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Abstract As the demand for the development of cloud computing grows, more and more organizations have outsourced

their data and query services to the cloud for cost-saving and flexibility. Suppose an organization that has a great number

of users querying the cloud-deployed multiple proxy servers to achieve cost efficiency and load balancing. Given n queries,

each of which is expressed as several keywords, and k proxy servers, the problem to be solved is how to classify n queries into

k groups, in order to minimize the difference between each group and the number of distinct keywords in all groups. Since

this problem is NP-hard, it is solved in mathematic and heuristic ways. Mathematic grouping uses a local optimization

method, and heuristic grouping is based on k-means. Specifically, two extensions are provided: the first one focuses on

robustness, i.e., each user obtains search results even if some proxy servers fail; the second one focuses on benefit, i.e., each

user can retrieve as many files as possible that may be of interest without increasing the sum. Extensive evaluations have

been conducted on both a synthetic dataset and real query traces to verify the effectiveness of our strategies.

Keywords cloud computing, cost efficiency, load balancing, robustness, benefit

1 Introduction

Cloud computing has emerged as a new type of com-

mercial paradigm due to its merits of fast deployment,

scalability, and elasticity[1]. Organizations with limited

budgets can achieve cost-saving and flexibility by out-

sourcing their data and query services to the cloud. In a

typical cloud computing environment, users will query

the cloud with certain keywords to retrieve the data of

interest, and the cloud will evaluate the query on the

whole dataset and return search results to appropriate

users[2-3].

During the querying process, the cloud, which is

outside the organization’s trust domain, will know what

kind of data a user is interested in by observing the

query and the type of returned files. To preserve user

privacy in the cloud, our previous work[4-5] proposed

deploying a proxy server between the users and the

cloud. In this case, the users will first send their queries

to a proxy server, which will aggregate queries and

query the cloud on the users’ behalf with a combined

query, i.e., the union of distinct keywords in the re-

ceived queries. Therefore, every user query is blended

in a crowd. In the combined query, the cloud cannot

know which keywords an individual user is searching for

or how many users are interested in a specific keyword.
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The main drawback of [4-5] is the lack of scalability.

A single proxy server with limited computation power

and communication bandwidth will quickly become a

performance bottleneck when it needs to process thou-

sands of queries simultaneously. Furthermore, it will

cause a single point of failure. If the single proxy server

fails, all users will lose their search results. There-

fore, a preferable solution is to deploy multiple proxy

servers to mitigate the above problem. In this case,

user queries will be classified in several groups, and a

group of queries will be sent to one proxy server, which

can help to preserve user privacy by hiding individual

queries in a combined query. When each group is of

size larger than k, k-anonymity[6-8] is in some sense

achieved.

Apart from user privacy, an important problem is

how to classify queries in different groups to reduce the

cost incurred at the cloud. A naive grouping strategy

would be getting each user to send their queries to a

random proxy server. The main drawback of this sim-

ple solution is the waste of unnecessary bandwidth. To

illustrate, let us consider the application as shown in

Fig.1. University U outsources the online library re-

sources to a cloud for easy access by its staff and stu-

dents. The staff and students, as the authorized users,

may either subscribe to the online edition of magazines

and newspapers, or perform real-time information re-

trieval by querying the cloud with several keywords

to acquire the desired data. Given two proxy servers

deployed inside University U , there are two kinds of

grouping strategies: 1) Alice and Bob are in group

g1 and Clark and Donald are in group g2; 2) Alice

and Donald are in group g′1 and Bob and Clark are in

group g′2. Let Qi and Q′
i denote the combined queries

sent from gi and g′i, and let Ri and R′
i denote the re-

sponses returned to gi and g′i, respectively. We observe

that when queries with no common keywords are ran-

domly grouped together, as shown in grouping strategy

1, up to 50% of the bandwidth is wasted compared with

grouping strategy 2, where queries with the most com-

mon keywords are grouped together.

This paper focuses on designing effective query

grouping strategies in clouds (EQGC) to simultane-

ously achieve cost efficiency and load balancing. Cost

efficiency refers to minimizing the bandwidth consumed

in the cloud. Commercial clouds follow a pay-as-you-go

model, where the customer is billed for the consumed

bandwidth, CPU time, etc. For example, Amazon EC2

charges $0.1 for running one large instance per hour,

and Amazon S3 charges $0.25/GB for transferring data

from the cloud to the Internet. In other words, reduc-

ing the executing time and bandwidth incurred at the

cloud is directly translated to monetary savings. Our

solution is to group queries with the most common key-

words together.

