pressure in the ear canal also changes.

B. Attack model

In the attack model we consider, attackers aim to issue
malicious voice commands to the voice assistant that is in
the victim’s smart home environment. This type of attack
can be launched either remotely or in the same smart home
environment. For example, the attacker can say a malicious
command to the voice assistant in the same environment as
the victim. Also, by using recent attack techniques, the attacker
can issue these commands without the attention of the victim.
However, the ability of attackers is also limited to some senses.
Since earphones are private devices and always on the victim’s
ears, we assume that the attacker cannot get access to the
victim’s earphones during the procedure of attacks. This fact
means that the attacker cannot forge the received air pressure
signal.

C. Feasibility study

Although we obtain some insights in the preliminary study,
it is still not clear how sensitive the air pressure in the ear canal
is to the mouth movements during the speech. Therefore, we
designed a preliminary experiment to evaluate the feasibility
of our idea. We built a prototype to collect the ear canal
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Fig. 5. System architecture.

pressure with a sampling rate of about 500 Hz and record
the voice at the same time. Then, we asked a user to say
a short sentence, “I have a hat”, every 10 seconds while
using the prototype. Fig. 3 shows the collected air pressure
signals. We can observe that the mouth movements during
the speech generate more significant variances to the pressure
signal compared with environmental noises. Moreover, for
some phonemes that require users to largely open their mouths,
the variances are much more significant. For example, the
phoneme “e” in the word “hat” introduces the highest peaks
to the air pressure signal. These facts show that the mouth
movements during speeches do generate enough variances to
the air pressure signal. Therefore, by monitoring whether there
exist well-synchronized variances in the pressure signal, our
system can determine whether the voice is from a human.

IV. SYSTEM DESIGN

A. Usage Scenarios

The objective of our system is to protect the current voice
assistant devices from voice replay attacks. Fig. 4 shows the
basic usage scenario of our system. In the usage scenario,
we consider two major components, the user and the voice
assistant. We assume that the voice assistant can exchange
information with the earphones using wireless communication
(e.g. WiFi and Bluetooth). The interactions between the user
and the voice assistant can be divided into four steps. First, the
earphones and the voice assistant device will exchange packets
for several rounds so that these two devices are using the same
clock. In the second step, the user will say a voice command to
the voice assistant. The voice assistant picks up the voice for
further voice-to-text analysis. After the voice assistant receives
the voice, it will send a message to the earphone for requesting
the air pressure data. The earphones receive the message and
stream the collected the air pressure data to the voice assistant
for processing. In the third step, the voice assistant processes
both the voice and the air pressure data either locally or
remotely. Finally, the voice assistant sends a corresponding
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(a) Raw air pressure signal.
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(b) Air pressure signal after resampling.
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(c) Air pressure signal after resampling and low-
pass filter.

Fig. 6. Preprocessing of the air pressure signal.
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Fig. 7. The distribution of measurement intervals.

response to the user through the audio channel. If the voice
and the air pressure data pass the liveness detection, the voice
assistant will give the user a confirmation message of the voice
command. Otherwise, the voice assistant will alert the user
for a potential voice replay attack. If the voice is indeed from
the user, the user can still force the assistant to follow the
command using an associated smartphone.

B. Challenges

Although we obtain insights from preliminary experiments,
it is still challenging to build such a liveness detection system.
First, the sampling rate of the sensor may not be consistent
during the process of data collection. Although we can write
a script to read the data from the sensor, it is not always true
that newly read sensor data if fresh. To address this challenge,
we leverage fitting algorithms to estimate those values that
are not reported by the sensor in real-time. Second, it is
challenging to extract pressure signal that is under impacts
of mouth movements from noisy pressure signals. As we can
observe, various noises exist in the raw pressure signal. If we
directly detect the movement from the raw signal, the false
detection rate can be very high. To solve this problem, we
leverage a series of signal processing techniques based on the
features of signals in the frequency domain. Finally, it is also
hard to match the air pressure signal with the voice signal in
order to predict the liveness of the voice command.

𝑐𝑐𝐴𝐴𝑖𝑖

Lowpass filter

Highpass filter

Downsample: ↓2

Downsample: ↓2

𝑐𝑐𝐴𝐴𝑖𝑖+1

𝑐𝑐𝐷𝐷𝑖𝑖+1
Fig. 8. Results of feasibility experiments.

