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Abstract—As data center clusters need to process quintillion
bytes of data per day, it becomes a critical problem that efficiently
scheduling jobs to improve resource utilization. However, the
data analysis job usually contains multiple stages with dependent
relationships, which brings challenges for scheduling. Those
stages are modeled as Directed Acyclic Graphs (DAGs) and
the general DAG scheduling problem is NP-hard. In this paper,
we notice that in some parallel computing frameworks such as
Spark, the execution of each stage could be divided into multiple
phases that use different resources. We observe that interleaving
different resources in a pipelined manner could improve resource
utilization. Based on this observation, we propose to minimize
the job makespan by exploiting resource pipeline. We first
theoretically analyze the scheduling for perfectly parallel stages.
In this case, our scheduling problem is equivalent to a DAG
shop problem which is NP-hard. A contention-free scheduler is
proposed and its approximation properties are analyzed. Stages
of real-world jobs are usually not perfectly parallel. For general
jobs, a reinforcement learning (RL) based scheduler is proposed
to adaptively adjust the resource contention. We evaluate our
contention-free and RL-based schedulers on a Spark cluster
deployed on the Amazon EC2. Experiments on real-world and
synthetic datasets show our RL-based scheduler can improve the
CPU and network utilization by 33.0% and 29.7%, respectively.

Index Terms—data center clusters, DAG scheduling, makespan
minimization, pipelines

I. INTRODUCTION

With the rapid growth of data volume in the big data
industry, reducing the makespan of data analysis becomes
more and more critical. Over quintillion bytes of data are
generated every day from Internet of Things devices. However,
obtaining the optimal schedule of jobs in polynomial time is
challenging. Big data analysis jobs usually consist of multiple
stages with dependencies. The dependency in a job are usually
modeled by a directed acyclic graph (DAG) as shown in
Fig. 1 and the general DAG scheduling problem is known
as NP-hard. In some parallel computing frameworks such
as Spark, the execution of each stage could be divided into
multiple phases that use different resources as shown in Fig.
1. Those stages could be processed in a pipeline. Exploiting
the pipeline could improve the resource utilization but also
brings challenges for DAG job scheduling.

We have observed that several stages competing for a
resource would enlarge the makespan of a job. Specifically,
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Fig. 1. Illustrations of DAGs, stages and phases.

if we launch multiple stages at the same time as the default
scheduler, the intense contention on one resource could reduce
the utilization of other resources. We use stages 1 and 2 of the
DAG shown in Fig. 1 as an example. Let qi and q′i denote the
data fetching and data processing phase of stage i, respectively.
The time of result writing is negligible since the sizes of results
are small and are written to the local disk. If the scheduler
starts q1 and q2 simultaneously as shown in Fig. 2(a), both
q1 and q2 take longer time to finish compared with executing
them individually. The longer execution time of q1 and q2

further delays the starting of q′1 and q′2, which eventually leads
to a larger time cost of finishing stages 1 and 2. Interleaving the
resources in a pipelined manner could reduce the makespan.

Besides the resource contention, the execution order of
stages also impacts the makespan of a job. It can be shown
on the same example. As shown in Fig. 2(b), if the scheduler
starts q2 before q1 and avoids the resource contention, the
makespan of executing stages 1 and 2 is longer compared with
that of starting q1 first. The longer execution time needed by
q2 reduces the utilization of the computational resource.

The motivation example shows the benefits brought by
the resource pipeline. However, existing researches, such as
[1]–[6], pay little attention to this aspect. In this paper, we
investigate the stage scheduling problem for a DAG-style job
to minimize the job makespan. We focus on reducing resource
contention in the stage execution. We theoretically analyze the
scheduling for perfectly parallel stages whose speedups are
proportional to the number of resources allocated to them. We
show that the optimal schedule for those stages is contention-
free, and convert the scheduling problem into a DAG shop
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Fig. 2. The challenges in scheduling DAG jobs.

problem which is NP-hard. A contention-free scheduler is
proposed and its approximation properties are analyzed.

We also notice that stages are usually not perfectly parallel
in real-world workloads. The contention-free schedule is no
longer suitable for general stages. Allocating all resources to
a stage is a waste since the stage cannot make full use of
so many resources. A reasonable level of resource contention
is needed. We propose a reinforcement learning (RL) based
scheduler to adaptively adjust the starting time of each stage
and the percentage of resources allocated to it to control the
contention level. The RL-based scheduler frequently takes the
available resources and unprocessed stages as the input state
and adaptively updates the schedule for the remaining stages.

We evaluate our schedulers on a Spark cluster deployed on
the Amazon Elastic Compute Cloud. Our evaluation uses both
a real-world dataset from Alibaba and a synthetic dataset.

The contributions of the paper are summarized as follows:
• We investigate the stage scheduling problem for jobs with

DAG structures. Especially, we propose to minimize the
job makespan by reducing resource contentions.

• We theoretically analyze the scheduling for perfectly
parallel stages which converts our problem into a DAG
shop problem. A contention-free scheduler is proposed.
Its approximation properties are analyzed.