Load balancing refers to balancing bandwidth con-

sumed among proxy servers. For each proxy server,

the transfer-in bandwidth is mainly incurred by receiv-
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ing search results from the cloud, and the transfer-out

bandwidth is mainly incurred by distributing search re-

sults to a group of users. Our solution is to make the

number of queries in each group (group size) equal for

load balancing. Meanwhile, given a combined query,

the cloud cannot guess which keywords a user is in-

terested in with a confidence higher than 1/k if each

group size is larger than k. Therefore, k-anonymity is

achieved.

Given n queries and k proxy servers, our objec-

tive is to classify n queries into k groups of equal size

so that the sum number of distinct keywords in all

groups is minimized. The grouping problem is simi-

lar to the clustering and graph cutting problems, which

have been proven to be NP-hard. This paper solves it in

mathematic and heuristic ways. Mathematic grouping

solves the relaxed problem by using a local optimiza-

tion method. Heuristic grouping is based on the classi-

cal heuristic clustering algorithm, k-means[9]. A basic

grouping strategy called BasicEQGC which mainly ad-

dresses cost efficiency and load balancing is provided

first. Then, two extensions are provided. The first

extension, RobustEQGC, addresses robustness, where

each user can obtain search results even if some ma-

chines fail. Our solution is to generate multiple copies

for each query, where each copy will be classified in

different groups and sent to different proxy servers. As

long as one proxy server runs, the user will not lose

search results. The second extension, BenefitEQGC,

addresses benefit, where each user can retrieve as many

files as possible that may be of interest without in-

creasing the bandwidth consumed in the cloud. Our

solution is to allow each user to choose several unsure

keywords together with several sure keywords, where

only sure keywords will take effect. The strategies are

constructed in both mathematic and heuristic ways 1○.

The key contributions of this paper are as follows.

1) To the best of our knowledge, it is the first at-

tempt to devise effective query grouping strategies to

reduce the bandwidth at the cloud.

2) The grouping problem is solved in both mathe-

matical and heuristic ways to simultaneously achieve

cost efficiency and load balancing.

3) The robustness and benefit extensions are pro-

vided so as to provide more convenient and more per-

sonalized cloud services.

4) Extensive experiments have been performed on

both a synthetic dataset and real query traces to vali-

date our grouping strategies.

Paper Organization. The preliminaries are provided

in Section 2 before the overview in Section 3. The ba-

sic grouping strategy is presented in Section 4. In Sec-

tion 5, the robust extension is presented. Next, the

benefit extension is presented in Section 6. After pro-

viding an evaluation in Section 7, this paper introduces

the related work in Section 8. Finally, this paper is

concluded in Section 9.

2 Preliminaries

In this section, we will first provide our system

model. Then, we will describe the design goals of this

work and analyze which parameters affect the design

goals.

2.1 System Model

The system consists of three kinds of entities: users,

proxy servers, and the cloud, as shown in Fig.2. The

most relevant notations are shown in Table 1. The

proxy servers can be classified into r query routers

(QRs) and k aggregation and distribution machines

(ADMs). The QR will run our grouping strategies to

classify a batch of n queries into k groups. The ADM,

as the only entity interacting with the cloud, acts like

a query aggregator and a result distributor. The main

function of the cloud is to process the combined queries

on the file collection and return search results to the

ADMs.

The interaction process between above entities is as

follows: 1) the user sends individual queries (MSG1)

to the QR; 2) the QR responds to each user with the

grouping decision (MSG2) and forwards a group of

queries (MSG3) to the ADM; 3) the ADM sends the

cloud a combined query (MSG4); 4) the cloud returns

overall outcomes (MSG5) to the ADM; 5) the ADM

distributes results (MSG6) to each user in a group.

Note that if a user cannot receive responses from

the QR in a period of time, he/she will send the query

(MSG′
1) to an ADM. There are k ADMs, each tak-

ing charge of a range of IP addresses. To decide

which ADM to send the query to, the user first deter-

mines which range the IP address falls into and sends

the query to the corresponding ADM. Once receiving
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returned from the cloud. Thus, the expected value of

the number of returned files can be calculated with (1):

e1 =
∑k

j=1
t× (1− (1 − γ/d)Ŝj ), (1)

where t is the number of files stored in the cloud, k is

the number of groups, and Ŝj is the number of key-

words in the combined query Q̂j generated by ADMj

for 1 6 j 6 k. Given that t, k, γ, and d are fixed,

e1 mainly depends on Ŝ1, . . . , Ŝk. Therefore, cost effi-

ciency is equivalent to minimizing the number of key-

words in each combined query.

