MULTI-LAYER VIDEO STREAMING WITH HELPER NODES USING NETWORK CODING

Pouya Ostovari, Abdallah Khreishah, and Jie Wu

Computer and Information Sciences Temple University

IEEE MASS 2013

Agenda

- Introduction
 - Network Coding Background
 - Priority-Based Network Coding
- Layered Video Streaming
 - Linear Programming
 - Distributed Solution
- Conclusions and Future Work

Network Coding in Wired Networks

- □ Single multicast session
 - Bottleneck problem (Ahlswede'00)

No coding

Coding

Network Coding Classification

- Local
 - Hop-by-hop decoding
 - XOR operation

- Global
 - Decoding at the destination
 - Linear network coding (on a finite field)

$$p_{1} = \alpha_{1}p_{1} + \beta_{1}p_{2} + \gamma_{1}p_{3}$$

$$p_{2} = \alpha_{2}p_{1} + \beta_{2}p_{2} + \gamma_{1}p_{3}$$

$$p_{3} = \alpha_{2}p_{1} + \beta_{2}p_{2} + \gamma_{1}p_{3}$$

Network Coding Classification

- □ Intra-flow
 - Within a flow
 - Robustness enhancement

- □ Inter-flow
 - Between different flows
 - Throughput/capacity enhancement

- □ Joint inter- and intra-flow
 - Within flow and between flows

Priority-Based Approaches

■ New twist on the classic unequal error protection

Video Streaming NC

Video Streaming

- Delivering video stream using different resolutions to satisfy different client needs/constraints
- Multi-Layer Coding (Multi-resolution)
 - Base layer
 - Enhancement layers

(a) Original

(b) Layer 1

(c) Layer 2

(d) Layer 3

(e) Layers 1 & 2 (f) Layers 2 & 3

- Multiple Description Coding (MDC)
 - Multiple independent video substreams
 - Receiving more substreams increases the video quality

Substream_1	Resolution_1		
Substream_2	Resolution _2		
Substream_N	Resolution _N		

Inter-Layer Coding Strategies

Random linear network coding (RLNC)

$$\alpha_{1}L_{1} + \beta_{1}L_{2} + \gamma_{1}L_{3}$$

$$\alpha_{2}L_{1} + \beta_{2}L_{2} + \gamma_{2}L_{3}$$

$$\alpha_{3}L_{1} + \beta_{3}L_{2} + \gamma_{3}L_{3}$$

- ☐ Triangular coding
 - Prefix coding

$$\alpha_1 L_1$$

$$\alpha_2 L_1 + \beta_2 L_2$$

$$\alpha_3 L_1 + \beta_3 L_2 + \gamma_3 L_3$$

- Packets in lower layers are more important
 - Included in more coded packets
 - More chances to be decoded

Multi-Layer Video Streaming with Helpers

Links

- Cost: direct download from the server
- Reliable links
- Link capacity
 - High capacity links: server to helpers
 - Low capacity links: helpers to users
- Use of helpers
 - System scalability for more users
 - Helpers: limited capacity and bandwidth

Resource Management

- Optimal resource management
- Questions:
 - Content placement: Which packets of each video should a helper node store?
 - Bandwidth allocation: Which packets, and to which users, should each helper serve?
- □ NP-complete

Resource Management (Network Coding)

Network coding changes the problem to a linear programming

Storing x percent of each segment

- □ No longer NP-complete
 - Flow-based model using network coding

Multi-Layer Video

□ Benefits of multi-layer

- Provides smooth playback for the users
- Reduces the load on the server with a fixed number of users
- More layers increases system scalability

Motivation

- □ Single video with 4 packets
- □ No-layer approach (Hao et al. 2011)
 - 4 packets in the same layer
 - Load on the server: 4

$$\boxed{p_1|p_2|p_3|p_4} \longrightarrow P_i = \sum_{j=1}^4 \alpha_{i,j} p_j$$

Motivation

□ Single video with 4 packets

1 layer 2 layers

Central

Intra-layer approach

(Ostovari, Khreishah, and Wu, 2013)

- 2 packets per layer
- Load on the server: 2

Motivation

- □ Single video with 4 packets
- □ Inter- and intra-layer coding

(Ostovari, Khreishah, and Wu, 2013)

- Prefix coding (Triangular)
- 2 packets per layer
- Load on the server: 0

1 layer 2 layers

Triangular coding

VoD with Intra-Layer NC

$$\max \sum_{i,k:u_i \in U, m_k = q_i} \sum_{j,l:h_j \in N(u_i), l \le c_i} x_{ji}^{kl}$$

Objective function (maximize upload rate from helpers to users)

s.t

$$x_{ji}^{kl} \le f_j^{kl} \times r_k, \quad \forall j, i, l, k : u_i \in N(h_j), m_k = q_i, l \le c_i$$