C. System architecture

Fig. 5 shows the architecture of our system. After receiving
the voice commands and air pressure signal from the user, the
voice assistant first performs audio processing on the voice
signal to get the starting time and ending time of the voice
commands. The extract timestamps are further used to segment
the air pressure signal. After that, our system resamples the
air pressure signal to make sure the signal is uniformly
sampled. The resampled signal is filtered by Discrete Wavelet
Transform-based techniques to remove the high-frequency
noise. Since mouth opening activities generate a much greater
impact on the air pressure signal, we calculate the short-term
variance of the filtered signal. A mouth opening activity is
detected by finding whether a qualified peak exists in the short-
term variance signal. To further reduce the influence of low-
frequency noise, we leverage an extra classification model to
enhance the system performance for both accepting legitimate
user and rejecting attackers. We extract three features from
the variance signal and send them to a MART-based binary
classifier. A voice command is regarded from a live speaker (or
legitimate user) only if the incoming signals pass both checks.

V. SOLUTION

A. Preprocessing

1) Signal segmentation: To validate the liveness of the
voice’s source, we need to get the segments of pressure signals
that are influenced by the speeches. Since we assume that the
earphones are well synchronized with the voice assistant via
wireless communication, we can accurately find the starting
and ending points of each speech behavior in pressure signals
by analyzing the voice signals. Therefore, we first segment the
voice signals into different sentences by performing Hidden
Markov Model (HMM) based word segmentation techniques
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Fig. 9. DWT-based noise removal.

[14]. Then, we use the obtained timestamps to segment air
pressure signals for further analysis.

2) Resampling: However, raw air pressure signals cannot
be directly used for analysis. First, although we use a fixed
sampling rate by setting the control bits on the sensor hard-
ware, the sensor may not report the sensor data uniformly. As
shown in Fig. 7, the time interval between two neighboring
samples can be either value, which introduces much difficulty
to the signal processing procedure. To solve this problem, we
first filter the raw signal using a finite impulse response (FIR)
filter. The FIR filter is designed to minimize the weighted inte-
grated squared error between an ideal piecewise linear function
and the magnitude response of the filter over a set of desired
frequency bands. We normalize the result to account for the
processing gain of the window and then change the sampling
rate using a polyphase interpolation structure. Figs. 6(a) and
6(b) show the raw and resampled pressure signals, respectively.
We can see that the important information is reserved after
resampling the signals. Fig. 6(c) shows the distributions of
time intervals between two neighboring samples before and
after resampling. We can see that the time interval can be
either 0.0012 seconds or 0.002 seconds before resampling. By
resampling the data, we make sure the signal is uniformly
sampled with a frequency of 500 Hz.

Opening mouth

Noise

Fig. 10. Filtered variance signal.

3) Noise removal: Although we get a uniformly sampled
pressure signal, it is still hard to detect mouth opening activity
from the signal in Fig. 6(b). The main reason is because the
pressure values are impacted by many other factors besides
mouth opening activities. For example, imperfect hardware
manufacture may cause small variances in pressure readings.
In addition, environmental changes may also influence the
air pressure in the ear canal. Therefore, we need to remove
these noises in order to extract useful information for accurate
detection. In our system, we leverage one-dimensional discrete
wavelet decomposition-based denoising techniques. Specifi-
cally, a one-dimensional discrete wavelet transform (DWT)
consists of multiple levels. The procedure in each level is
shown in Fig. 8. The signal cAi from the upper level will be
filtered by a lowpass filter and a highpass filter, respectively.
The filtered signal is then downsampled, which produces the
two outputs cAi+1 and cDi+1. The resulting signal cAi+1

reserves low-frequency features, while cDi+1 reserves most
high-frequency features. After that, cAi+1 will be passed to
the next level for further decomposition. In our system, we
leverage a four-level DWT and let the resampled signals to be
the input cA0 of the first level. We asked a user to say two
voice commands and Fig. 9 shows the calculated signals from
the very first level to the last level. We can observe that most
high-frequency noise in the input signal can be effectively
removed in the four-level processing. Moreover, only the
approximation coefficients that correspond to cA4 have much
higher variances in verbal periods than those in non-verbal
periods. We further leverage the calculated approximation
coefficients cA4 at the fourth level as the features to detect
mouth opening activities.