Load balancing refers to balancing bandwidth con-

sumed among ADMs. The transfer-in bandwidth is

primarily incurred by receiving files from the cloud.

(1) shows that for ADMj , the expected value of the

number of returned files mainly depends on Ŝj . Sup-

pose that the i-th user in gj chooses Si keywords. The

average number of keywords for all of users in gj is

S̄j =
∑|gj |

i=1 Si/|gj|, where |gj | is the size of gj . The

expected value of Ŝj can be calculated with (2):

e2j = d× (1− (1 −
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than P2. For the sample file collection in Table 4, the

cloud needs to return 2 000 files in P1 and 1 600 files in

P2. Thus, the bandwidth in P2 is saved by about 25%

compared with that in P1.

Table 2. Sample User Queries in the Basic Version
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“security”. While performing a search, she finds that

files that contain the keyword “privacy” may also be

of interest. To verify whether the keyword “privacy” is

useful or not, she should retrieve related files to read.

Suppose that each user is authorized to download only

a certain amount of documents from the cloud. Alice

faces the risk of wasting the bandwidth on the cloud

if the keyword “privacy” is actually useless. In this

situation, “privacy” is an unsure keyword to Alice. Al-

though Alice also wishes to retrieve relevant files that

contain unsure keywords, she is more concerned about

the bandwidth consumed on the cloud. That is to say,

Alice wishes to retrieve as many files as possible with-

out increasing the bandwidth consumed on the cloud.

Our solution allows each user to choose several un-

sure keywords in addition to several sure keywords,

where only the sure keywords take effect. Let Dic[l]

denote the l-th keyword in the dictionary. The queries

used in the benefit version can be defined as follows.

Definition 5 (User Query in BenefitEQGC). Qi is

a 0-1-∗ string, where Qi[l] = 1 if Dic[l] is a sure chosen

keyword to user i; Qi[l] = 0 if Dic[l] is a sure uncho-

sen keyword to user i; Qi[l] = ∗ if Dic[l] is an unsure

keyword to user i.

Definition 6 (Combined Query in BenefitEQGC).

Q̂j is a 0-1 bit string, where Q̂j[l] = 1 if Dic[l] is a

sure chosen keyword for at least one user in group j;

otherwise Q̂j [l] = 0.

Let benefit denote the number of “∗” in user queries

being turned to 1 in the combined queries. The higher

the benefit is, the more files that may be of interest to

the users can be returned. The problem to be solved in

the benefit version can be defined as follows.

Definition 7 (Problem Definition of BenefitE-

QGC). Given n queries and k ADMs, we derive a

grouping strategy such that 1) each group is of size n/k,

2) the cost is minimized, and 3) the benefit is maximized

under requirements 1) and 2).

BasicEQGC is a special case of BenefitEQGC. Thus,

BenefitEQGC is NP-hard. The grouping objective is

classified into two layers: the first-layer objective is to

minimize the grouping cost; the second-layer objective

is to maximize the benefit. To illustrate our layered

objective, we consider the following example. Assume

that the dictionary consists of (A, B, C, D, E, F , G,

H) and that the sample queries are as shown in Ta-

ble 6. For example, Q1 means that A, B, and C are sure

chosen keywords, and D and E are unsure keywords.

Table 7 provides the sample grouping patterns in the

benefit version, where P5 and P6 are instances of ran-

dom grouping and P7 is an instance of BenefitEQGC.

Note that P6 and P7, which will incur fewer costs, are

better than P5, and P7 generates more benefits and is

better than P6.

Table 6. Sample User Queries in the Benefit Version
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matrix of all 1s, and δ(·) denotes an indicator function

such that δ(c) = 1 if c is not zero and δ(c) = 0 other-

wise. Hence δ(Y TQ) will transform the nonzero values

of Y TQ into 1s and indicate whether there are 1s for

each bit of the sum query string from each group. The

problem formulated above, however, is NP-hard, and it

is difficult to conduct optimization directly over it. M-

BasicEQGC thus solves a relaxation problem instead.