• We also consider the scheduling for general stages, which
makes the problem more practical. We investigate a RL-
based scheduler which can adaptively adjust the schedul-
ing policy from experiences.

• Experiments on both synthetic and real-world datasets
show our scheduler could efficiently improve the resource
utilization and reduce the job makespan.

II. MODELS

A. Overview of the Spark Job and Stage

In the Apache Spark framework, a job usually consists
of a set of stages with dependencies. The execution of the
job is sliced into the processing of stages. Because of the
data flow in each job, some stages cannot be processed
until intermediate results are generated by some other stages.
The inter-dependencies among stages in a job are usually
represented by a Directed Acyclic Graph (DAG).

A stage is a physical unit of execution and contains a set
of parallel tasks. The Spark scheduler could allocate multiple
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Fig. 3. Procedures of executing a stage on a Spark cluster.

executors to a stage and process it in parallel. The procedure
of a stage execution is illustrated in Fig. 3. The procedure
can be divided into two phases: the data fetching phase
and the data processing phase. In the data fetching phase,
worker machines shuffle read the data partitions which are
distributed among different nodes of the cluster. The data
fetching phase is network I/O intensive. In the data processing
phase, executors in worker machines run the task functions on
the data partitions they fetched, and write the result on their
local disks. The data processing phase is computation intense.

The Spark scheduler controls when a stage starts and how
many executors to use. We focus on designing a scheduler
which could reduce the job makespan.

B. Notations

Before we formulate our stage scheduling problem, we first
introduce the notations we used. Let G = (S,E) denote the
DAG. W.l.o.g., we assume there is only one job in our model.
Since we consider the stage-level scheduling, there is no need
to distinguish different jobs. Scheduling a batch of DAG-style
jobs could be treated as scheduling a special DAG-style job
which consists of multiple separate DAGs. The vertex set S of
the graph G represents the set of stages of the job. Specifically,
S = {s1, s2, . . . , sn}, where n is the number of stages in
the job. The directed edge set E of the graph represents the
dependency relations of stages in S. An edge from si to sj
is denoted by an ordered pair (si, sj) ∈ E. It means that the
stage sj cannot start until the stage si is finished. We divide
the execution of a stage into a data fetching phase and a data
processing phase. Let qi and q′i denote the data fetching phase
and data processing phase of a stage si ∈ S, respectively. q′i
cannot start until qi is finished.

The time consumption of executing a stage is affected by
the stage size and the amount of resources allocated to it. The
stage size is quantified by the overall size of data partitions
that are processed in the stage. We use di to denote the overall
data size of stage si. Stages can be processed in multiple
worker machines in parallel. If multiple stages are running,
we assume both of the executor resource and the bandwidth
resource are equally allocated to those stages. We use pi to
denote the parallelism level of each stage si, i.e., the number
of executors assigned to the stage. The bandwidth allocated
to the stage si is denoted as bi. Let li and l′i denote the
length or duration of phases qi and q′i, respectively. Then,
li and l′i can be formulated as a function of the data size
di, the parallelism level pi and the bandwidth bi. Formally,



li = fi(di, bi) and l′i = f ′i(di, pi). The explicit expression
of f and f ′ depends on different types of DAG stages.
For perfectly parallel stages, fi and f ′i are linear functions.
Specifically, fi(di, bi) ∝ di/bi and f ′i(di, pi) ∝ di/pi. For
general DAG stages, they are non-linear functions. We use ti
and t′i to denote the start time and completion time of the
stage si. We consider the non-preemptive scheduling. Hence,
t′i = ti+li+l

′
i = ti+fi(di, bi)+f ′i(di, pi), i.e., the completion

time of a stage is determined by the start time ti, data partition
size di, the parallelism level pi, and the bandwidth bi.

For each stage, its parallelism level and bandwidth are corre-
lated with the starting time of itself and all other stages. Instead
of simultaneously adjusting all three factors, the scheduler
can control the values of pi and bi by setting the start time
for all stages, since we assume the available resources are
equally allocated to stages running in parallel. This assumption
is practical and reduces the solution space for our problem.
Formally, let O(t) denote the set of stages that are running in
parallel at time t. Then, O(t) can be calculated by counting
stages whose processing intervals [ti, t

′
i] contain t. Formally,

O(t) = {si ∈ S|t ∈ [ti, t
′
i]}. We use P and B to denote

the total number of executors and the overall bandwidth in
the cluster, respectively. Then, the computation and network
resources allocated to each stage si ∈ S are pi = P/|O(ti)|
and bi = B/|O(ti)|, where |O(ti)| is the set cardinality.

We also notice that it is not necessary to allocate too many
executors to a stage. For general DAG stages, the length
of the data processing phases l′i = f ′i(di, pi) can hardly be
further reduced when its parallelism level pi exceeds a certain
threshold. Details are explained in Section IV.

The makespan of executing a stage is denoted as τ . For-
mally, τ = maxsi∈S(t′i)−minsi∈S(ti). Its value is determined
by the scheduling policy. Specifically, Let P denote the
scheduling policy. It consists of a vector of start times and
a vector of parallelism levels for all stages. The makespan τ
can be reduced by wisely adjust the policy P .

