
Cost-Efficient Resource Provisioning in
Delay-Sensitive Cooperative Fog Computing

Shuaibing Lu*†, Jie Wu†, Yubin Duan†, Ning Wang†, and Zhiyi Fang*
*College of Computer Science and Technology, Jilin University, Changchun, China

†Center for Networked Computing, Temple University, USA
Email: lushuaibing11@163.com, {jiewu, yubin.duan, ning.wang}@temple.edu, fangzy@jlu.edu.cn

Abstract—Recently, fog computing has become a highly vir-
tualized platform that provides computation, storage, and net-
working services between end devices and traditional cloud data
centers. In this paper, we address the resource provision (RP)
problem for delay-sensitive users in cooperative fog computing.
Our objective is to find a feasible provision scheme that mini-
mizes the total monetary cost proportional to the number of fog
nodes for network operators under the deadline and capacity
constraints by considering the cooperation of fog nodes. We
consider two cases of our RP problem: the Unlimited-Processor
Fog Nodes (UPFN) case and the Limited-Processor Fog Nodes
(LPFN) case. For the UPFN case, each fog node has unlimited
processors. The requests on each fog node can be processed in
parallel ideally, i.e. with no scheduling delay. The LPFN case
corresponds to a more realistic scenario where the scheduling
delay is non-eligible. In either case, our RP problem is proven
to be NP-hard. For the UPFN case, we propose two greedy
algorithms which iteratively remove fog nodes according to
their global or local cooperative influences until there is no
feasible provision that can guarantee users’ deadlines. For the
LPFN case, it is not trivial to check the existence of a feasible
provision due to the interactive influence on the scheduling
delay for requests. We find a near-optimal solution with bound
8
3
OPT + ε2

8mα
using the continuous congestion game and check

the feasibility, where m is the number of fog nodes and α
is a constant value related to the delay function. Extensive
simulations demonstrate the efficiency of our schemes.

Index Terms—Fog computing, delay-sensitive, cooperation,
cost efficiency.

I. INTRODUCTION

With the extensive growth of data volumes coming from
the Internet of Things (IoT), fog computing has become a
highly virtualized platform that provides computation, storage,
and networking services between end devices and traditional
cloud data centers. Fog nodes are the basic infrastructures
in fog computing, including industrial controllers, switches,
routers, embedded servers, and video surveillance cameras [1–
4]. Since the IoT devices generate data constantly, and the
analysis must be very rapid, an important mission is to find a
provision of fog nodes that can reduce the transmission latency
and decrease monetary cost of fog resources. In this paper,
we focus on the resource provision (RP) problem for delay-
sensitive users under the capacity constraints by considering
the cooperation of fog nodes, while realizing cost efficiency
of network operators in fog computing.

Our RP problem arises in the following set-up scenario.
We consider a set of heterogeneous fog nodes (v(1−6)), and
each fog node has the limited computing capability that can
be provisioned for users (u(1−3)). The fog node supports the

u1

u2

u3

v1 v4

v2

v3

v5

v6

Fig. 1. A motivation example.

cooperation service of different providers, and the cost for the
resource provision scheme is generated by the set-up cost of
each fog node. We assume that the locations and connections
of fog nodes are already fixed by the cloud data centers
or third party service providers. Each user can upload the
workload to its nearest fog node with a fixed deadline T . The
workload is divided into identical service entities, and each
service entity is denoted by one unit. The resource provision
for users is to allocate the service entities of workload to
fog nodes. Based on our setting-up scenario, there exists a
trade-off between efficiency and cost. We illustrate the trade-
off through the following example. As shown in Fig. 1, one
extreme assignment is the solution with the minimal delay
for the set of users, which offloads the workload to all fog
nodes that are connected in the graph, represented by v(1−6).
However, the total cost of this solution is the maximum among
all possible assignments that satisfy the deadline constraint.
Another extreme assignment is to minimize the cost, i.e., by
minimizing the number of fog nodes, and we use the minimal
number of fog nodes to support the users. In Fig. 1, we can
only use v1, v2 and v3. When the sizes of workloads are large,
the total delay of users in the set will go over the deadline T .

In this paper, we propose an efficient resource provision
scheme for users that falls between the two extreme assign-
ments. Our RP problem is how to assign the computational
workloads to users on fog nodes to minimize the cost during
the process for multiple users while satisfying the constraints
on users’ deadline and the computation resources of fog
nodes. We further consider two cases for our RP problem:
the Unlimited-Processor Fog Nodes (UPFN) case and the
Limited-Processor Fog Nodes (LPFN) case. For the UPFN
case, each fog node has unlimited processors. The requests
on each fog node can be processed in parallel ideally, i.e.
with no scheduling delay. For the LPFN case, we consider a

1

e11

e12

e36

v1

v5

u1

u2

v2

v4

v6u3

v3

eij

(a) Connectivity graph.

∞

∞

r1∙T

∞

v1

r6∙T

t

w1

w2

w3

u1

s

v2

v6

∞

v3

v4

u2

∞
v5

u3

(b) Weighted connectivity graph.
Fig. 2. The substructure of Fig 1.

more complicated and realistic case, in which each fog node
has limited processors and has scheduling delay on processing
several users’ requests.

