
Dynamic Access Policy in Cloud-Based Personal Health
Record (PHR) Systems

Xuhui Liua, Qin Liua, Tao Pengb, Jie Wuc

aCollege of Computer Science and Electronic Engineering
Hunan University

Changsha, Hunan Province, P. R. China 410082
bSchool of Information Science and Engineering

Central South University
Changsha, Hunan Province, P. R. China 410083

cDepartment of Computer and Information Sciences
Temple University

Philadelphia, PA 19122, USA

Abstract

With the development of cloud computing, an increasing number of users
are using cloud-based personal health record (PHR) systems. The PHR is
closely tied to patient privacy, and thus existing studies suggest encrypting
PHRs before outsourcing. Comparison-based encryption (CBE) was the first
to implement time comparison in an attribute-based access policy by means
of the forward and backward derivation functions. However, CBE cannot be
directly applied to cloud-based PHR environments for the following reasons:
First, the cost of encryption grows linearly with the number of attributes in
the access policy. Second, policy updating incurs high communication and
computation costs for the data owner. To efficiently implement a dynamic
access policy for PHRs in clouds, we first propose a hierarchical comparison-
based encryption (HCBE) scheme that incorporates an attribute hierarchy
into CBE. The HCBE scheme encrypts a ciphertext with a small number of
generalized attributes at a higher level rather than many specific attributes
at a lower level, greatly improving the encryption performance. Using the
HCBE scheme as a foundation, we then develop a dynamic policy updating
(DPU) scheme by utilizing the proxy re-encryption (PRE) technique. The
DPU scheme can avoid the transmission of ciphertexts and minimize the
computation overhead on the data owner by delegating the policy updating
operations to the cloud. Extensive experiments have been conducted using

Preprint submitted to Information Sciences June 15, 2016

YangChen

a synthetic data set to verify the efficiency of our proposed schemes.

Keywords:
personal health record, cloud computing, comparison-based encryption,
attribute hierarchy, dynamic access policy

1. Introduction

In recent years, the personal health record (PHR) [25] as a patient-centric
model of health information exchange has become popular with an increasing
number of users because of the convenience of merging a wide range of health
information sources to create a centralized patient profile that can be easily
accessed. PHR allows medical practitioners online access to a complete and
accurate summary of a patient’s medical history, which streamlines care [9].
Cloud computing is a model for enabling ubiquitous and convenient network
access to data resources [1]. Because of its overwhelming advantages, such
as rapid elasticity, high availability, and low cost, a growing number of pa-
tients are deciding to outsource their PHRs to the cloud. The most popular
cloud-based PHR systems have included Google Health [32] and Microsoft
HealthVault [33], which promise users access to the PHR services at any time
and at any place using any kind of device connected to the Internet.

However, a PHR, which includes health data such as allergies or adverse
drug reactions, family history, and imaging reports, is closely tied to patient
privacy. Allowing a cloud service provider (CSP) such as Amazon, Google,
or Microsoft to manage sensitive medical data may raise potential issues.
For instance, an untrustworthy CSP may intentionally leak PHRs to medical
companies or medical instrument companies for a profit. Existing research
suggests encrypting the PHRs before outsourcing in order to preserve pa-
tients’ privacy [26].

Let us consider the following application scenario: Alice is hospitalized
in Hospital A, in need of heart surgery. To help the doctors diagnose the
disease better, Alice uploads her encrypted PHR to Google Health, specifying
an access policy, as shown in Fig. 1-(a). Unfortunately, during the course
of therapy, Alice is diagnosed with hypertension and asthma. To avoid the
surgical risks and complications, the relevant attending doctors in Hospital
A need to hold a consultation to decide on a surgery program based on
careful study of Alice’s PHR. For convenience and flexibility, Alice updates
the access policy for her encrypted PHR, as shown in Fig. 1-(b).

2

Figure 1: Application scenario.

The access policy can be viewed as a description of attributes and time
conditions specifying that only the users whose attributes satisfying the ac-
cess policy can decrypt the ciphertext during the specified time period. For
instance, Fig. 1-(b) stipulates that the cardiologists and the respiratory physi-
cians can view Alice’s PHR during the consultation (April 1, 2015, through
April 30, 2015), and the cardiac surgeons and the thoracic surgeons can view
it at any time. Therefore, the encryption scheme adopted needs to meet the
following requirements:

(1) Support an attribute-based access policy. For example, for a given
ciphertext associated with access policy ((A1∧A2)∨A3), only the users who
possess both attributes A1 and A2 or those who possess attribute A3 can
recover it using their own decryption keys.