C. Problem Formulation

In this paper, we aim to design a scheduler which could
interleave the usage of different types of resources such that
the makespan of executing a job is minimized. Specifically,
the resource contention can be reduced by wisely adjusting
the start time ti and the parallelism level pi for each stage
si ∈ S. We formulate our scheduling problem as follows:

min τ, (1)
s.t. t′i ≤ tj ,∀(si, sj) ∈ E, (2)∑

si∈O(t)
pi ≤ P,∀t > 0, (3)∑

si∈O(t)
bi ≤ B, ∀t > 0, (4)

ti ≥ 0,∀si ∈ S. (5)

Eq. (1) shows our objective of minimizing the makespan
of the job execution. Eq. (2) is the precedence constraint. If
there is an edge (si, sj) ∈ E, then the start time of the stage
sj cannot be earlier than the completion time of the stage si.
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Fig. 4. A motivation of scheduling ideal stages in a pipelined manner.

Eq. (3) is the computation resource constraint, where O(t) =
{si ∈ S|t ∈ [ti, t

′
i]} is the set of stages processing in parallel

at time t. Eq. (4) is the bandwidth constraint. Eq. (5) is the
schedule constraint. Each stage si ∈ S should be scheduled
and processed by some executors.

D. Problem Hardness

Finding the optimal solution for our stage scheduling prob-
lem is hard. The DAG structure of the job as well as the
complex relation between stage lengths and the contention
level bring challenges to our optimization problem. We find
that our problem is NP-hard even in an ideal case where
the DAG consists of all perfectly parallel stages whose time
consumption functions fi(di, bi) and f ′i(di, pi) are linear and
have closed-form expressions . The proof is shown in Section
III. For more general cases where fi and f ′i are non-linear
w.r.t. bi and pi, the problem becomes even harder.

III. SCHEDULING FOR PERFECTLY PARALLEL STAGES

A. Contention of Perfectly Parallel Stages

We first investigate the scheduling for perfectly parallel
stages. Those stages have some useful properties which could
help to reduce the complexity of the scheduling problem.
Specifically, there is no need to set a parallelism limitation for
a perfectly parallel stage. The formulations of li = fi(di, bi) ∝
di/bi and l′i = f ′i(di, pi) ∝ di/pi show that the speedup of
those phases are proportional to the units of resources allocated
to them. Therefore, we could simply assign all computational
resources to a stage . Then, the scheduling problem becomes
to determine the start time for all stages.

In addition, simultaneously running multiple perfectly par-
allel stages bring no benefits. It might even enlarge the job
makespan. Specifically, the execution time of perfectly parallel
stages merely depends on resource utilization. Simultaneously
running multiple stages cannot further improve the utilization
since running one stage already can make full use of all
resources. Splitting resources to multiple stages may enlarge
the completion time of some phases, and it delays the start of
the following phases. Fig. 4 shows a straightforward example.
If we split the network resource to simultaneously execute
q1, q2, and q3 as shown in Fig. 4(a), the start of phases
q′1, q

′
2, and q′3 would be delayed. It reduces the utilization

of computation resources. If we assign all resources to one
stage at a time as shown in Fig. 4(b), the makespan of
executing stages s1, s2 ,and s3 can be reduced. Therefore, we
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Fig. 5. Converting operations in the job shop to stages in the DAG shop.

can schedule perfectly parallel stages in a pipelined manner.
It reduces the searching space of finding the optimal ti. We
only need to determine an execution sequence for those stages.
Based on the sequence, the scheduler starts a stage right after
its previous stage is finished.

Although the useful properties of perfectly parallel stages
reduce the solution space, our scheduling problem is still NP-
hard. The NP-haedness is shown in Theorem 1.

Theorem 1: Our scheduling problem for perfectly parallel
stages is NP-hard .
Proof. Any instance J ′ of the job shop problem [7] with
two machines can be converted into an instance J of our
stage scheduling problem with all perfectly parallel stages in
polynomial time. The solution of J also could be transformed
into the solution of J ′ in polynomial time. Specifically, an
instance J ′ can be stated as follows: We are given n jobs.
Job i has a sequence of ki operations which must be processed
in this order. Operations can be divided into two types. Each
type of operation must be processed on a specific machine,
and each machine can process one operation at one time. The
objective is to minimize the makespan of n jobs. A job in job
shop problem is shown in Fig. 5. s′ij denotes the j-th operation
on job i. Note that if two adjacent operations belong to the
same type, those operations could be merged. Therefore, we
can assume adjacent operations are different in our proof. As
shown in Fig. 5, we could convert the job into a path in DAG
by inserting dummy operations and treating operations in jobs
as phases in stages. For example, after inserting an ε-length
operation before s′i1, we can treat those two operations as
two phases in a stage. An job shop instance J ′ can contain
multiple jobs. Each job could be converted into a DAG path
in polynomial time. Then, a common ancestor with two ε-
length operations is added before paths. If we treat ε = 0,
the instance J ′ is converted into an instance J of our stage
scheduling problem with perfectly parallel stages.