B. Mouth opening detection

By leveraging DWT-based denoising techniques, we remove
most high-frequency noise in the pressure signal, but low-
frequency noise still exists and negatively impacts the detec-
tion. To further eliminate the influence of low-frequency noise
and accurately detect the location of mouth opening activities,
we calculate the short-term variance of the signal. The basic
insight is that mouth opening activities introduce much larger
variances to the pressure signal. Fig. 10 shows the short-term
variance signals that are calculated from the approximation
coefficients cA4 in Fig. 9 using a window of 0.4 seconds. We
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can see the short-term variances reach very high values when
the user opens the mouth. Although noise can also generate
some peaks in the variance signals, their amplitude is much
lower than those that are introduced by opening the mouth. By
performing peak finding algorithms with a threshold, we can
effectively detect the mouth opening activities in the variance
signals. In our system, the threshold is set to the average
variance value when the pressure is only influenced by the
environment.

C. Enhanced detection with classification

In the last subsection, the voice is regarded as from a
live speaker as long as there is a peak that exists in the air
pressure signal and is greater than the threshold. However,
low-frequency noise may still exist in the filtered signal, which
generates variances to the short-term variance signal. These
variances may also introduce some spikes that can be wrongly
treated as those introduced by mouth opening activities. To
further eliminate these low-frequency noises, we leverage an
extra classifier to determine whether the short-term variance
signal matches with those that are influenced by opening the
mouth. In terms of feature extraction, there are two major
challenges. First, the short-term variance value highly depends
on the environment the user is in, which means the absolute
values may vary even for the same user and same room.
Second, the sampling rate of the short-term variance signal
is low (50016=31.25 Hz), which means it is hard to perform
Fast Fourier Transform on it. To address the first challenge, we
normalize the segmented short-term variance signals to a range
(0,1]. Considering the second challenge, we extract features
from the time domain, including average amplitude, root-
mean-square value, and overall variance. Fig. 11 illustrates the
feature distribution for a legitimate user and an attacker on the
three-dimension hyperplane. We can see that it is feasible to
find a surface to split these two types of data points.

In our system, we build the classifier using the Multiple
Additive Regression Tree (MART). The main reason we
selected MART is the scales and units of three features are
different. By using MART, the classifier can effectively deal
with the colinearity of features.

A MART-based consists of a series of weak classifier
where each weak classifier is a regression tree. The final

Data sink: Raspberry Pi 4 b+

Earphone with pressure sensor

Fig. 12. Testbed that is used to collect ear carnal pressure.

classification result is produced based on the results from
all weak classifiers. In this paper, we use the formulation of
MART in [6]. Basically, the generation of a MART classifier
consists of multiple rounds, and a new weak classifier is
created every round. We use bih(x; a) to represent the newly
created weak classifer in ith round where bi is the coefficients
and ai are parameters vector. After m rounds, the estimation
F (x) of the strong classifier is an additive expansion of
the form F (x) =

∑m
i=0 bih(x; a), where h(x; a) is a weak

classifier with parameters a = {a1, a2, . . . , an} and feature
vector x = {x1, x2, x3}. Here n is the number of parameters
for each weak classifier. In each round, the coefficients bi and
the parameters ai are jointly fit to the training data in a forward
“stage-wise” manner. Starting with an initial guess F0(x), the
coefficients bi and the parameters ai in the ith iteration can
be found by solving the following problem:

(bi, ai) = arg min
b,a

3∑
j=1

L(yj , Fi−1(xj) + bh(xj ; a)), (1)

where yj is the diagnosis variable, and L(y, F ) is the loss
function that is used to define lack-of-fit. Therefore, the
estimation of the strong classifier after the ith iteration is
expressed as:

Fi(x) = Fi−1(x) + bih(x; a). (2)

For example, if the labels y of all legitimate user’s instances
are 0, the classifier tries to find a series of parameters a and
b so that their final estimations are close enough to 0. Simi-
larly, the final estimations of attackers’ data should be close
enough to 1. In our system, we implemented the MART-based
classifier using the library of scikit-learn [16]. Specifically,
we chose the deviance function as the loss function and set
the learning rate to 0.1. Since the MART-based classifier is
fairly robust to over-fitting, we set the number of iterations to
5000 to achieve better performance. For each regression tree,
the maximal depth is set to 4, and the number of features to
consider when looking for the best split is set to 4.

VI. EVALUATION

A. Implementation

1) Hardware: To evaluate the performance of our system,
we build a prototype to collect both ear canal pressure signal



TABLE I
AIR PRESSURE IN THE ENVIRONMENT DURING DATA COLLECTION.