First, it approximates the indicator matrix, δ(Y TQ),

with a smooth function, 1 − exp(−βY TQ), where β

is a large constant number, e.g., β = 10, 20, 30, 40.

The differentiable smooth function 1 − exp(−βY TQ)

is used to approximate the indicator matrix δ(Y TQ)

and to facilitate the optimization procedure. Let C =

Y TQ . Then each (i, j)-th entry of C takes either a

zero value such that Cij = 0 or a nonzero value such

that 1 6 Cij 6 n/k (based on (4)). For Cij = 0,

it is observed that 1 − exp(−βCij) = 0 = δ(Cij). For

1 6 Cij 6 n/k where δ(Cij) = 1, we have 1−exp(−β) 6

1 − exp(−βCij) 6 1. With a large constant β value,

1 − exp(−β) will be very close to 1. For example, if

β = 10, we have 1 − exp(−β) = 1 − 4.54 × 10−5 ≈ 1.

Hence 1− exp(−βY TQ) can be a good approximation

for δ(Y TQ) with a reasonably large β value. Then, it

relaxes the integer matrix Y into a continuous matrix.

After relaxation, the following optimization problem is

obtained:

min
Y

tr(ET(1 − exp(−βY TQ)))

0 6 Y 6 1, Y T1 =
n
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tance 0, and Q2’s nearest neighbor is Q3 with the mini-

mal distance 0.

As shown in Algorithm 1, H-BasicEQGC largely

consists of two steps and will be run within multiple

rounds. The first step is to find k group seeds. In the

first round, since no group has been formed yet, k seeds

are randomly chosen from n queries; in the following

rounds, given k groups, each seed is chosen randomly

from n/k queries in each group. The second step is to

classify n − k queries that are closest to a seed into a

group. Specifically, a set CandiQ that consists of uni-

versal queries with the exception of k seeds is first con-

structed. Then, given seed sj , a set Neighborj that ac-

commodates the nearest neighbors of sj is constructed

and a random element in Neighborj is removed from

CandiQ after being classified into gj . The groups are

processed in ascending order of their IDs, where the

group with a lower ID has a higher priority for choos-

ing the next member. Then, the IDs of the groups are

reordered at the end of each round. In each round, the

grouping result will be recorded. At the end of this

algorithm, the optimal result will be the output.
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0 6 Y 6 1, Y T1 =
2n
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6.1 M-BenefitEQGC

Let Q ∈ {0, 1, ∗}n×d represent n strings with length

d. M-BenefitEQGC aims to classify these strings into

k groups such that each group has the same number of

strings while in the process of grouping, the “∗” entries

of Q can be either turned into 1 or 0. The goal is to

classify n queries into k groups of equal size, so that the

total number of nonzeros in the sum strings from each

cluster can be minimized while as many “∗” entries as

possible can be turned into 1s. This extended group-

ing problem can be formulated as a new optimization

problem:

max
Z ,Y

tr(ET exp(−βY TZ)) + α1TZ1

s.t. Y ∈ {0, 1}n×k, Y T1 =
n
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Neighborj ⊆ CandQ that accommodates the nearest

neighbors of sj is first constructed. For each member

in Neighborj, H-BenefitEQGC calculates its intimacy

from sj and then constructs Friendj ⊆ Neighborj,

which accommodates the friendliest neighbors of sj . Fi-

nally, a random element in Friendj is removed from

CandiQ after being classified into gj. The above pro-

cess will be run within multiple rounds, and in each

round, the grouping cost and the grouping benefit will

be recorded. At the end of this algorithm, the group-

ing patterns that generate the minimal grouping cost

are set as the candidate outputs from which the output

with the maximal benefit will be chosen as the optimal

result.

Table 10 shows how H-BenefitEQGC classifies the

sample queries (shown in Table 6) into four groups. In

the first step, Q2, Q1, Q6, and Q5 are chosen as the

seeds of g1, g2, g3, g4, respectively. In the second step,

the friendliest neighbor set is calculated for each group

seed where a random element will be chosen as the

next group member. For example, for s2, the near-

est neighbor set is Neighor2 = {Q4, Q8} where we

have Inti(s2, Q4) = 1 and Inti(s2, Q8) = 3. Thus,

the friendliest neighbor set is Friend2 = {Q8}.