This problem is non-trivial mainly due to the following
challenges: (i) Because fog nodes are heterogeneous, and
each fog node has a limited computing capability. Given a
set of users with different amounts of workload, it is non-
trivial to find a feasible provision for users that can realize
the workload within a deadline. (ii) Since the fog node can
only be connected with limited users, each user has to offload
the work to fog nodes that are located in its efficient area. The
provision scheme for one user may not be suitable for multiple
users. (iii) Although the cooperation between fog nodes can
reduce the delay for users, it increases the cost. There is a
trade-off between the delay and cost. It is difficult to balance
them while still guaranteeing users’ demands with the lowest
cost. In this paper, we focus on the RP problem for delay-
sensitive users under the capacities constraints while realizing
cost efficiency of network operators in fog computing. Our
contributions can be summarized as follows:
• We consider the RP problem for delay-sensitive users

and show that there is a trade-off between efficiency and
cost. We prove that deciding resource provision for users
with cost minimization is NP-hard.

• We first discuss a simple case UPFN. We define a
parameter cooperative influence to minimize the cost by
removing fog nodes iteratively. Two greedy algorithms
are proposed, and their complexities analysis are in-
cluded.

• We extend our problem into a more complicated and re-
alistic case LPFN. We formulate this problem by convert-
ing it into a continuous congestion game problem, and
propose an algorithm which is bounded by 8

3OPT+ ε2

8mα .
• We conduct various simulations to compare our joint

optimization methods with several state-of-the-art ones.
The results are evaluated from different perspectives to
provide conclusions.

II. RELATED WORK

Fog computing extends the cloud computing paradigm to
the edge of the network, thus enabling a new breed of
applications and services[2, 3]. Different from the cloud, fog
computing deploys a very large number of fog nodes in the
wide-spread geographical distribution, and provides services
closer to both the IoT devices and users. Several works have
been done on the resource provision in fog computing [5, 6].

In [5], they focus on supporting the QoS-aware deployment
of multicomponent IoT applications to Fog infrastructures by
developing a java tool FogTorch. [6] considers task scheduling
in a cloud-fog computing system, where a fog provider can
exploit the collaboration between its own fog nodes and
the rented cloud nodes. However, these resource provision
schemes fail to consider the cooperation of fog nodes. In
a case similar to the fog computing, [7] investigates the
assignment and scheduling of mobile computational tasks
over multiple cloudlets, while optimizing the overall cost
efficiency by leveraging the heterogeneity of cloudlets in
mobile edge. [8, 9] focus on the service entity placement for
social virtual reality applications in edge computing. These
works consider the performance guarantee for each mobile
user, while ignoring the interdependent relationship between
the monetary cost and user’s delay.

Quite few works consider the effect of cooperative fog
computing network on joint optimization of the latency and
cost. [4] uses a distributed alternating direction method of
multipliers to optimize the QoE of users under the given
power efficiency, and they propose that multiple fog nodes
can help each other to jointly offload workload to cloud
data centers. [10] provides the implementation of such IoT
solutions by highlighting approaches for distributing workload
between cloud, fog and edge. [11] studies a new cooperative
system in mobile social networks, focusing on the partition
and allocation of workloads. Most of these works focus on
the RP problem by only considering the latencies of users.
They fail to consider the cost of fog infrastructures. In this
paper, we focus on the RP problem for delay-sensitive users
in fog computing. Our objective is to find a feasible provision
scheme that minimizes the total cost of network operators
under the capacities constraints by considering the cooperation
of fog nodes.

III. MODEL AND PROBLEM FORMULATION
A. Fog Model

Given a substrate distribution of fog nodes which is mod-
eled as a graph G with a node set V and an edge set E, i.e.,
G = {V,E}. Let V = {vj} denote the set of fog nodes,
and vj is the jth fog node in V. We consider a set of fog
nodes that can be any device with computing, storage, and
network connectivity. Fog nodes are heterogeneous, and each
fog node has limited computing capability for provision. Let
E = {eij} denote the set of connections between fog nodes,
and eij is the connection between fog node i and j in E.
We assume that the distribution of fog nodes is concentrated,
and there is no communication delay between fog nodes. So
the delays between users and fog nodes are the same, which
depend on the offloading delay between users and access
nodes. Fog node vj can only connect with cj users who are in
its efficient area. The efficient area is the region that the fog
node can successfully connect with users. Since fog nodes are
heterogeneous and come in different form factors [3], we let
rj be the maximum processing rate of fog node vj . We use
set-up cost to measure the efficiency of the resource provision
scheme, and each fog node has a set-up cost τj . We assume

2

that the locations and connections of fog nodes in graph G are
already fixed by the cloud data centers or third party service
providers. Two types of fog nodes in V are defined. One type
is access nodes, fog nodes in V that connect with access
points, which offload workloads from the user layer. Each
user can only upload its workload to a near access node in
fog model. Another type is cooperative nodes, fog nodes in
V that either process workload by themselves or from their
multiple neighboring fog nodes which can be reached through
local communication infrastructures.

We discuss two cases, Unlimited-Processor Fog Nodes
(UPFN) case and Limited-Processor Fog Nodes (LPFN),
which have different computation delays due to their differ-
ences in the capacities of processors. In the UPFN case, each
fog node can parallelly process multiple jobs, and the compu-
tation delay for a workload with weight wi on fog node vj is
pij , i.e., pij =

λij ·wi

rj
. Let λij denote the proportion of user

i’s workload on fog node j, where 0 ≤ λij ≤ 1. In the LPFN
case, the computation delay is defined as pij = α · xv + b,
which indicates the delay has a linear relationship with the
number of fog nodes xv . Let α denote a unit rising rate, and
b is a constant delay of each fog node [8].