(2) Support time-based comparison. For example, the time condition of
the ciphertext is (A1 ∧ [tx, ty]), which means that users possessing attribute
A1 can access the data during time [tx, ty].

(3) Support a dynamic access policy. For example, while the access policy
is changed from (A1) to (A1∧A2), only the users who possess both attributes
A1 and A2 can decrypt the ciphertext, and users who possess only attribute
A1 cannot access the data any more.

Comparison-based encryption (CBE) [31] was proposed by Zhu et al.
in 2012 as a promising tool facilitating fine-grained access control in cloud
computing. CBE utilizes the forward and backward derivation functions to
achieve time comparison in attribute-based encryption. For example, suppose
that the access policy of the ciphertext is (A1 ∧ [tx, ty]), and the time of
authorization of a user with attribute A1 is [ta, tb]. Then, the user can decrypt
the ciphertext only when the current time (tc ∈ [tx, ty])∧(tc ∈ [ta, tb]). At the
same time, the key delegation mechanism was applied to assign a majority
of decryption costs to the cloud in order to take full advantage of cloud

3

resources.
However, CBE cannot be directly applied to cloud-based PHR environ-

ments for the following reasons: First, the cost for encryption grows linearly
with the number of attributes in the access policy. For a system with a large
number of attributes, the cost for encryption may be considerable. Second,
because of the lack of local copies of the PHR data, the data owner needs to
retrieve the original ciphertext from the cloud, re-encrypt it under the new
access policy, and then send the new ciphertext back to the cloud in order
to update the access policy. This process will incur high communication and
computation costs for the data owner.

In this paper, we first propose a hierarchical comparison-based encryption
(HCBE) scheme for efficiently achieving a dynamic access policy in cloud-
based PHR systems. The main idea of the HCBE scheme is building a
hierarchical structure for attributes, in which an attribute at a higher level
is a generalization of attributes at lower levels. Specifically, we encrypt the
ciphertext with a small number of generalized attributes at a higher level
rather than with many specific attributes at the lower level. For example,
if we construct an attribute tree, as shown in Fig. 1-(c), the access policy
can be simplified, as shown in Fig. 1-(d), with which the computation cost
for encryption may be greatly reduced compared to that in Fig. 1-(b). To
implement the attribute hierarchy, we encode each node in an attribute tree
with positive-negative depth-first (PNDF) coding. Then, we apply the back-
ward derivation function of CBE to allow the descendant attribute node to
deduce the secrets associated with its ancestor attribute nodes. Therefore,
users with the specific attributes can decrypt the ciphertext encrypted with
the generalized attributes. For example, when the ciphertext is encrypted
with access policy (medicine) ∧ [2015− 4− 1, 2015− 4− 30], only the cardi-
ologists and the respiratory physicians can decrypt it between April 1, 2015,
and April 30, 2015.

Using HCBE as a foundation, we then develop a dynamic policy updating
(DPU) scheme by utilizing the proxy re-encryption (PRE) technique [3]. The
main idea of the DPU scheme is to allow the data owner to send an update
key to the cloud, which will update the access policy associated with the ci-
phertext without knowing the content of the plaintext. The DPU scheme can
avoid the transmission of ciphertext and minimize the computation overhead
incurred by the data owner by delegating the policy updating operations to
the cloud. Specifically, we express the access policy as an access tree and
provide a generalized version (referred to as G-DPU) and an efficient version

4

(referred to as E-DPU) for the DPU scheme. G-DPU transforms the prob-
lem of updating the AND/OR gate to that of updating the threshold gate.
For example, the AND gate is transformed to a (t, t) gate, and the OR gate
is transformed to a (1, t) gate. Therefore, the updating of the AND gate
can be treated as updating the (t, t) gate to a (t′, t′) gate, and the updating
of the OR gate can be treated as updating the (1, t) gate to a (1, t′) gate,
where t′ = t+ 1 for adding an attribute to the AND/OR gate and t′ = t− 1
for removing an attribute from the AND/OR gate. The main drawback of
G-DPU is that the updating cost will grow linearly with the number of at-
tributes under the gate. Therefore, we provide E-DPU, whose cost remains
constant while updating an attribute. Our main contributions in this work
are summarized as follows:

1. We are among the first to consider the problem of efficiently achieving
dynamic access control in cloud-based PHR systems.