Table 10. Working Process of H-BenefitEQGC
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Fig.3. Comparison of the percentage of the reduced 1s in the synthetic dataset. The X-axis denotes the number of users and the Y -axis
denotes the corresponding percentage. (a) d = 1000 and k = 5. (b) d = 1000 and k = 10. (c) d = 2000 and k = 5. (d) d = 2000 and
k = 10.

reason is that in a dictionary of fixed size, the proba-

bility of a keyword being chosen by multiple users in-

creases as the number of users in a group increases.

This tendency conforms with the analysis results in

Subsection 2.3.

Furthermore, all of the strategies work more poorly

as either the number of groups k or the size of dictionary

d increases. For example, under the setting of n = 200

and d = 2 000, the percentage of reduced 1s decreases

from 45.8% to 35.8% in M-BasicEQGC, from 42.8%

to 36% in H-BasicEQGC, and from 38.3% to 24.5% in

Random as k increases from 5 to 10; under the setting

of k = 10 and n = 100, the percentage of reduced 1s de-

creases from 42.9% to 31.9% in M-RobustEQGC, from

40.4% to 31.5% in H-RobustEQGC, and from 36% to

24.6% in Random-Robust as d increases from 1 000 to

2 000. The reason is that with a fixed number of users,

the probability of a keyword being chosen by multiple

users decreases as the number of keywords in the dic-

tionary increases. Similarly, in a group of five users,

there is a higher probability that the users will choose

the same keywords in a group of 25 in size.

It is also observed that our strategies generate fewer

1s than random strategies in both the basic and the

robust versions. When the number of users exceeds

a threshold value (e.g., n = 100 under the setting of

d = 2 000 and k = 5), mathematic strategies work bet-

ter than heuristic strategies. This is because heuristic

grouping is apt to obtain the local optimal result when

the number of users is sufficiently large. Mathematic

strategies can relieve this problem by setting multiple

random restarting points.

To compare the bandwidth incurred at the cloud, it

is assumed that the cloud maintains 10 000 files, where

each file of size 0.1 MB is described by 1∼5 keywords. It

is also assumed that keywords are uniformly distributed

in a file set. Fig.4 shows that our strategies can save

more bandwidth than random strategies in both the ba-

sic and the robust versions. For example, under the set-

ting of d = 2 000 and k = 10, the bandwidth incurred at

the cloud is reduced by 1%∼15% in M-BasicEQGC and

by 7%∼16% in H-BasicEQGC compared with Random.

Furthermore, the bandwidth incurred at the cloud in-

creases either as the number of users or the number of

groups increases, or as the dictionary size decreases.
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Fig.4. Comparison of the bandwidth at the cloud in the synthetic dataset. The X-axis denotes the number of users and the Y -axis
denotes the corresponding bandwidth (MB). (a) d = 1000 and k = 5. (b) d = 1000 and k = 10. (c) d = 2000 and k = 5. (d) d = 2000
and k = 10.
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7.1.2 Load Balancing

The imbalanced bandwidth imb is an aggregate

value of the discrepancies of the consumed bandwidth

at the ADMs from the average consumed bandwidth.

This can be calculated with imb =
∑k

i=1 |Bi − ave|,

where Bi is the bandwidth at ADMi and ave =

(
∑k

i=1 Bi)/k is the average bandwidth among k ADMs.

The transfer-in bandwidth at each ADM is mainly af-

fected by the amount of 1s in the combined query, Ŝj ,

and the transfer-out bandwidth at each ADM is mainly

affected by the sum of 1s,
∑

Si, in a group of queries.

As described in (2) and (3), the parameters that affect

Ŝj are almost the same for each group, but the para-

meters that affect
∑

Si, e.g., the number of keywords

in each query, are different for each user. Therefore,

as shown in Fig.5 and Fig.6, the imbalanced transfer-

out bandwidth is larger than the imbalanced transfer-

in bandwidth. Furthermore, heuristic strategies keep

load balancing more effectively than the mathematic

ones. The reason is that heuristic strategies group

queries with the minimal distance from the group seed

together, minimizing the difference among a group of

queries. Note that the group size is set to be the same

and that no significant differences exist. For example,

even in the worst case (M-RobustEQGC under the set-

ting of d = 1 000 and k = 10), the maximal imbalanced

transfer-in and transfer-out bandwidths are 231.6 MB

and 561.2 MB, respectively, and the average values of

them are just about 143.124 MB and 264.52 MB, re-

spectively. Since imb is an aggregate value, the average

difference among all ADMs is about 20 MB.