B. Users and Workload
We use a set U = {ui} to denote the delay-sensitive users

which are distributed on the user layer in the system. Let
ui denote the ith user, and wi denote the weight for the
workload of user ui. The workload of each user is continuous
and fractional. We assume that the workload is constructed by
identical service entities, and each service entity is represented
by one unit. Each user can only upload its workload to the
nearest access fog node, and set U has its own deadline T .
The total completion time of users in set U should not go
beyond its deadline T . Although each user can only upload
its workload to the nearest access fog node, in our model
we ignore the transmission cost between every access fog
node and corresponding connected cooperative fog node. Thus
we assume that users are directly connected with access and
cooperative fog nodes. The connection between users and fog
nodes can be represented by the connectivity graph as shown
in Fig 2. In Fig 2, ui denotes the ith user, and vj denotes
jth fog nod. eij denotes the connection between ui and vj ,
which means that the workload of user i can be processed on
fog node j. Based on the connections between users and fog
nodes, the workload of user i is only allowed to be processed
on specified subset of fog nodes Gi, where Gi = {vk ∈
G|eik ∈ L}. Fog node j processes specified workloads from
subset of users Uj , where Uj = {uk ∈ U|eki ∈ L}.
C. Problem Formulation

In this subsection, we formulate the RP problem, and we
use the set-up cost to measure the efficiency of resource
provision in the cooperative fog computing networks. X is
the set of provision schemes for users in set U, which denotes
the amount of workloads be processed on each fog node, i.e.,
X =

⋃
j∈U Xj . For each user, the provision scheme Xj is a

subset of Gj , where Xj ⊆ Gj . Recall the Gj which is the

set of available fog nodes for uj . Our objective is to find an
appropriate scheme for the set of users U with minimum cost,
and support all users’ demands in both resource and deadline
constraints.

minimize
∑
j∈X 1[

∑
i∈U λijwi>0]τj (1)

subject to Di ≤ T, ∀i ∈ U (2)
Di = maxj∈Xi

{dij + pij} (3)
0 ≤ λij ≤ 1,

∑
i∈U,j∈G λij = 1 (4)∑

i∈U λij · wi ≤ cj (5)
Eq. 1 shows the objective of minimizing the total provision

cost for users. 1[·] is an indicator function, the value of this
function is 1 when

∑
i∈U λijwi > 0, otherwise it is 0. Eq. 2

is the constraint on the deadline of users, which means the
computation time of the latest finished user cannot exceed the
deadline T . Eq. 3 shows the maximum delay of each user. Di

is constructed by two parts: the offloading delay between user
and access fog node dij and the computation delay on the fog
node pij . Since the delay between a user and its access node
is irrelevant to the placement decision [8], we set the delay
between users and access node to be the same. Eqs. 4 and
5 are the constraints on the computation resource of the fog
node, which means the offloaded workload on each fog node
cannot exceed its capacity cj .

Theorem 1. The RP problem in cooperative fog computing
with minimum cost is NP-hard.

Proof: We conduct the proof via a polynomial-time reduc-
tion from the set covering problem, which is known to be
NP-hard [12]. An instance (X,F) of the set-covering problem
consists of a finite set X and a family F of subsets of X ,
such that every element of X belongs to at least one subset
in F : X =

⋃
S∈F S. A set S ∈ F covers its elements. A set

covering problem is to find a minimum-size subset C ⊆ F
whose members cover all elements of X , i.e., X =

⋃
S∈C S.

The reduction from the set covering problem to our RP
problem can be built by treating users in set U as a finite
set X , and then we reduce a family of substrate distributions
of fog nodes X =

⋃
j∈U{Pj} as F , which are the subsets of U,

i.e., Pj ⊆ Gj . Each fog node is transferred to a subset Gj ∈ U
which contains users it can serve. Pj as the set S. Resource
provisioning with the minimum cost is to find a minimum-size
subset P ⊆ X, whose fog nodes serve all elements of U, i.e.,
U =

⋃
j∈P Xj . Since the set covering problem is NP-hard,

the resource provision with the minimum cost is NP-hard. �

IV. RP WITH UNLIMITED-PROCESSOR FOG NODE
(UPFN)

A. Feasible Provision
In this subsection, we propose a feasibility checking method

by finding the maximum flow problem in our weighted
connectivity graph. Given a user set U, we first discuss the
feasibility of solving this problem, which is whether there
exists a provision for users that can support their demands
within the constraint of its deadline T . We construct a graph
based on the information and connections of users and fog
nodes. Based on that, we add two virtual nodes s and t, and

3

Algorithm 1 Feasibility Checking (FC)
Input: Topology G, set of users U;
Output: Feasibility of U on G;

1: Construct an auxiliary graph G′ with respect to the
connections between users and fog nodes;

2: Obtain the maximum flow Φ on graph G′ using Edmonds-
Karp algorithm;

3: if Φ ≥
∑
i∈U wi then

4: Set U is feasible on G;
5: return Provision Scheme X of set U;
6: else
7: Set U is unfeasible on G;
8: return False;

the sizes of workloads are represented by the weights of the
links between s and user’s node ui. The maximum processing
volumes of fog nodes are represented by the weights of the
links between t and fog node vj . We take Fig. 1 as an example,
where based on the connections of fog nodes, we can have
the relationship between users and fog nodes. We assume that
there is no limitation on communications between users and
fogs, and the weights between users and fog nodes are ∞.
Since the deadline of job set U is T , the maximum processing
volumes of fog nodes will be vj ·T , which are the weights of
the links between t and fog node vj . The constructed graph
is shown in Fig. 2. As shown in Algorithm 1, we use the
topology of fog nodes G, and the set of users U as our
inputs. The feasibility of set U on fog nodes G is our output,
i.e., FC(G,U). In line 1, we construct an auxiliary graph
G′ with respect to the connections between users and fog
nodes. We use the Edmonds-Karp algorithm [12] to obtain the
maximum flow Φ in line 2, and the feasible provision is based
on the maximum flow that passes through the links between
fog nodes and the destination t. The feasibility checking is
shown in lines 3 to 7, if the maximum flow can cover the
total demand of users

∑
i∈U wi, set U is feasible under the fog

nodes set G, otherwise, the request of set U will be rejected.