Stages in J are perfectly parallel, which makes an optimal
solution of J optimal for J ′. The solution to J contains start
time ti and parallelism level pi for each stage. For perfectly
parallel stages, pi = P and it is determined. The start time ti
could be converted into the processing sequence by sorting.
There may exist resource contentions in the optimal schedule
of J . But we can always find an equivalent schedule that has
the same makespan and no resource contention. Specifically,
for any two stages si and sj running in parallel and competing
for a resource, we could always delay the stage with the larger
start time without affecting the makespan, since their overall
workload is certain. W.l.o.g., we assume tj > ti and the

Algorithm 1 Contention-free Scheduling Algorithm
Input: The DAG G=(S,E), available resources (B,P )
Output: The scheduling for DAG stages in S

1: Evaluate phase lengths li=fi(di,B), l′i=f
′
i(di,P ),∀si∈S

2: Initialize the schedule list L← ∅
3: while S is not empty do
4: Ready-to-go stage set S′←{si∈S|(sj ,si) /∈E,∀sj ∈S}
5: Shuffle-heavy stage set S1 ← {si ∈ S′|li > l′i}.

Computation-heavy stage set S2←S′\S1

6: L2←Sort si ∈ S2 for ascending order of li. L1←Sort
si ∈ S1 for descending order of l′i. L← L||L2||L1

7: Update S←S\S′. Remove corresponding edges in E
8: return L as the schedule list

processing of qi and qj are overlapped. Then, we could delay
the start of qj such it starts after the completion of qi. Because
the overlapped sizes of qi and qj as well as the amount of
resource B are fixed, the time needed to finish those phases
would not change, no matter they are processes simultaneously
or separately. Hence, the value of t′j remains and the execution
of the following stages would not be affected.

Above all, the instance J and J ′ are equivalent. Consider-
ing the job shop problem with two machines is NP-hard [7],
our problem is also NP-hard. �

B. Contention-free Scheduling

We propose a contention-free scheduling algorithm for
perfectly parallel stages. The contention-free scheduling means
both data fetching and processing phases of each stage si ∈ S
can acquire all cluster resources, i.e., bi = B and pi = P . The
motivation of using a contention-free scheduler is that splitting
resources to run multiple stages concurrently cannot reduce the
makespan, but may even increase it. Besides, as shown in the
proof of Theorem 1, any optimal schedule could be converted
into an equivalent contention-free schedule. In our contention-
free scheduler, stages are executed in a pipelined manner to
interleave the resource usage.

To generate the contention-free scheduling, we need to de-
termine the processing sequence of stages. The DAG structure
(precedence constraints of stages) and two different types
of phases make it challenging to find the optimal sequence.
The DAG structure gives partial order relations among all
stages. We need to extract a feasible total order relation when
building the sequence. Besides, the lengths of phases vary with
stages. Some stages are shuffle-heavy and have longer data
fetching phases than the processing phases, while some other
stages are computation-heavy. Scheduling those stages without
precedence constraints is not trivial. Dealing with those factors
at the same time is NP-hard and we treat them separately.

We borrow ideas from the topological sort and Johnson’s
rule [8] to design our scheduling algorithm. The topological
sort can find feasible execution sequences of stages in the
DAGs. However, the number of feasible sequences is expo-
nential. Calculating makespans of all feasible sequences and
comparing them cannot be done in linear time. Johnson’s
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Fig. 6. The illustration of the ready-to-go stages.

rule is a method of scheduling flow shop problems. Without
the precedence constraints, it can optimally solve our stage
scheduling problem.

Intuitively, our contention-free scheduling algorithm iter-
atively uses Johnson’s rule on a set of ready-to-go stages
until all stages are scheduled. A ready-to-go stage is a stage
whose predecessors are scheduled. Use the DAG in Fig. 6
as an example, the initial set ready-to-go stages contains s1

and s2. After stages s1 and s2 are finished scheduled, s3

and s4 becomes ready-to-go. In each iteration, our algorithm
schedules all ready-to-go stages in the set, removes those
stages form the DAG, and determines the next set of ready-to-
go stages. It stops when all stages are processed and removed
from the DAG.

The detailed procedures of our algorithm are illustrated in
Alg. 1. Lines 1-2 calculate the phase lengths for all stages and
initialize the schedule list. In lines 3-7, we iteratively schedule
a set of ready-to-go stages. Line 4 finds the ready-to-go stages
that have no income edges in G. Lines 5-6 apply Johnson’s
rule. The stages are divided into a shuffle-heavy group S1 and
a computation-heavy group S2. Stages in the computation-
heavy group S2 have shorter data fetching phases. For si ∈ S2,
we prefer to process the stage with the shortest data fetching
phase li first. For shuffle-heavy stages, we process the stage
with the shortest data processing phase l′i last. Then, we
concatenate the sorted stages in S2 and S1 to the list, and
the computation-heavy stages in S2 are concatenate before
S1. The concatenation is represented by ||. Line 7 updates the
graph for the next iteration. Line 8 returns the result.