2. We propose the HCBE scheme, which builds an attribute hierarchy
and utilizes PNDF coding to improve the encryption performance of
the CBE scheme.

3. Using the HCBE scheme as a foundation, we have developed the D-
PU scheme , which utilizes the PRE technique to delegate the policy
updating operations to the cloud.

4. We analyse the performance and the security of the proposed schemes
and have conducted experiments to validate their effectiveness and ef-
ficiency.

The rest of this paper is organized as follows. In Section 2, we introduce
our models, design goals, and technical preliminaries. Then, we provide an
overview of our HCBE scheme in Section 3 and provide its construction in
Section 4. Next, we present the construction of the DPU scheme in Section 5.
We analyse the security and efficiency of our scheme in Section 6 and describe
our experiments in Section 7. Finally, we introduce related work in Section 8,
and we conclude the paper in Section 9.

2. Preliminaries

2.1. System Model

As shown in Fig. 2, the system consists of the following parts: the cloud
service provider (CSP), the data owner, and the data users. The CSP op-
erates the cloud-based PHR system, which is located on a large number of

5

Figure 2: System model.

interconnected cloud servers with abundant hardware resources. The data
owner is the individual patient who employs the cloud-based PHR system to
manage her PHRs. The data users are the entities who are authorized by
the data owner to access the cloud-based PHR system. Taking the applica-
tion scenario in Fig. 1 as an example, Alice is the data owner, Google is the
CSP, and Alice’s doctors in Hospital A are the data users. A proxy server
responsible for the decryption operation can be deployed internally when all
the data users are located in the same trusted domain.

Suppose that the universal attribute set A = {A1, . . . , AM}, from which
an attribute hierarchy Â of L levels is built. In the tree structure, each
attribute Ak contains two hierarchy codes, {Pcodek, Ncodek}, such that the
descendant node’s codes are larger than those of its ancestors. To efficiently
achieve fine-grained access control while using the cloud-based PHR services,
our HCBE scheme will be employed as follows. We describe each user with
an attribute-based access privilege L̂, where each attribute Ak ∈ L̂, denoted
as Ak(ta, tb, P codek, Ncodek), is associated with the authorization time [ta, tb]
and hierarchy codes {Pcodek, Ncodek}.

The PHR is encrypted with an attribute-based access policy, ÂP , in which
each attribute Al ∈ ÂP , denoted as Al(ti, tj, P codel, Ncodel), is also associ-
ated with the time condition [ti, tj] and hierarchy codes {Pcodel, Ncodel}.
The data user can decrypt the PHR only when the following conditions are

6

simultaneously satisfied:
(1) User attributes satisfy the access policy, denoted L̂ ⊑ ÂP .
(2) The current time tc satisfies (tc ∈ [tx, ty]) ∧ (tc ∈ [ta, tb]).

(3) The attributes in L̂ are either the same as or more specific than those

in ÂP , denoted as Pcodek ≥ Pcodel and Ncodek ≥ Ncodel.
For the dynamic access policy, the data owner will generate an update

key UK, which will be sent to the CSP. On receiving UK, the CSP will
update the policy from ÂP to ÂP ′ on behalf of the data owner.

2.2. Adversary Model

Our design goal is to preserve privacy for the data owner while she is
using the cloud-based PHR services. There are two main attacks under such
a circumstance: external attacks initiated by unauthorized outsiders , and
internal attacks initiated by an honest but curious CSP and malicious data
users. The communication channels are assumed to be secured under existing
security protocols such as SSL and SSH , thus we consider only the internal
attacks. In the adversary model, the CSP and malicious data users are
considered as potential attackers, which are assumed to be more interested
in the contents of stored data and the user’s private key than in other secret
information.

As in [17], we assume that the honest but curious CSP will always correct-
ly execute a given protocol but may try to find out as much secret information
as possible using the inputs. The CSP will try to obtain as much prior knowl-
edge as possible to break the ciphertext or forge the private key, which is
a form of semantical-security-under-chosen-derivation-key attack (SS-CDA).
The malicious data users cannot observe the encrypted data stored in out-
sourced storage, so they cannot attack the ciphertext directly. However, the
malicious data users may collude to access the PHRs outside their permis-
sions, which is a form of collusion privilege (CP) attack. In addition, the
malicious data users may increase their attack capabilities by observing the
derivation keys directly derived from the valid private keys, which is a form
of key-security-under-chosen-derivation-key attack (KS-CDA).