B. Cooperative Influences
1) Global Cooperative Influences: We first propose a def-

inition of the global cooperative influence. Let pij denote the
computation time of user ui on fog node vj , and the total
computation time of fog node vj is pj =

∑
i∈Uj

pij . The av-

erage completion time of fog nodes in set G is R̄ =

∑
vj∈G pj

|G| ,
where |G| represents the number of fog nodes in G. Each fog
node has a global influence, which describes the increment
of the average completion time of all rest fog nodes after
removing itself. Formal definition is given as follows.
Definition 1 (Global cooperative influence). Let ψj denotes
the global cooperative influence of fog node vj and ψj =∣∣R̄G/vj − R̄G

∣∣, where G/vj denotes the set of fog nodes after
removing vj in G.

2) Local Cooperative Influences: We further define the
local cooperative influence. The global cooperative influence
computes the increment of the average computation time

Algorithm 2 Global Influence Greedy (GIG) Algorithm
Input: Topology G, set of users U;
Output: Provision Scheme X of U;

1: Find a feasible solution using Algorithm 1;
2: Calculate the average computation time of fog nodes R̄;
3: for fog node j = 1 to j = n in V do
4: Calculate ψi for each fog node;
5: Rebuild the set V with fog nodes by an increasing order
j = arg min{ψj/τj};

6: while V 6= Φ ∧ FC(G,U) 6= false do
7: Check the feasibility of G using Algorithm 1;
8: Remove vj from set V;
9: Update the topology G;

10: return Provision Scheme X of U;

among all fog nodes except vj . However, the removing of vj
does not affect the completion time of some fog nodes. These
unaffected fog nodes are ignored when we calculate the global
cooperative influence. The fog node whose completion time
is increased after removing vj is denoted by G∗/vj , where
G∗ is the set of fog nodes that are connecting with the same
set of users Uj , i.e., G∗ =

⋃
i∈Uj

Gi. Specifically, let MG∗ be
the completion time of the latest finished fog node in G∗, and
MG∗ = maxj∈G∗{pj}. Each fog node has a local influence,
which describes the increment of the maximum completion
time of the other fog nodes in G∗. The formal definition is
given as follows.
Definition 2 (Local cooperative influence). Let ϕj denote
the local cooperative influence of fog node vj and ϕj =∣∣M̄G∗/vj − M̄G∗

∣∣, where G∗/vj denotes the set of fog nodes
after vj is removed from G∗.

C. Global Influence Greedy (GIG) Algorithm
In this subsection, we propose a greedy algorithm for the

cost efficient resource provision, which removes fog nodes
iteratively according to their global cooperation influence. As
shown in Algorithm 2, we use the topology of fog nodes G
and the set of users U as the input. The provision scheme X is
the output. We first find a feasible solution using Algorithm 1
in line 1. Then we calculate the average computation time
R̄ of fog nodes V in G in line 2. In lines 3 to 5, we
calculate the global influences for all fog nodes in V and
rebuild the set V by reordering fog nodes with increasing
values of ψj ·τj , i.e., j = arg min{ψj/τj}. In lines 6 to 9, we
start to remove fog nodes iteratively according to their global
cooperation influence until there is no feasible provision that
can guarantee users’ deadlines. We check the feasibility by
recalling Algorithm 1 in line 7. The provision scheme X of
users U is returned in line 10.
D. Local Influence Greedy (LIG) Algorithm

The main idea of Local Influence Greedy (LIG) Algorithm
is the same as GIG, except the subtle change in the iterative
removal of fog nodes based on their local cooperation influ-
ence. In the algorithm LIG, we calculate the computation time
of the latest finished fog node MG∗ in G∗. We calculate the

4

increment of the local cooperator influence of each node, and
start to remove them by an increasing order. The difference
between LIG and GIG is on line 5 in Algorithm 2, we
build the set G with fog nodes by an increasing order
j = arg min{ϕj/τj}. Then, we check the feasibility which
is the same as Algorithm 2 in lines 6-9. Finally, we return the
provision scheme X for U.

The time complexities of GIG and LIG are O((|V|+ |U|) ·
|E|2), where |V| is the number of fog nodes in topology G,
and |U| is the number of users in set U. The total number of
vertices in graph G′ is |V| + |U| + 2. Users and fog nodes
are not fully connected, and we use |E| to denote the number
of links in graph G′. In graph G′ there is at most one link
between each pair of nodes, we have |E| = O(|V|2). Since
the time complexity of finding the maximum flow is O((|V|+
|U|) · |V|4), we have that the complexities of GIG and LIG
are O(|V|5 · (|V|+ |U|)).