We use the DAG shown in Fig. 6 as a go-through example.
The tuple (li, l

′
i) associated with each stage indicates the

lengths of its data fetching and data processing phase. In
the first iteration, s1 and s2 are ready-to-go stages. s1 is
computation-heavy and is scheduled before s2 that is shuffle-
heavy. Then, they are removed from the DAG and s3, s4

becomes ready-to-go. s3 has a longer data processing phase
and is scheduled before s4. After s3 and s4 are scheduled, s5

has no predecessors and is concatenated to the schedule list.
Eventually, s6 is appended to the schedule list. Based on the
sequence of stages in the list and the principle of contention-
free, the start time of each stage can be easily derived. Our
schedule of the first four stages is illustrated in Fig. 7(a).
Stages 5 and 6 are not shown since their schedule is fixed
according to their dependent relationships.

Although ready-to-go stages are optimally scheduled in each
iteration, the final schedule for all stages might be suboptimal.
This is because we manually set precedence restrictions for
stages among different ready-to-go groups. For example, we
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Fig. 7. An example of our scheduling algorithm.

schedule s1 and s2 before s3 and s4 the of the DAG in Fig. 6.
It introduces a precedence restrictions s2 → s4, which is not
necessary. Adding those restrictions could let the scheduler
miss the optimal solution. The optimal schedule is shown in
Fig. 7(b), where s4 is processed before s2.

Our contention-free scheduler is 2-approximate for per-
fectly parallel stage scheduling. It is 3/2-approximate if data
fetching and data processing phases of all stages have a
unit length. The 2-approximation ratio is trivial. The insight
is that our scheduler would not leave both resources idle.
Formally, let τ∗ denote the optimal makespan. Then, we have
τ∗ ≥ max{

∑
si
li,

∑
si
l′i} since even if the optimal scheduler

could perfectly pipeline all phases, it cannot compress the
essential computation or communication time consumption.
Our contention-free scheduler would not leave both resources
idle. Therefore, our makespan τ ≤ (

∑
si
li +

∑
si
l′i) ≤

2 max{
∑

si
li,

∑
si
l′i} ≤ 2τ∗. Theorem 2 shows the 3/2-

approximation ratio for the unit-length case.
Theorem 2: Our contention-free scheduler is 3/2-

approximate if li = l′i = c,∀si ∈ S, where c is a constant.
Proof. The key property used in the proof is that the total
resource idle time of our schedule would not exceed the
optimal makespan τ∗. Let Φ = {ϕ1, . . . , ϕk, . . . } denote the
set of idle slots in the scheduling. For example, in Fig. 7(b), ϕ1

represents the CPU idle time before processing q′1. For each
ϕk ∈ Φ, we can find a corresponding stage phase νk which is
in execution during ϕk, since two types of resource would not
be idle simultaneously. In Fig. 7(b), ν1 = q1. We will show that
for ϕk ∈ Φ (k 6= 1, k 6= |Φ|), their corresponding νk cannot be
pipelined when li = l′i = c,∀si ∈ S. For any two adjacent ϕk

and ϕk+1, we have νk ≺ νk+1 meaning there is a partial order
relation between νk and νk+1. If it is not the case, νk and νk+1

should run simultaneously by shifting νk+1 ahead to occupy
ϕk. Therefore, there is a chain ν2 ≺ ν3 ≺ · · · ≺ ν|Φ|−1.
Similar to the concept of the critical path, the makespan of
this chain cannot be reduced, even in the optimal schedule.
It means that the idles of ϕk for 2 ≤ k ≤ |Φ| − 1 cannot
be avoided even in the optimal schedule. The head ϕ1 and
tail ϕ|Φ| cannot be avoided either. Therefore, in the optimal
schedule, its total idle time is greater or equal to

∑|Φ|
k=1 ϕk.

Besides, the optimal makespan τ∗ must be greater or equal to
its total idle time. Therefore, τ∗ ≥

∑|Φ|
k=1 ϕk.

We notice that τ = 1
2 (
∑

si
li+

∑
si
l′i+

∑|Φ|
k=1 ϕk). We have
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shown that (
∑

si
li +

∑
si
l′i) ≤ 2 max{

∑
si
li,

∑
si
l′i} ≤ 2τ∗

and
∑|Φ|

k=1 ϕk ≤ τ∗. Hence, τ ≤ 1
2 (2τ∗ + τ∗) = 3

2τ
∗. The

3/2-approximation ratio holds. �

IV. SCHEDULING FOR GENERAL STAGES

When scheduling general stages, contention-free scheduling
is no longer optimal. For general DAG stages, their speedups
are no longer proportional to the units of resources allocated
to them, especially for the data processing phase. When the
number of executors allocated to a stage exceeds a threshold,
adding more executors to the stage would barely reduce
its execution time any further. For those stages, allocating
all executors to a ready-to-go stage as the contention-free
scheduler is a waste. The scheduler should set an upper bound
on the parallelism level of each stage. If the limitations are
properly set, simultaneously executing multiple stages and
controlling their competition within a reasonable level could
improve resource utilization and reduce the makespan. In
this section, we first show the non-linear speedup of general
DAG stages. Then, we introduce a reinforcement learning
(RL) based scheduler for general stage scheduling. Finally,
we discuss the training details of the RL agent.