As defined in [31], the attackers may initiate CP attacks, KS-CDAs, and
SS-CDAs to access unauthorized data files. Therefore, the HCBE scheme is
considered to fail if either of the following cases occurs:

• CASE 1. Data user U with access privilege L̂ = {Ak(ta, tb, P codek,

Ncodek)} is able to access a PHR with access policy ÂP = {Al(ti, tj, P codel,

7

Ncodel)} while any of the following conditions is true:

(1) L̂ ̸⊑ ÂP .

(2) [ta, tb] ∩ [ti, tj] = null;

(3) Pcodek < Pcodel ∨Ncodek < Ncodel.

• CASE 2. The CSP can access the PHR without permission.

The DPU scheme is considered to fail if either of the above cases occurs
after a policy update.

2.3. Proxy Re-encryption

Let us illustrate the motivation of the PRE scheme [3] by the following
example: Alice receives emails encrypted under her public key PKA via a
semi-trusted mail server. When she leaves for vacation, she wants to delegate
her email to Bob, whose public key is PKB, but she does not want to share
her secret key SKA with him. The PRE scheme allows Alice to provide a
PRE key RKA→B to the mail server, with which the mail server can convert
a ciphertext that is encrypted under Alice’s public key PKA into another
ciphertext that can be decrypted by Bob’s secret key SKB without seeing
the underlying plaintext, SKA, or SKB.

Note that although the data are encrypted twice, first encrypted with
Alice’s public key, and then re-encrypted with a PRE key, Bob only needs
to execute decryption once to recover the data. The PRE scheme is based
on ElGamal encryption [6], and thus the ciphertext is semantically secure,
and given the PRE key, the mail server cannot guess either of the secret keys
SKA or SKB. (Please refer to [3] for more details.) In our DPU scheme, the
data owner will send an update key UK to the CSP, which will be delegated
to perform policy updating operations in a secure way.

2.4. Composite-Order Bilinear Map

Let p and q be two large primes, and let N = pq be the RSA modulus.
Following the work in [5], we define a bilinear map group system SN =
(N,G,GT, e), where G and GT are cyclic groups of prime order n = sp′q′ 1,
and e : G×G→ GT is a bilinear map with the following properties:

1Let s1 and s2 be two secret large primes. We have n = sn′ = s1s2p′q′|lcm(p+1, q+1),
where n′ = p′q′|n, s = s1s2, p = 2p′s1 − 1, and q = 2q′s2 − 1.

8

• Bilinearity: for a, b ∈ Zn and g1, g2 ∈ G, it holds that e(ga1 , g
b
2) =

e(g1, g2)ab;

• Non-degeneracy: e(g1, g2) ̸= 1, where g1 and g2 are the generators of
group G;

• Computability: e(g1, g2) is efficiently computable.

As in [31], we make N public and keep n, s, p′, and q′ secret in this sys-
tem. Let Gs and Gn′ denote the subgroups of order s and n′ = p′q′ in G,
respectively. We have e(g, h) = 1, when g ∈ Gs and h ∈ Gn′ .

2.5. Comparison-Based Encryption

In CBE, time is denoted as a set of discrete values U = {t1, t2, . . . , tT},
with total ordering 0 ≤ t1 ≤ t2 ≤ . . . ≤ tT ≤ Z, where Z is the maximal
integer. Let ϕ and ϕ be two random generators in Gn′ , where n′ = p′q′, and p′

and q′ are two large primes. The functions (ψ(·),ψ(·)) mapping from integer
set U = {t1, t2, . . . , tT} to V = {vt1 , . . . , vtT } ∈ Gn′ and V = {vt1 , . . . , vtT } ∈
Gn′ are defined as follows:

vti ← ψ(ti) = ϕλti

vti ← ψ(ti) = ϕµZ−ti ,
(1)

where λ and µ are randomly chosen from Z∗
n′ .