V. RP WITH LIMITED-PROCESSOR FOG NODE (LPFN)
In this section, we extend our work into a more complicated

and realistic scenario, which considers the processing ability
limitation of each fog nodes. We refer to the problem as the
resource provision with Limited-Processor Fog Node (LPFN)
problem. In LPFN, each fog node has limited processors, and
there is scheduling delay on processing several users’ work-
loads. The stretch on execution time is known as performance
degradation using scheduling policy to process those requests
[8]. We use a general function dv(xv) to denote the delay for
the performance degradation on each fog node, where xv is
the number of users on the fog node. Let dv(xv) = α ·xv + b,
where α is a unit rising rate, and b is the constant delay
of each fog node. We follow the same greedy idea of the
simple version as the LPFN case. However the challenge
here is to provision the workload among fog nodes in each
greedy iteration. Under this condition, we cannot use the
maximum flow to check the feasibility as Algorithm 1, since
the time consumption of processing one unit workload is not a
constant. To check the feasibility, we intend to find the optimal
provision and compare the delay with users’ deadline. We
introduce a new definition.
Definition 3 (Optimal Provision Finding (OPF) Problem).
Given the set of users U, the topology of fog nodes G, and the
delay function dv(xv), an Optimal Provision Finding (OPF)
Problem is how to find a provision in G to minimize the delay
of users U.

A. Conversion
In this subsection, we convert the OPF problem into a

Continuous Symmetric Network Congestion Game (CSNCG)
problem for each iteration. We confirm the strong isomor-
phism from a OPF to a CSNCG according to its definition
in the reference [13]. Basically, the two games have the same
user set U. First, these two problems are symmetric by having
the same initial and target vertices. Second, in the CSNCG
problem, the congestion is on the edge. In a OPF problem,
the graph is constructed based on the connections of users
and fog nodes, and the congestion of users is also on links

d

d

dv(xv)

d

v1

dv(xv)

t

0

0

0

u1

s

v2

v6

v3

v4

u2

d

v5

u3

Fig. 3. The converted graph of Fig 1.

(links between fog nodes and the target node). We assume
that the delays between users and fog nodes are fixed at d,
and we use dv(xv) as our delay function on each fog node.
Since the OPF problem considers the condition with limited
processors, when the number of users assigned to the fog node
is increasing, the processing delay on this fog node will be
increasing correspondingly. So, dv(xv) is a non-decreasing
and non-negative delay function. Thirdly, each strategy in
CSNCG is a route r from the common source s to the common
target t, which is the same as in our OPF problem. We use
X to denote the provision scheme for the set of users. Each
provision is a route from source s to the destination t. The
total delay of one user is D = 1

n (d+ dv(xv)), which is also
the sum of delays on all edges equal to the definition in [13].
Our OPF problem can be redefined as (U,G, s, t, dv(xv)).

We convert the OPF problem to a CSNCG problem. In
our problem, users share fog nodes after all users can finish
processing their workload before the deadline. We construct
a graph based on the information and connections of users
and fog nodes. From that, we add two virtual node s and
t as the virtual source and destination. All users start to
assign their workload from s, and when they arrive at t,
the provision process is terminated. We take Fig. 3 as an
example, based on the connections of fog nodes, we can have
the relationship between users and fog nodes. Since there is
no congestion between s and users, the weights of links are
0. In the second part, the delays between users and fog nodes
are d, the weights of links are d. The weights of links between
fog nodes and destination t are the delays on fog nodes, which
are related to the number of users and the size of workloads.
The constructed graph is shown in Fig. 3. The converted graph
helps us develop the congestion game for the OPF problem.
B. Solutions

In this subsection, we outline two greedy algorithms for
computing a solution to the LPFN problem according to
the global and local cooperative influences. As shown in
Algorithm 3, we consider removing fog nodes based on the
global cooperative influence, which is known Global Influence
Greedy on LPFN (GIG-LPFN). We take the topology of fog
nodes G, the set of users U, and the delay function dv(xv)
as our inputs. The output is the provision scheme X for U.
In line 1, we first construct a new graph G′′ based on the
connections between G and U, and we add two virtual nodes
s and t as the starting and terminating nodes. All users need
to find a path from s to t with the deadline constraint T . Since
we have already transferred OPF into a CSNCG problem, we

5

Algorithm 3 Global Influence Greedy on LPFN (GIG-LPFN)
Input: Topology G, set of users U, delay function dv(xv);
Output: Provision Scheme X of U;

1: Construct G′′ based on the connections of G and U;
2: Replace in G′′ each edge with n parallel edges between

each node, with weight dv(1), dv(2), ... , dv(n);
3: for fog node j = 1 to j = n in V do
4: Find a minimum delay provision with min-cost flow of

G/vj ;
5: Calculate ψj for each fog node;
6: Rebuild the set G with fog nodes by an increasing order
j = arg min{ψj/τj};

7: while G 6= Φ ∧D ≤ T do
8: Remove vj from set G;
9: return Provision Scheme X of U;

replace in G′′ each edge with n parallel edges between each
nodes, with weight dv(1), dv(2), ... , dv(n). In lines 3-5, we
find a minimum delay provision using the min-cost flow in
each iteration, and calculate the cooperator influence ψj for
each fog node. In line 6, we rebuild the set G with fog nodes
by an increasing order of the global cooperative influence
j = arg min{ψj/τj}. In lines 7-9, we start to remove the
fog node based on the global cooperative influence, and the
removing process stops when either the set G is empty or the
delay for the set of users goes beyond the deadline T .

Then, we consider removing the fog node based on the
local cooperative influence, which is known as Local Influence
Greedy LPFN (LIG-LPFN). Similarly to GIG-LPFN in lines
1 to 4, we use the same input and construct a new graph
G′′. However, during each iteration, we calculate the local
cooperative influence ϕj for each fog node. We rebuild the set
G with fog nodes by an increasing order j = arg min{ϕj/τj}.
We remove the fog node based on the local cooperative
influence, and the removing process is same as GIG-LPFN.
C. Properties
Theorem 2. Every OPF problem in LPFN has at least one
pure Nash Equilibrium (NE).