A. Speedup of General Jobs

We first test the speedup of general DAG stages on the
Spark server. Fig. 8 shows the speedup of two different jobs
from the TPC-H dataset1. From the figure, we can observe the
non-linear speedup and the parallelism level threshold. For
example, for the Q2 job, allocating more than 32 executors
would barely further improve the speedup or even might
reduce it. Therefore, it is a waste that allocating more than 32
executors and the scheduler should set a parallelism limitation
mi. When the available executors are more than the limitation,
the scheduler should allocate the extra executors to other
stages. The contention-free scheduler is no longer optimal.

It is difficult to theoretically model the speedup in practice.
Although the Amdahl’s law [9] shows a speedup model, the
percentages of sequential parts in each DAG stage is not
clear. According to the Amdahl’s law, the execution time of
sequential parts is fixed, and the speedup of the parallel part is
proportional to the number of executors. However, determining
the percentage of sequential parts is hard to implement in
practice. Therefore, it is not reasonable to determine a fixed
parallelism level for all DAG stages. In contrast, we adapt a
RL based scheduler to adaptively adjust the parallelism level

1Available online: http://www.tpc.org/tpch/
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Fig. 9. The reinforcement learning framework for general stage scheduling.

for different DAG stages and maintain the resource contention
at a reasonable level.

B. A RL-based Scheduler for General Stage Scheduling
We adapt the RL framework in [10] to generate schedules

for general stages. Different from the RL agent in [10], we
consider to control the resource contention by adjusting the
start time ti of each stage si. The RL framework is shown
in Fig. 9. It consists of a RL agent and the environment. The
agent observes the state from the environment and generate the
schedule as an action. The environment is the Spark engine
running on the data center cluster.

We first show our design of the action space. The scheduler
needs to determine the parallelism level limitation mi and the
starting time ti for each stage si ∈ S. The possible values of
mi are discrete and bounded by the total number of executors
P . Formally, mi ∈ {1, 2, . . . , P}. We can use a neural network
with softmax layers to calculate the probability of choosing
each potential value in {1, 2, . . . , P}. Determining the value
of ti is more challenging since its value is continuous and there
is no fixed upper bound of its possible value. Searching the
optimal value for ti ∈ R+ without closed-form formulations
is intractable. Therefore, we discretize ti by exploiting ideas
of list scheduling and delay scheduling [11].

In the list scheduling, stages are ordered by assigning with
priorities. During execution, ready-to-go stages are repeatedly
selected based on their priorities when there are available
resources. Based on this idea, we let the RL agent set discrete
priorities to stages instead of directly learning their start time.
We use ρi to denote the priority of si. However, simply setting
priorities is not sufficient to control the resource contention.
When the available executors are sufficient to execute multiple
stages, those stages should not start simultaneously. Otherwise,
similar to the motivation example shown in Fig. 2(a), it would
cause the network resource contention and enlarge the finish
time of those stages.

Unlike computational resources, it is not convenient to set
bandwidth limitations. Inspired by the delay scheduling [11],
we interleave the usage of network resources by delaying the
start of some stages. The RL agent needs to learn the length
of delay time δi for each stage si. After a stage si is selected
by the scheduler based on its priority, a timer with length
δi is associated with the stage. The stage si would not start
until its timer is out. To reduce the action space, we set an

http://www.tpc.org/tpch/


upper bound for each δi and discretize its value. The delay
length should not exceed the longest stage length lmax that the
scheduler has seen so far. The lmax is sliced into ∆ pieces,
where ∆ is a hyperparameter. Formally, δi ∈ {0, lmax/∆, 2 ·
lmax/∆, . . . , lmax}. Then, to determine the delay length, the
RL agent only needs to choose a value from {0, 1, 2, . . . ,∆}
by using neural networks with softmax layers.

To adaptively adjust the schedule, we frequently invoke the
RL agent when there are available resources and unprocessed
stages. Specifically, we call the RL agent at following trigger
events: a stage starts and there are unused resources; a stage
completes and releases its resource. At each trigger event, the
RL agent would update the (mi, ρi, δi) for each unprocessed
stage si. Then, from all ready-to-go stages, one is selected
based on their priorities. After its timer expires, the selected
stage is allocated with executors whose number would not
exceed its parallelism limitation. The remaining challenge
is how to encode the DAG and the dependent relationships
indicated by the DAG.

To capture dependent relationships, the Graph Neural Net-
work (GNN) [12] is used to encode the DAG. GNN encodes
the dependencies by aggregating DAG information from chil-
dren to parent nodes along the DAG edges. By aggregating
stage information along paths in DAG, GNN could convert the
DAG into a fixed-length feature vector. Along with the features
describing the system workload, i.e., the resource utilization
information, the state used by our RL agent is formed.