User 1 2 3 4 5 6 7 8 9 10
Air pressure (hPa) 1009.9 1.14.6 1011.3 995.3 1012.4 1013.8 1006.9 1014.9 1018.2 995.6

1 2 3 4 5 6 7 8 9 10

User ID

50

60

70

80

90

100

%

True acceptance rate

True rejection rate

Fig. 13. Overall performance.

and the voice signal. The prototype consisted of five major
components: a pressure sensor, a pair of ear phones, a mini PC
to collect the pressure data, a microphone to collect voices, and
a data processing center. Specifically, we selected BMP 280 as
the sensor and embedded it into a Passion earphones, which
are shown in Fig. 12. The pressure data is then transferred by
wire to the Raspberry Pi (mini PC) and then sent to the data
processing center by a wireless network. At the same time,
we use a smartphone to record the voice.

2) Data collection: In our experiments, we collected data
from ten participants (5 females and 5 males) who are uni-
versity students and age from 25 to 30. Each participant was
asked to wear the earphones with the pressure sensor in their
right ear and record their voice. While using our system,
each of them said a command “Alexa, turn on the light.”
50 times. In order to make sure the air pressure in their
ear canals are only influenced by mouth openning activities,
we use earbuds to ensure the participants wear the earphones
tightly enough. Each participant attend the data collection in
different rooms and at different times, so the air pressure
(shown in Table. I) in their environments can be different. For
data analysis and processing, the data was then transmitted to
a desktop computer with Intel(R) Core(TM) Devil’s Canyon
Quad-Core i7-8700K @ 4.00 GHz CPU and 16 GB of RAM.
In our experiments, we use the following performance metrics
to evaluate the validation performance of our system. True
acceptance rate is defined as the rate at which a normal user
is correctly accepted, and true rejection rate refers to the
probability that an attacker is successfully rejected by the
system.

B. Overall performance

A good liveness detection system should accurately accept
voice commands from legitimate users while rejecting those
from attackers. In this subsection, we evaluated the system
performance in these two aspects using the data collected
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Fig. 14. Impact of the source of training data.

from eight participants. For each user, we used 15 training
instances as the training data to train a MART classifier. The
MART classifier contains 2,000 trees, and the maximum depth
of each tree is limited to three. Fig. 13 shows the system
performance for eight participants. We can see that our system
can accurately accept voice commands that are from legitimate
users with an average accuracy of about 91.72%. We also
studied the air pressure signals of participants whose true
acceptance rates are relatively low. We find that their mouth
opening activity generates less influence on the pressure signal,
which makes their features can be more likely to be covered
by noise. Possible reasons behind this are: 1) The earbuds do
not fit their ear canal well, or 2) They did not push the earbuds
deep enough in their ear canal. These can be solved by giving
users more choices on earbuds in practice.

We also studied how accurately our system can reject voice
commands that are from replay attackers. As shown in Fig.
13, our system can provide high true rejection rates (about
97.2%) for all participants. The major reason is that the
features of air pressure signals during the non-speech period
are relatively stable. Therefore, the learned decision boundary
can effectively distinguish attackers’ data in feature hyperplane
from those of legitimate users. Overall, our system provides
high system performance for both accepting legitimate users
and rejecting replay attackers.

C. Performance using other’s training data

For commercial voice assistant devices, we would like to
launch our system as quickly as possible for a new user.
Ideally, we would like to reduce the training cost of the new
user to zero. In this subsection, we compared the system
performance for a legitimate user when using the user’s
own training data and other users’ data, respectively. In this
experiment, we trained the classifier with 2000 trees and 30
training instances. Among them, 15 instances are positive (can
be from the legitimate user or other users). Fig. 14 illustrates
the true acceptance rates under these two settings. We can see
that the average true acceptance rate can drop to about 75.7%.
In the worst case, true acceptance can be as low as 57.8%.
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Fig. 15. Impact of number of trees in MART.

The major reason is that the feature distribution of different
legitimate users may vary. Therefore, the decision boundary
learned for one legitimate user may not work for the other
user’s data.