Proof: The works in [14, 15] have proved that every
potential game has at least one pure NE, namely the strategy S
that minimizes Φ(S). [16] proved that any congestion game
is a potential game, and in subsection A of Section V, we
convert the OPF problem to a CSNCG problem, so we can
have Theorem 3. �

Since the CSNCG is a continuous problem, and this kind
of problem can not be solved in a polynomial time, we do
the discretization and transfer it to a discrete congestion game
problem. Before that, we prove that our delay function satisfies
Lipschitz assumption in Theorem 4.
Theorem 3. Function dv(xv) satisfies Lipschitz assumption.

Proof: Since we have that dv(xv) = α · xv + b, which
is a linear function. There exists a constant α such that for
edges e and all 0 ≤ x < y ≤ 1, |de(y)− de(x)| ≤ α |y − x|.
So, we have that our delay function dv(xv) satisfies Lipschitz

assumption. �

Theorem 4. GIG-LPFN and LIG-LPFN are bounded by
8
3OPT + ε2

8mα .
Proof: We set a minimum unit δ = ε

4mα , where α is the
upper bound on the Lipschitz constants of our delay function
above, and m is the number of fog nodes in use, and ε
denotes the ε-approximate Nash equilibrium 1. We introduce
φ(f) as the potential function for the CSNCG problem, where
φ(f) =

∑
e φ(f)(xv), φe(xv) =

∫ xv

0
(α · xv + b)dt. Then

we have φe(xv) = 1
2αx

2
v + bxv , and the delay function

Ĉ(xv) = xv ·dv(xv) = ax2v+bxv . We discuss the relationship
between φe(xv) and Ĉ(xv)(continuous potential function)
with φe(xv)

Ĉ(xv)
=

1
2axv+b

axv+b
. There are two extreme cases. One

case is that there is no user request to this fog node. Then
1
2 ≤

φe(xv)

Ĉ(xv)
≤ 1. We have

φe(xv) ≤ Ĉ(xv) (6)
Let C(f) be the total delay function for the discrete condition,
where C(f) =

∑
e Ce(xv). In [13], the authors prove that

the discrete delay function C(f) approximates the continuous
potential function φ(f) within an additive error of ε2

16mα .
Thus, we have |φ(f)− P (f)| ≤ ε2

16mα , P (f)−φ(f) ≤ ε2

16mα ,
we can obtain that P (f) ≤ φ(f)+ ε2

16mα . According to Eq. 7,
we can obtain

P (f) ≤ Ĉ(xv) +
ε2

16mα
(7)

Then we discuss the relationship between discrete the po-
tential function and the delay function. Since we do the
discretization by dividing our problem into δ units, our delay
function for one user is d(xv) =

∫m+ 1
2

m− 1
2

f(t)dt =
∫m+ 1

2

m− 1
2

(αt+

b)dt = am+b. Then, for each fog node, the delay function is
c(xv) = md(xv) = am2 + bm. The potential function under
the discrete case is p(xv) =

∑m
1 d(xv) = a(1+2+ ...+m)+

bm = m(m+1)
2 a + bm. p(xv)

c(xv)
=

m(m+1)
2 a+bm

am2+bm =
1
2m+ a

2+b

am+b ,

where 1
2 ≤

p(xv)
c(xv)

≤ 1. Since the total delay function and
potential function are the sum of c(xv) and p(xv) of all fog
nodes, the relationship between P (xv) and C(xv) is also
1
2 ≤

P (xv)
C(xv)

≤ 1. Then we have P (xv) ≥ 1
2C(xv). The Eq. 7

will be transformed into
1

2
C(xv) ≤ Ĉ(xv) +

ε2

16mα
(8)

For each linear delay function, [17] proves that there exists
an 4

3 -approximation ratio in Nash equilibrium of any CSNCG
problem, so we have Ĉ(xv) ≤ 4

3OPT . Then we have

C(xv) ≤
8

3
OPT +

ε2

8mα
(9)

�
The time complexities of GIG-LPFN and LIG-LPFN are

O(|V|·(|E|)3). Since graph G′′ is constructed in O(|V|+|U|+
|E|), and the number of links |E| in the graph is much larger
than the number of nodes |V| and |U|, we have that O(|V|+
|U| + |E|) = O(|E|). We find a minimum delay provision
by going through each fog node, and the time complexity

1ε-approximate Nash equilibrium means that for every user i, every flow
path carrying at least ε units of flow, and the cost on every path is larger than
ce(xv) + ε [13].

6

20 40 60 80 100
of fog nodes

0

0.2

0.4

0.6

0.8

1

T
ot

al
 c

os
t (

%
)

Random
GIG
LIG
SCG
PRG

(a) The fluctuation of 30 users.

10 20 30 40 50
of users

0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 c
os

t (
%

)

Random
SCG
PRG
GIG
LIG

(b) Average cost of users.
Fig. 4. The cost under the UPFN case.

of the min-cost flow algorithm is O((|V| + |E|)2 · |E|) =
O(|E|3). Therefore, the complexities of both GIG-LPFN and
LIG-LPFN are O(|V| · (|E|)3).