Using Eq. 1, the forward derivation function (FDF), f(·), and the back-
ward derivation function (BDF), f , are defined as follows:

vtj ← f(vti) = (vti)
λtj−ti

, ti ≤ tj

vtj ← f(vti) = (vti)
µti−tj

, ti ≥ tj.
(2)

FDF and BDF have the one-way property, under the RSA assumption
that λ−1 and ϕ−1 cannot be efficiently computed because of the secrecy of
n′. That is, Eq. 2 is efficiently computable, but it is intractable to obtain vtj
from vti while ti > tj and to obtain vtj from vti while ti < tj. For a given set
of attributes A = {A1, . . . , AM}, CBE consists of the following algorithms:

• Setup(1κ, A): establishes the CBE system on the basis of the flat-
structured attribute setA and generates the master keyMK and public
key PKA.

9

Figure 3: Access tree.

• GenKey(MK,U , L): generates the private key SKL on access privi-
lege L to user U , where each attribute Ak ∈ L, denoted as Ak(ta, tb), is
associated with the authorization time [ta, tb].

• Encrypt(PKA, AP): takes the public key PKA and an access policy
AP as inputs to generate a session key, ek, and a ciphertext header,
HP , where each attribute Al ∈ AP , denoted as Al(ti, tj), is associated
with the time condition [ti, tj].

• Delegate(SKL ,L′): derives a delegation key SKL′ from SKL for
which L′ is less privileged than L, denoted as L′ ≼ L 2.

• Decrypt1(SKL′ ,HP): converts HP into H′
P with SKL′ .

• Decrypt2(SKL, H′
P): decrypts H′

P with SKL to obtain ek.

For improved efficiency, the output of the Encrypt algorithm is a ran-
dom session key ek, which can be used to encrypt the object files using
a symmetrical-key cryptosystem. As an improvement on CBE, the HCBE
scheme first constructs an attribute hierarchy Â of L levels from A, where
leaf nodes are specific attributes and the ancestor node is the generalized
attribute of its descendant nodes. Then, we encode each attribute node with
the PNDF coding and apply the BDF in CBE to accomplish the attribute
hierarchy. We mark the main differences in each algorithm of CBE with
boxes for ease of comparison.

2Let S and S′ denote the set of attributes in L and L′, respectively. L′ ≼ L if and only
if S′ ⊆ S, and for each attribute Ak(ta, tb] ∈ L and Ak(ti, tj] ∈ L′, ta ≤ ti and tb ≥ tj .

10

3. Overview of HCBE Scheme

3.1. Access Tree

Following the work in [2], the access policy ÂP in the HCBE scheme,
which is expressed as a Boolean function on AND/OR logic gates, can be
depicted as an access tree T , where each interior node is a gate, and the leaves
are depicted as attributes . For example, given an access policy (A1∨A2)∧A3,
the corresponding access tree T is as shown in Fig. 3-(a). In the tree, each
node a is associated with a threshold value ka. For the interior node a with
Na children, ka = 1 when a is an OR gate, and ka = Na when a is an AND
gate. For all leaf nodes, the threshold value is 1.

Let function parent(a) denote the parent of node a in access tree T . If a
is a leaf node in T , function att(a) is used to denote the attribute associated
with a. Furthermore, T defines an ordering between the children of each
node, and the function index(a) returns such a number associated with the

children node a. Let T with root R denote the access tree of ÂP . The policy
checking process and the tree implementation process are as follows:

Policy checking. The access privilege L̂ satisfying the access policy
ÂP , denoted as L̂ ⊑ ÂP , will be calculated by TR(L̂) recursively as follows:
Suppose that Ta denotes the subtree of T rooted at node a. If a is a non-leaf
node, we evaluate Tb(L̂) for all children b of node a. Ta(L̂) returns 1 if and
only if at least ka children return 1. If a is a leaf node, then Ta(L̂) returns 1
if and only if the corresponding attribute is in L̂.

Tree implementation. To share the secret σ in access tree T , a random
polynomial qR of degree kR−1 is chosen for qR(0) = σ. The rest of the points
in qR are randomly chosen. For each node a ∈ T , a random polynomial qa of
degree ka−1 is chosen for qa(0) = qparent(a)(index(a)). The rest of the points
in qa are chosen randomly. To recover the secret σ, the users with sufficient
secret shares can perform Lagrange interpolation recursively. For example,
Fig. 3-(b) shows the tree implementation process.

3.2. Positive-Negative Depth-First Coding

From the attribute set A = {A1, . . . , Am}, we build an attribute hierarchy
Â of L levels. In Â, an attribute at a higher level is a generalization of
the attributes at lower levels. We associate each node with two hierarchical
codes, the positive depth-first code (Pcode) and the negative depth-first code
(Ncode), by running the PNDF coding algorithm (Alg. 1).