7.1.3 Benefit

The gained benefit will be compared among diffe-

rent strategies. The probability for generating “∗” is

set as δ = 0.01. Therefore, the number of “∗” in each

query for a dictionary of size d = 1 000 is about 10,

and for that of size 2 000 is about 20. Fig.7 shows that

the heuristic strategies generally sacrifice more “∗”s to

1 than the mathematic strategies in order to achieve a

better performance. Random strategies, although gain

more benefits than the proposed strategies in certain

cases, always incur more costs (as indicated in Fig.4).

Furthermore, it is observed that the gained benefit in-

creases as the number of users, n, increases, as the dic-

tionary size, d, increases, or as the number of groups,

k, decreases.

7.2 Real Query Traces

To validate the effectiveness of the proposed strate-

gies, simulations are conducted on real query traces,

AOL[12]. This collection consists of 10 154 742 unique

(normalized) queries collected from 650000 users over

three months from March 01, 2006, to May 31, 2006.

0

20

40

60

80

100

H
-
R

o
b
u
st

E
Q

G
C

R
a
n
d
o
m
-
R

o
b
u
st

M-RobustEQGC

H
-
B

a
si

c
E
Q

G
C

R
a
n
d
o
m

M
-
B

a
si

c
E
Q

G
C

50

100

150

200

250

M
-
B

a
si

c
E
Q

G
C

R
a
n
d
o
m
-
R

o
b
u
st

M-RobustEQGC

H
-
B

a
si

c
E
Q

G
C

R
a
n
d
o
m

H
-
R

o
b
u
st

E
Q

G
C

0

20

40

60

80
M-RobustEQGC

H
-
B

a
si

c
E
Q

G
C

R
a
n
d
o
m

M
-
B

a
si

c
E
Q

G
C

R
a
n
d
o
m
-
R

o
b
u
st

H
-
R

o
b
u
st

E
Q

G
C

0

50

100

150
R

a
n
d
o
m

H
-
B

a
si

c
E
Q

G
C

M
-
B

a
si

c
E
Q

G
C

M-RobustEQGC

H
-
R

o
b
u
st

E
Q

G
C

R
a
n
d
o
m
-
R

o
b
u
st

(a) (b) (c) (d)

Fig.5. Comparison of the imbalanced transfer-in bandwidth at ADMs in the synthetic dataset. The X-axis denotes the number of
users and the Y -axis denotes the corresponding imbalanced bandwidth (MB). (a) d = 1000 and k = 5. (b) d = 1000 and k = 10. (c)
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Fig.7. Comparison of the gained benefit in the synthetic dataset. The X-axis denotes the number of users and the Y -axis denotes the
corresponding benefit. (a) d = 1000 and k = 5. (b) d = 1000 and k = 10. (c) d = 2000 and k = 5. (d) d = 2000 and k = 10.

AOL contains 10 data collections. Our experiments

are conducted on the first dataset, which collects 65 535

queries from 400 users. After splitting and extracting

keywords from each query, the number of distinct key-

words in 65 535 queries is 177 989, each consisting of at

most 57 keywords. Obviously, 177 989 is too large to

be the dictionary size; in such a setting, few common

keywords will exist within a group of queries. There-

fore, the dictionary size is set as d = {1 000, 2 000},

where each keyword is mapped to a position in the dic-

tionary by using a hash function. After mapping, each

query consists of about 1∼10 keywords. Meanwhile, the

number of users n is set to {100, 200, 300, 400}, where a

random query is chosen for each user for experiments.

Performance. This paper first compares the per-

centage of reduced “1” among different strategies. Fig.8

shows that under all parameter settings, mathematic

strategies work best in both basic and robust versions.

For example, under the setting of d = 2 000 and k = 10,

the percentage of the reduced number of 1s achieves

19.5% in M-BasicEQGC, 15.8% in H-BasicEQGC, 11%

in Random, 24.3% in M-RobustEQGC, 19.1% in H-

RobustEQGC, and 17.1% in Random-Robust. To com-

pare the bandwidth incurred at the cloud, parameters

t and γ as well as the keyword distribution in file sets

are set the same as those in the synthetic dataset. Fig.9

shows the comparison results. It is observed that math-

ematic strategies produce the least bandwidth in both

basic and robust versions. Furthermore, the variation

trends of the results shown in Fig.8 and Fig.9 are con-

sistent with those in Fig.3 and Fig.4.