VI. EVALUATIONS

A. Basic Setting-Synthetic Dataset
We use randomly generated topologies and applications for

performance evaluation. We measure users’ workloads using
unit weight, and each unit denotes 1GB workload [18]. Let
the sizes of workloads follow a uniform randomly distribution
between 0 and 50. We calculate the average cost of users
within 10 groups, and the scale of fog nodes ranges from 0 to
100. We simulate the topology of fog nodes as an undirected
graph, and each fog node has its own processing capability.
Let the number of unit weights processed per millisecond
denote the processing capability, which is uniformly randomly
distributed between 1 and 10 unit weights per millisecond.
We compare the proposed algorithms with three baseline
approaches which are Random (remove fog nodes iteratively
by random order), Set-up Cost Greedy Algorithm (SCG)
(greedy remove fog nodes iteratively by an increasing order
of the set-up cost), and Processing Rate Greedy Algorithm
(PRG) (greedy remove fog nodes iteratively by an increasing
order of the maximum processing rate).

B. Experiment Results-UPFN
Fig. 4 presents average cost ratio for the users under

the UPFN case. We compare our algorithms with the three
baseline approaches, and we calculate the average cost ratios
for five groups of users that range from 10 to 50. Additionally,
we have the following observations: (i). With the increasing
number of fog nodes, the impact of algorithms on the total
costs is greater. We choose one group, which is a median one
(30 users) to analyse the relationship between workloads and
fog nodes. As shown in Fig. 4 (a), the costs of users fluctuate
with different amount of fog nodes, which means that the cost
depends on the locations and connections of fog nodes. Since
the connection of fog nodes is changing with the scaling, the
total cost of users is fluctuating. In Fig. 4(a), we can find that,
GIG and LIG have the faster decreasing speeds, and the total
cost is lower than other three baseline algorithms. When the
number of fog nodes is small, the performances of these five
algorithms are nearly the same. With the increasing number
of fog nodes, the total costs of SCG and PRG are fluctuating
between Random and GIG. Since all fog nodes are considered
in GIG, it leads to a lower cost than LIG when the number of
fog nodes gets larger. (ii). For the same distribution of users’

20 40 60 80 100
of fog nodes

0

0.2

0.4

0.6

0.8

1

T
ot

al
 c

os
t (

%
)

Random
GIG-LPFN
LIG-LPFN
SCG
PRG

(a) The fluctuation of 30 users.

10 20 30 40 50
of users

0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 c
os

t (
%

)

Random
SCG
PRG
GIG-LPFN
LIG-LPFN

(b) Average cost of users.
Fig. 5. The cost under the LPFN case.

workloads, a larger size of the user set will lead to a higher
cost. As shown in Fig. 4(b), we can see that the average cost
under the 10 users is much lower than that under 50 users.
Since the distribution of the weights is random, for small-
scale fog nodes, the difference is not obvious, as shown in
the first two groups in Fig. 4(b). In summary, compared with
the three baseline algorithms, our two algorithms have better
performances on cost efficiency.
C. Experiment Results-LPFN

In this subsection, we discuss the average cost ratio for
the users in the LPFN problem, and we use five algorithms
(Random, SCG, PRG, GIG-LPFN, LIG-LPFN) on each group
of datasets and calculate the average cost ratios for users. As
shown in Fig 5(b), we calculate the average total cost with
values of α from [1, 5]. Similar to the previous subsection, we
first choose one group of users 30 to analyse the trend. Then
we calculate the average cost ratios for five groups of users
([10, 50]) with three different delay functions α = 1, α = 3,
and α = 5. Additionally, we have the following observations:
(i). When the scale of the total amount of workload is larger,
the impacts of algorithms on the cost efficiency are bigger.
The cost of fog nodes for users depends on the localities
and connectivities of the topology. Compared with the three
groups in Fig. 5(a), the average cost has the same trend with
the increasing number of users, which means more workloads
need more resource. (ii). For the same set of users under the
same amount of fog nodes, the total costs under LPFN case
are larger than the UPFN one. In LPFN case, we consider the
processing ability limitation of each fog node, which means
that the total amount of workload of users is increased. As
the comparison between Fig. 4(b) and Fig. 5(b), the average
cost of these five algorithms under LPFN case is larger than
the UPFN one with the same group of users. (iii). With a
bigger amount of the total workloads of users for fog node,
the impact of the algorithms on the average costs is greater. In
summary, compared with the three baseline algorithms, GIG-
LPFN and LIG-LPFN have lower average costs which can
reach 20.25% and 15.15%, respectively.
D. Real Dataset

1) Dataset Setting: We use the published data of New
York City (NYC) open data website to construct our real
dataset. We combine three datasets, which are the NYC Wi-Fi
hotspot locations, entrances of the subway stations, and the
transit subway entrance data [19]. We use a set of four-month-
long history trip data from 12/23/2017 to 4/23/2018, which
contains the users’ information on subway station entrances

7

15 20 25 30
of fog nodes

5

10

15

20

U
se

rs
 m

ak
es

pa
n

Random
LIG-LPFN
GIG-LPFN
SCG
PRG

(a) The average makespan of users.

1 3 5
 values

0

0.5

1

1.5

A
ve

ra
ge

 c
os

t (
%

)

Random
LIG-LPFN
GIG-LPFN
PRG
SCG

(b) Average cost of users.
Fig. 6. The average cost of users.

from 3 : 00am to 23 : 00pm. The records include the names of
the station entrances, data, time, and the total number of users.
We use one-day data as one unit, and calculate the average
number of users over four months.