Given a state, the goal of the RL agent is to generate an
action that could maximize the expected future reward (or
minimize the expected future penalty). We use rk to denote
the reward of its k-th action. rk is quantified by the negation
of the time interval length between the k − 1-th and the k-th
action. Let tk denote the wall-clock time at the k-th action.
Then, rk = −(tk−tk−1). The negation is used to show that the
term (tk−tk−1) is actually a penalty. With this formulation, the
expected future penalty is E[

∑
k(tk − tk−1)] = E[tT − tk−1],

where tT it the time of the last action. The E[tT −tk−1] shows
the expected time consumption for executing the remaining
stages. Therefore, minimizing this penalty function could help
to reduce the makespan.

V. RELATED WORK

Based on different schedule granularity, existing DAG
schedulers could be divided into three major groups: job-level
schedulers, stage-level schedulers, and task-level schedulers.
The job-level schedulers arrange the sequence of job execution
and the typical objective is to reduce the job response time.
Besides the classical FIFO or Fair scheduling, Hu et. al.
[13] propose to use multiple level priority queues to schedule
the jobs without knowing their sizes in advance. The stage-
level schedulers consider the execution of stages, including the
parallelism level, resource allocation, and dependence relations
of stages. Mao et. al. [10] follow a reinforcement learning
approach to determine the parallelism level and priority of
each stage. For resource allocation, Grandl et. al. [14] propose
to greedily match the stage resource demands with available

resources. They further define the concept of troublesome
stages in [5]. Troublesome stages would be considered first
on the resource plane. Our paper focus on stage-level schedul-
ing. Different from existing schedulers, we notice that the
interleave usage of resources could help reduce job makespan
and improve resource utilization. [15] and [16] also propose
to interleave resources. To improve resource utilization, [17]
and [18] discuss solutions for private datacenters. [19] further
considers the public dataset. Different from them, we develop
a scheduler based on reinforcement learning to adaptively
interleave resources for general DAG stages. Each stage in
a DAG consists of a set of parallel tasks. A task scheduler
such as Monotasks [20] considers fine-grained parallelization
of tasks. However, it needs to modify the Spark API while our
scheduler could be easily implemented on Spark.

The core challenge of designing a stage-level scheduler
is brought by the precedence constraints in DAGs. Existing
theoretical analyses [21], [22] usually focus on simple cases.
The state-of-the-art theoretical result is given in [21]. However,
we cannot directly apply those theoretical results to our prob-
lem since we also consider the precedence relation between
two phases in each stage. Scheduling those phases is also no
trivial, and it can be viewed as a shop scheduling problem
[7]. It has been proven that the job shop problem is hard to
approximate [23]. Shmoys et. al. [24], [25] show several RNC-
approximation algorithms for shop scheduling. Although their
algorithms are polynomial-time in theory, they are inefficient.
Zheng et. al. [26] consider the shop scheduling problem in
the MapReduce framework. There is no DAG structure in their
problem formulation. We jointly consider the DAG scheduling
and the shop scheduling problems.

VI. EXPERIMENT

A. Dataset

In the experiment, we use the Alibaba trace data v20182

to evaluate our contention-free scheduler and the RL-based
scheduler. The Alibaba dataset contains job traces sampled
from their production cluster. Most of the jobs in the dataset
have DAG structures. Besides, we also construct a synthetic
dataset. We choose the CosineSimilarity job which is available
in Spark MLlib and has 5 stages.

Before the experiment, we first illustrate the percentage of
parallel stages in the Alibaba dataset. Fig. 10 shows the statis-
tics of the Alibaba dataset. Fig. 10(a) shows the distribution
of the number of stages in a job. In total, the dataset contains
2,775,025 jobs. From the figure, we can find that most of those
jobs have more multiple stages. More than 80% of those jobs
have more than one stages. Besides, we use topological sort
the analysis the number of parallel stages in each job, and find
that more than 68% of jobs have parallel stages. It shows the
importance of efficiently scheduling parallel stages. Fig. 10(b)
shows the distribution of stage duration that executing in their
cluster. It shows the distribution of stage sizes to some extent.

2Avaiable online: https://github.com/alibaba/clusterdata/blob/master/
cluster-trace-v2018/trace 2018.md
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Fig. 10. Statistics of the Alibaba dataset.

100 101 102 103

Duration (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

DelayStage
Contention-free
RL-based

(a) The stage duration distribution

20 40 60 80 100
Job Batch Size

0.1

0.2

0.3

0.4

0.5

0.6

S
ch

ed
ul

in
g 

O
ve

rh
ea

d 
(s

)

DelayStage
Contention-free

(b) Comparison on the overhead

Fig. 11. Performance evaluation on the Alibaba dataset.

B. Experiment Setting
We evaluate our contention-free scheduler and the RL-based

scheduler on a real Spark cluster and in simulations. The Spark
cluster is set up on the Amazon Elastic Compute Cloud (EC2).
We use 10 m4.xlarge instances. Each instance has 4 Intel
Xeon E5-2676 vCPU cores, 32GB RAM, 750MB maximum
bandwidth. When setting up the Spark clsuter, the default
parameter configuration is kept for simplicity.