D. Impact of number of trees in MART

Since we leverage MART as the model for classification,
the computation overheard mostly depends on how many
trees we use in building the classifier. To evaluate what is
the minimum number of trees that are needed to ensure
good system performance, we designed an experiment using
a participant’s data and the results are shown in Fig. 15.
Even with 10 trees, Our system can already provide high
system performance (over 90%) for both accepting legitimate
users and rejecting attackers. By having more trees in the
classification stage, the system performance can be further and
slightly improved. Moreover, with a larger number of trees,
the variances of both true acceptance rate and true rejection
rate gradually decrease, which means that the MART classifier
with more tress can provide better robustness. However, more
trees mean more computation overhead not only in the training
stage but also in the testing stage.

E. Impact of training size

As we discussed in Section VI-C, others’ training data
cannot always ensure high system performance for a new
user. Therefore, we still need to collect some data from a
new user to train a personalized classifier. In this subsection,
we studied what number of training instances is necessary
for a new user. Specifically, we leveraged a MART classifier
with 200 trees and adjusted the number of new user’s training
instances. To ensure the balance in the training dataset, we
also adjusted the number of attackers’ training instances so
that these two numbers are identical. Similarly, we run the
evaluation ten rounds and randomly selected data for training
and testing in each round. Fig. 16 shows how the system
performance changes with the increase in the number of
training instances from a new user. We can observe that
both rates rise by introducing more training instances. For
example, when only one training instance is available, our
system can accept a legitimate user with an average accuracy
of 66%. By introducing five more training instances from the
legitimate user, the true acceptance rate can be improved to
96%. Moreover, the system’s robustness can be improved with
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Fig. 16. Impact of training size.

TABLE II
COMPUTATION OVERHEAD.

Stage Signal processing & feature extraction Classification
Time (s) 0.091 4.0129e-04

more training data. For instance, the standard deviation is
30% when only one training instances available, which means
the true acceptance rate can be much lower than the average
value. By asking the new user to say 6 commands for training,
the standard deviation of true acceptance rates can be largely
reduced to 4%.

VII. DISCUSSION

A. Impact of other facial activities

Based on recent research [2], some head movements (e.g.
turning head) can also generate an impact on the air pressure
in the ear canal. Usually, the variances introduced by these
head movements are weaker than those introduced by opening
mouth, which means we can reject them by using the threshold
in peak filtering. In this subsection, we studied whether our
system may wrongly accept attackers’ voice commands when
the legitimate user is performing head movement activities. In
our experiments, we focus on two head movement activities:
turning the head and nodding the head. Specifically, we asked
a participant to perform these two activities while closing his
mouth. We leveraged the trained system to detect these signals
for liveness detection, and the results are shown in Fig. 17. We
find that the introduction of these head movements does reduce
system performance. For example, the average true rejection
rate can drop to about 80% when the user turns the head. These
facts mean that turning the head may also generate strong
variances to the pressure signal. This issue can be addressed by
extracting more powerful features from the pressure signal and
leveraging another classifier to reject these activities. These
possible solutions are our future work on this topic.

B. Usability

Except for accuracy, processing, and validation time is also
critical and determines usability. We further test the time our
system needs to process the raw signal and get the final
validation results, and experimental results are shown in Table.
II. We can see that the average time for signal processing
and feature extraction is about 91 ms. Once the classifier is
well trained, the system only needs about 0.4 ms to give a
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classification result. These facts mean that our system can
return the results to the user within 0.1 seconds after receiving
the voice command. Considering the data processing can be
executed with other voice services in parallel, our system
will not put obvious computation overhead to current voice
assistants. In addition, compared with existing works, our
system does not need users’ extra effort in operating the voice
assistant, e.g., moving the device around the audio source. To
further strengthen the usability of our system, we adopt the
same human-computer interaction methods used by current
voice assistants, so that users can quickly get used to using
our system.

VIII. CONCLUSION

In this paper, we conduct an in-depth study on the voice
replay attacks towards voice assistant and propose a new voice
liveness detection system. The basic insight of our system
is that mouth opening activities will change the space size
in the ear canal, which further changes the air pressure in
ear canals. More specifically, we leverage signal processing
techniques to detect mouth opening activities from the noisy
air pressure data. In addition, we extract features from the
detect pressure signals and match them with the features that
are collected from the live person to validate the liveness of
the voice source. To evaluate the system, we develop a proto-
type on Raspberry Pi and conduct comprehensive evaluations.
Experiments with ten volunteers show that our system can
accurately accept voice commands from legitimate users with
an accuracy of 91.72%. Moreover, our system can effectively
defend current voice assistant devices from replay attacks with
an accuracy of 97.2%.
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