2) Experiment Results-Real Dataset: We run the five algo-
rithms (Random, SCG, PRG, GIG-LPFN, LIG-LPFN) based
on the real dataset. The total amount of fog nodes in our data
is 171, which includes 30 access nodes and 141 cooperative
fog nodes. Since the start time and finish time are 3 : 00am
and 23 : 00pm, we use 23 : 00pm as the deadline of users,
and the delay functions are α = 1, α = 3, and α = 5. The
experiment results are shown in Fig 6, we have the following
observations. As shown in Fig 6(a), we find that the users’
makespan increases with the decreasing number of fog nodes,
and the GIG-LPFN and LIG-LPFN have the fastest decreasing
speed. As shown in Fig 6(b), we calculate the average cost of
users under α = 1, α = 3, and α = 5. We find that the average
cost of users becomes higher under a larger delay function,
and with the scaling of fog nodes, GIG-LPFN can obtain
a better performance than LIG-LPFN and other baseline
algorithms under the ranges. In summary, GIG-LPFN and
LIG-LPFN have better performances on cost efficiency under
both synthetic and real datasets. Compared with the Random,
SCG, and PRG algorithms, GIG-LPFN and LIG-LPFN have
lower average costs under the synthetic dataset, which can
reach 14.9% and 10.8% on average, respectively. Additionally,
they have lower average costs under the real dataset, which
can reach 11.4% and 12.8% on average, respectively.

VII. CONCLUSION

In this paper, we focus on the RP problem for delay-
sensitive users in fog computing. Our objective is to find
a feasible provision scheme that minimizes the total cost
for network operators, under the capacities constraints by
considering the cooperation of fog nodes. We first prove that
the RP problem for users with minimum cost is NP-hard.
We consider two cases which are the UPFN and LPFN. For
the UPFN case, we propose two greedy algorithms which
iteratively remove fog nodes according to their global or local
cooperative influences until there is no feasible provision that
can guarantee users’ deadline. We check the feasibility using
the Edmonds-Karp max-flow algorithm of the converted graph
based on the information and connections of users and fog
nodes. We analyze its complexity. Then we extend the UPFN
into a more complicated and realistic case LPFN, in which
each fog node has scheduling delay on processing several
users requests. We check the feasibility of a near-optimal

solution with bound 8
3OPT+ ε2

8mα found using the continuous
congestion game, where m is the number of fog nodes and
α is the upper bound on the Lipschitz constants of our delay
function. Extensive simulations demonstrate that our schemes
outperform the existing method in terms of both efficiency
and effectiveness.

ACKNOWLEDGEMENT
This work of the first author was done during her stay

as a visitor scholar at Temple University. This research was
supported in part by NSF grants CNS 1757533, CNS 1629746,
CNS 1564128, CNS 1449860, CNS 1461932, CNS 1460971,
IIP 1439672, and CSC 20163100.

REFERENCES

[1] S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts,
applications and issues,” in Workshop on Mobile Big Data.
ACM, 2015, pp. 37–42.

[2] Cisco. the internet of things: Extend the cloud to where the
things are. [Online]. Available: http://www.cisco.com/c/dam/
en\ us/solutions/trends/iot/docs/computingoverview.pdf

[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing
and its role in the internet of things,” in MCC workshop on
Mobile cloud computing. ACM, 2012, pp. 13–16.

[4] Y. Xiao and M. Krunz, “Qoe and power efficiency tradeoff
for fog computing networks with fog node cooperation,” in
INFOCOM. IEEE, 2017, pp. 1–9.

[5] A. Brogi and S. Forti, “Qos-aware deployment of iot applica-
tions through the fog,” IEEE Internet of Things Journal, vol. 4,
no. 5, pp. 1185–1192, 2017.

[6] X.-Q. Pham and E.-N. Huh, “Towards task scheduling in a
cloud-fog computing system,” in APNOMS. IEEE, 2016, pp.
1–4.

[7] L. Wang, L. Jiao, D. Kliazovich, and P. Bouvry, “Reconciling
task assignment and scheduling in mobile edge clouds,” in
ICNP. IEEE, 2016, pp. 1–6.

[8] L. Wang, L. Jiao, T. He, J. Li, and M. Mühlhäuser, “Service
entity placement for social virtual reality applications in edge
computing,” in INFOCOM, 2018.

[9] Z. Sheng, C. Mahapatra, V. Leung, M. Chen, and P. Sahu,
“Energy efficient cooperative computing in mobile wireless
sensor networks,” IEEE Trans. on Cloud Computing, 2015.

[10] K. Bierzynski, A. Escobar, and M. Eberl, “Cloud, fog and edge:
Cooperation for the future?” in FMEC. IEEE, 2017, pp. 62–67.

[11] W. Chang and J. Wu, “Progressive or conservative: Rationally
allocate cooperative work in mobile social networks,” IEEE
Trans. on Parallel and Distributed Systems, vol. 26, no. 7, pp.
2020–2035, 2015.

[12] T. H. Cormen, Introduction to algorithms. MIT press, 2009.
[13] A. Fabrikant, C. Papadimitriou, and K. Talwar, “The complexity

of pure nash equilibria,” in STOC. ACM, 2004, pp. 604–612.
[14] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani,

Algorithmic game theory. Cambridge university press, 2007.
[15] J. Von Neumann and O. Morgenstern, Theory of games and

economic behavior (commemorative edition). Princeton uni-
versity press, 2007.

[16] R. W. Rosenthal, “A class of games possessing pure-strategy
nash equilibria,” International Journal of Game Theory, vol. 2,
no. 1, pp. 65–67, 1973.

[17] T. Roughgarden and É. Tardos, “How bad is selfish routing?”
Journal of the ACM (JACM), vol. 49, no. 2, pp. 236–259, 2002.

[18] C. Hu, W. Bao, and D. Wang, “Iot communication sharing:
Scenarios, algorithms and implementation.”

[19] MTA Information, Average Weekday Subway Ridership.
[Online]. Available: http://web.mta.info/nyct/facts/ridership/
ridership sub.htm

8