Load Balancing. The comparisons of imbalanced

transfer-in bandwidth and transfer-out bandwidth are

shown in Fig.10 and Fig.11, respectively. It is observed

that in all settings, heuristic strategies maintain better

load balancing than mathematic strategies in both basic

and robust versions. Furthermore, the transfer-out im-

balance bandwidth is larger than the transfer-in imba-

lanced bandwidth. This observation is consistent with

the synthetic data. And even in the worst case (while

under the parameter setting d = 1 000 and k = 10),

the aggregated imbalanced transfer-in bandwidth is

about 237.26 MB in M-BasicEQGC and 265 MB in M-

RobustEQGC and the aggregated imbalanced transfer-

out bandwidth is about 279.96 MB in M-BasicEQGC

and 497 MB in M-RobustEQGC. That is to say, the

difference among all ADMs is about 20 MB∼50 MB,

which is a very small value.
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Fig.8. Comparison of the percentage of reduced 1s in the real query traces. The X-axis denotes the number of users and the Y -axis
denotes the corresponding percentage. (a) d = 1000 and k = 5. (b) d = 1000 and k = 10. (c) d = 2000 and k = 5. (d) d = 2000 and
k = 10.
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Fig.10. Comparison of the imbalanced transfer-in bandwidth at ADMs in the real query traces. The X-axis denotes the number of
users and the Y -axis denotes the corresponding imbalanced bandwidth (MB). (a) d = 1000 and k = 5. (b) d = 1000 and k = 10. (c)
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Fig.11. Comparison of the imbalanced transfer-out bandwidth at ADMs in the real query traces. The X-axis denotes the number of
users and the Y -axis denotes the corresponding imbalanced bandwidth (MB). (a) d = 1000 and k = 5. (b) d = 1000 and k = 10. (c)
d = 2000 and k = 5. (d) d = 2000 and k = 10.

Benefits. As in the setting of the synthetic data,

the probability for generating “∗” is set as δ = 0.01.

Given n = {100, 200, 300, 400}, the sum number of “∗”

in all queries is about {1 000, 2 000, 3 000, 4 000} and

{2 000, 4 000, 6 000, 8 000} under the setting of d = 1 000

and d = 2 000, respectively. The gained benefits are

mainly affected by the number of groups k. As k

increases, the gained benefit decreases. Fig.12 shows

that the heuristic strategy gains the most benefits and

the mathematic strategy gains the least. For exam-

ple, under the setting d = 1 000, k = 5 and n = 200,

H-BenefitEQGC gains about 175 benefits while in-

curring 1 049.8 MB bandwidth at the cloud, but M-

BenefitEQGC only gains 144 benefits while incurring

1 026.8 MB bandwidth at the cloud.

7.3 Summary

In terms of efficiency, the computational comple-

xity of heuristic grouping is O(c × k × n) for the basic

version, O(c × α × k × n) for the robust version, and

O(c × k × n× 2) for the benefit version where c is the

number of iterations, k is the number of groups, n is the

number of queries, and α is the number of query copies.

Mathematic grouping strategies use the first-order lo-

cal optimization method to solve the non-convex op-

timization problem, the computational complexity of

which has not been proven. In our experiments, heuris-

tic grouping strategies are very efficient and can out-

put the final grouping results in several milliseconds,

but mathematic grouping strategies take more time to

terminate.
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Fig.12. Comparison of the gained benefit in the real query traces. The X-axis denotes the number of users and the Y -axis denotes the
corresponding benefit. (a) d = 1000 and k = 5. (b) d = 1000 and k = 10. (c) d = 2000 and k = 5. (d) d = 2000 and k = 10.

In terms of performance, both methods are local

optimal. However, mathematic grouping strategies use

random restarts to produce multiple rounds to miti-

gate this problem. The larger the number of random

restarts, the better the performance, but the more the

execution time. In our experiments, the number of

random restarts is fixed to 10. Therefore, the mathe-

matic grouping strategies generate more 1s than heuris-

tic grouping strategies when the number of queries is

small. In terms of load balancing, both methods can

balance the bandwidth between proxy servers. There-

fore, heuristic grouping strategies are more appropri-

ate for cloud environments, and mathematic grouping

strategies can be used as the baseline to measure the

grouping quality.