Besides using the EC2 cluster, we use a local PC to train
our RL-agent. The local Pc has an Intel i7-8700 CPU, a
32GB RAM, and a single Nvidia GTX 1080 GPU. We use
the REINFORCE policy gradient algorithm [27] to train the
RL agent, and we subtract the baseline performance from the
reward function in each iteration of the parameter updating.
Specifically, the baseline is used to reduce the variance of
the policy gradient. Details of the explanation on subtracting
baselines can be found at [28]. On our local PC, each training
iteration takes about 5 seconds on average. Considering the
initial policy of the RL agent is randomly generated, its
performance is not good enough to handle a heavy workload.
Therefore, we first use small job batches to train the RL agent
and then gradually enlarge the job batch size. A well-trained
RL agent is deployed on the EC2 cluster.

C. Experiment Result

We first compare the stage execution time obtained by
different schedulers. We compare our contention-free strategy
and RL based scheduler with the DelayStage scheduler in
[16]. We execute the same job batch with different schedulers
on the Spark cluster and record the duration of each stage.
The distribution of the stage duration is shown in Fig. 11(a).
Lines on the left have better performance. From the figure, we
can find that the stage duration distributions achieved by the
contention-free scheduler and the DelayStage scheduler are
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Fig. 12. The CPU utilization of a worker node.

similar. The DelayStage scheduler slightly outperforms then
contention-free scheduler. It is because that perfectly parallel
assumption of the contention-free scheduler is strong and
can hardly be satisfied in real-world workloads. However, the
overhead of the contention-free scheduler is smaller. The RL-
based scheduler significantly outperforms other schedulers. It
could efficiently reduce the duration of long stages. The main
reason is that the RL-based scheduler could set parallelism
limitations for stages, which further avoids the waste of the
computational resources.

Fig. 11(b) shows the comparison of the scheduling over-
head. In this set of experiments, we vary the job batch
size (therefore vary the number of stages), and record the
time consumption of the contention-free and the DelayStage
scheduler. The overhead of the RL-based scheduler is not
shown since it frequently updates its schedule during the job
execution. From the figure, we can find that the contention-free
scheduler has smaller overheads and it is more efficient. The
reason is that the contention-free scheduler partitions the DAG
into multiple subsets of ready-to-go stages and only need to
sort stages in each subset. This partitioning approach reduces
the average time complexity of the contention-free scheduler.

We then investigate whether our RL-based scheduler could
improve resource utilization. We use the synthetic dataset for
this experiment since the jobs from the synthetic dataset have
relatively simple DAG structures. We compare our RL-based
scheduler with the default Spark scheduler. From this exper-
iment, we can have a closer look at the resource utilization
and have a better understanding of the RL-based scheduler.
The experiment result is shown in Fig. 12. From the figure, we
can find that the RL-based scheduler could start using the CPU
earlier than the default Spark scheduler. The reason is that the
default scheduler starts all ready-to-go stages simultaneously
and causes network congestion. The RL-based scheduler could
interleave the network resources. It delays the start of some
parallel stages and the stage in execution could be allocated
with a larger bandwidth. In addition, we also find that the
RL-based scheduler could achieve a higher CPU utilization.
Specifically, the default scheduler has several time intervals
during which the CPU utilization is low, but the RL-based
scheduler could keep a high resource utilization. Those factors
make the RL-based scheduler finish the job batch in 361s. It
is much faster than the default Spark scheduler which needs
560s finish the job batch.

We then execute a larger job batch from the Alibaba dataset
and record the average CPU and network resource utilization



TABLE I
THE AVERAGE RESOURCE UTILIZATION

Default DelayStage RL-based

Average CPU utilization 37.9% 46.1% 50.4%
Average Network utilization 43.5% 54.5% 56.4%

of a worker node. Comparing with the previous experiment,
the workload is increased and the dependency relationships
among stages become more complex. The utilization is shown
in Table 1. From the table, we can find that the RL-based
scheduler could improve both CPU and network utilization.
Compared with the default Fuxi scheduler used in Alibaba
trace, the RL-based scheduler can improve the CPU utilization
by 33.0% and improve the network utilization by 29.7%. It
also outperforms the DelayStage scheduler.

VII. CONCLUSION

In this paper, we consider the stage scheduling problem for
DAG-style jobs. We notice that interleaving resource usage
could reduce the makespan and improve cluster resource uti-
lization. We theoretically analyze the scheduling for perfectly
parallel stages and convert our problem into a DAG shop
scheduling problem. For perfectly parallel stages, we propose
a contention-free scheduler. We also notice that the practical
jobs usually have very few perfectly parallel stages, and
the contention-free scheduling might waste computational re-
sources. For general stage scheduling, we control the resource
contention level by setting parallelism limitations and delaying
the start of some stages. We use a reinforcement learning (RL)
based scheduler to adaptively adjust parallelism limitations
and the start time. We use the real-world Alibaba trace
data to evaluate our contention-free and RL-based scheduler.
Experiment results show that the contention-free scheduler it
more time-efficient and the RL-based scheduler can achieve
higher resource utilization.
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