The upload rate of a helper cannot exceed the rate of the stored videos

- $\square x_{ji}^{kl}$: Upload rate of link from helper h_j to user u_i over layer l of video m_k
- $\Box f_i^{kl}$: Fraction of the layer l of video k that is stored on helper h_j
- $\ \ \ \ r_k :$ Rate of each layer of video m_k
- $\square N(u_i)$: Adjacent helpers to user u_i
- \square u_i 's request: (c_i , q_i) = (quality level, video)

VoD with Intra-Layer NC

$$\sum_{i,k:u_i \in N(h_j), m_k = q_i} \sum_{l \le c_i} x_{ji}^{kl} \le B_j, \quad \forall j: h_j \in H$$

Bandwidth
$$h_j$$
 constraint from each helper to users $u_1 \dots u_i$

$$\sum_{k \in M} \sum_{l:l \le L} f_j^{kl} \times v_k \le S_j, \quad \forall j: h_j \in H$$

Storage constraint for each helper

$$\sum_{j:h_i \in N(u_i)} x_{ji}^{kl} \le r_k, \quad \forall i, k, l: u_i \in U, m_k = q_i, l \le c_i$$

Limits the total download of a user to the rate of the video

- \square B_j : The bandwidth limit of helper h_j
- \square S_i : The capacity limit of helper h_i
- $\square M$: Set of videos
- \Box L: Maximum number of layers

VoD with Inter- and Intra-Layer NC

The difference is in the last constraint

$$\sum_{l=1}^{l'} \sum_{j:h_i \in N(u_i)} x_{ji}^{kl} \le r_k \times l', \quad \forall i, k, l': m_k = q_i, 1 \le l' \le c_i \quad \begin{array}{c} \text{Prefix limit on the} \\ \text{download rate of each} \\ \text{layer} \end{array}$$

Prefix limit on the layer

Intra-layer coding

< rLayer 1 < rLayer 2 Layer 3 < r Inter and Intra-layer coding

- l': variable for the prefix relation
- The objective function and other constraints are the same

Live Streaming (TV)

- □ Videos are broadcast to the users
- Synchronous playback
 - Helpers do not need to allocate separate bandwidths to adjacent users that are watching the same video

Total bandwidth: $x_1 + x_2$

Total bandwidth: X

Distributed Algorithm

- Dual optimization
 - Solving Lagrange dual using the gradient method
- \square Helper h_j
 - Start from empty storage and dynamically adjust the amount of stored videos
 - Update and transmit Lagrange variables to adjacent users

- \square User u_i
 - Update and transmit Lagrange variables to adjacent helpers
- Step control
 - Slope of changes: fast convergence vs. oscillation

Simulations Setting

- MATLAB environment
- □ 100 random topologies
 - Random connections of helpers and users
 - Helpers: random bandwidth and capacity limit
 - Users: random requests
- Comparing with the optimal non-layer approach
- Measuring
 - Load on the server
 - Convergence to optimal solution in dynamic environments

Video's	Video's	Bandwidth	Storage	Num. of adjacent
rate	size	capacity	capacity	helpers to a user
[1,2] kbps	[0.5,2] MB	[2,4] kbps	[0.5,2] MB	[1,3]

Simulation Results (Load)

- □ VoD
- Number of videos: 5
- Number of layers: 5
- □ DIST: a non-layer approach with intra-layer coding (Hao et al. 2011)

Number of helpers: 20

Number of users: 40

Simulation Results (Load)

- □ VoD
- □ Number of users: 50
- Number of helpers: 20

Number of layers: 5

Number of videos: 5

Simulation Results (Load)

- □ VoD
- Number of layers: 4
- Single video

Number of helpers: 10

Number of users: 10

Simulation Results (Convergence)

□ VoD

□ Users: 50

Layers: 4

□ Helpers: 20

□ Videos: 5

Convergence to the optimal solution (LP)

The fraction of each video on helper h5

Simulation Results (Dynamic Users)

□ VoD □ Initial Users: 10

□ Layers: 4 □ Helpers: 10

□ Videos: 5

Convergence to the optimal solution (LP)

The fraction of each video on helper h8

Convergence to the optimal solution (LP)

The fraction of each video on helper h3

Future Work and Challenges

- Other objectives
 - Fairness, layers with different weights, ...
- Extension of layered VoD with unreliable links
 - Using symbol-level transmission work in layered VoD
- Cost-efficient helper provisioning
 - Based on user demands and resource availability
- □ Real implementation

Conclusions

Priority-Based Network Coding

- □ Data transmission
 - Transmitting the more important data with more redundancy
- □ Triangular coding in multi-layer video streaming
 - Increasing the number of received layers
- VoD and live streaming using helper nodes in multi-layer video streaming
 - Minimizing the load on the server