8 Related Work

Our work provides effective query grouping strate-

gies in cloud computing for cost efficiency, load bal-

ance, robustness, and benefit. The research on design-

ing query grouping strategies for cost-based optimiza-

tion has recently attracted increased interest[13-16]. For

example, Pig[13] supports a large number of sharing

mechanisms by executing multiple queries in a single

group; MRShare[14] avoids redundant computations in

the cloud by sharing work among a group of similar

queries; Helix[16] deploys a sharing scheme among the

recurring queries based on the sliced window-alignment

techniques.

Unlike the above work that focuses on reducing the

executing time in the cloud, our work aims to design ef-

fective and efficient grouping strategies to minimize the

bandwidth consumed at the cloud. Existing research

that is the most related to ours can be found in the ar-

eas of document clustering and query clustering. Docu-

ment/query clustering is the process of partitioning a

collection into clusters, such that documents/queries in

the same cluster are similar among themselves and dis-

similar to those belonging to other clusters[17-19].

Clustering algorithms are mainly divided into two

categories: hierarchical algorithms and partition algo-

rithms. In summary, hierarchical algorithms tend to be

more robust in finding the best clusters, but incur high

computational costs. Partition algorithms are more ef-

ficient, but may sometimes not be very effective[20].

As the volume of data increases, scalability becomes

more and more important for clustering algorithms.

Many novel hierarchical algorithms have been deve-

loped to cluster large-scale datasets, including Birch[21],

CURE[22], Chameleon[23], ROCK[24], etc. For example,

Birch utilizes a cluster feature (CF) tree to speed up the

clustering process. The CF tree is a height-balanced

tree, where the diameter of each entry in the leaf node

is less than a threshold value. Given the CF tree, the

computational complexity for clustering the leaf nodes

can be reduced to O(n), where n is the number of doc-

uments/queries.

One of the most widely used partition clustering al-

gorithm is k-means. The computational complexity of

k-means is O(c × n× k), where c is the number of ite-

rations, n is the number of documents/queries, and k

is the number of clusters. The main merit of k-means

is that it requires a small number of iterations in or-

der to converge. Observations from [25] show that for

many large datasets, 5 or fewer iterations are sufficient

for an effective clustering. The main disadvantage of

k-means is that it is quite sensitive to the initial set

of seeds picked in the initial step[26]. Besides k-means,

the other typical partition clustering algorithms include

PAM[27], CLARA[28], CLARANS[29], etc. CLARANS,

which adopts a serial randomized search strategy, out-

performs PAM and CLARA in terms of both clustering

quality and execution time[30]. Specifically, it views

the clustering process as searching through a certain

graph, starts from an arbitrary node in the graph, and
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randomly selects one of its neighbors. If the cost of the

selected neighbor is less than that of the current node,

CLARANS sets it as the current node, and continues

the neighbor selection process. Otherwise, CLARANS

randomly checks another neighbor until a better neigh-

bor is found or the pre-determined maximal number of

neighbors to check has been reached. The node with the

minimum cost is selected as the final clustering. The

computational complexity of CLARANS is O(k × n2).

In this paper, k-means is adopted as the building

block of our heuristic query grouping strategies due to

its efficiency. The main difference between the existing

clustering approaches and ours is that our objective

is to provide more convenient and more personalized

cloud services by achieving cost efficiency, load balanc-

ing, robustness, and benefit. Unlike the existing work

that aims to maximize the overall similarity with no

limit on the size of each group, our basic grouping ob-

jective is to minimize the total number of keywords in

a combined query under the constraint of equal group

size. Although the objective of our grouping strategies

is different from the above clustering problems, the key

techniques in these fields can be used to improve our

work.

9 Conclusions

This paper studied the problem of effective query

grouping in cloud computing. To achieve cost efficiency,

load balancing, robustness, and benefit, two kinds of

grouping strategies were provided: mathematic group-

ing and heuristic grouping. The experiment results

showed that our strategies are practical and applicable

to a cloud computing environment.

The experiments assumed that keywords are nor-

mally distributed on a set of files, each of which has

the same size. In practice, various keyword distribu-

tions, e.g., Zipf distribution and Power-Law distribu-

tion, also exist in file sets. Therefore, as part of our

future work, more experiments will be conducted under

different parameter settings. Furthermore, our future

work will attempt to deploy QRs and ADMs in an orga-

nization and to justify the performance of the grouping

strategies in empirical studies.
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