11

(a) Positive depth-first coding (b) Negative depth-first coding

Figure 4: Sample PNDF coding.

For coding each node, we need two stacks, PcodeStack and NcodeStack.
Here, the push(a) function will be invoked to push node a onto a stack, the
top() function will be invoked to get the top element from a stack, the empty()
function will be invoked to determine whether a stack is empty, and the pop()
function will be invoked to pop the top element from a stack. First, we push
the root node R onto PcodeStack and NcodeStack. Line 9 means that the
right child of a will be pushed onto PcodeStack, and Line 11 means that the
left child of a will be pushed onto PcodeStack. In contrast, Lines 16 to 19
mean that the children of a will be pushed onto NcodeStack in order from
left to right. Therefore, for node a, the left-hand subtree’s Pcodes will be
larger than those of the right-hand one, and the right-hand subtree’s Ncodes
will be larger than those of the left-hand one.

Let us take the attribute tree shown in Fig. 1-(c) as an example. The
PNDF coding is shown in Fig. 4. Let Pcodei and Ncodei denote the Pcode
and Ncode of node i, respectively. The PNDF coding has the property that
Pcodei > Pcodej and Ncodei > Ncodej if i is the descendant node of j. For
example, the Pcode and Ncode of attribute Surgery are 2 and 5, respectively;
the Pcode and Ncode of attribute Cardiac Surgery are 3 and 7, respectively;
and the Pcode and Ncode of attribute Respiratory Medicine are 6 and 4,
respectively. Cardiac Surgery is the descendant of Surgery, having both
Pcode and Ncode greater than those of Surgery. Respiratory Medicine is not
the descendant of Surgery, and its Ncode is less than that of Surgery.

3.3. Definition of HCBE Scheme

Suppose that the number of nodes in the attribute hierarchy is m. In
HCBE, the hierarchical codes are denoted as a set of discrete values Um =
{(Pcode1, Ncode1), . . . , (Pcodek, Ncodek), . . . , (Pcodem, Ncodem)}, with to-

12

Algorithm 1 PNDF Coding
1: stack PcodeStack, NcodeStack;
2: PcodeStack.push(R), NcodeStack.push(R);
3: i = 0, j = 0;
4: while (!PcodeStack.empty()) do
5: a = PcodeStack.top();
6: a→ Pcode = i++;
7: PcodeStack.pop();
8: if a→ rchild then
9: PcodeStack.push(a→ rchild)
10: if a→ lchild then
11: PcodeStack.push(a→ lchild)
12: while (!NcodeStack.empty()) do
13: a = NcodeStack.top();
14: a→ Ncode = j ++;
15: NcodeStack.pop();
16: if a→ lchild then
17: NcodeStack.push(a→ lchild)
18: if a→ rchild then
19: NcodeStack.push(a→ rchild)

tal ordering 0 ≤ Pcode1 ≤ Pcode2 ≤ . . . ≤ Pcodem ≤ Zm and 0 ≤ Ncode1 ≤
Ncode2 ≤ . . . ≤ Ncodem ≤ Zm, where Zm is the maximal integer.

We apply BDF to establish the attribute hierarchy. Let Gn′ be a multi-
plicative group of RSA-type composite order n′ = p′q′, where p′ and q′ are
two large primes. First, we choose random generators ϕ1 and ϕ2 in Gn′ and
random numbers θ1 and θ2 in Z∗

n′ , where the orders of θ1 and θ2 are sufficiently
large in Z∗

n′ . Next, we define mapping functions ψ1(.) and ψ2(.) from an inte-
ger set Um = {(Pcode1, Ncode1), . . . , (Pcodek, Ncodek), . . . , (Pcodem, Ncodem)}
into Vm = {(vPcode1 , vNcode1), . . . , (vPcodek , vNcodek), . . . , (vPcodem , vNcodem)}:

vPcodek = ϕ
θ
Zm−Pcodek
1
1

vNcodek = ϕ
θ
Zm−Ncodek
2
2 .

(3)

According to the definitions of ψ1(.) and ψ2(.), it is easy to define BDFs

13

Table 1: Summary of Notations

Notation Description
PKÂ,MK System public key, master key
L,L′ The access privilege assigned to the user’s certificate
SKL̂, SKL̂′ The user’s private key, the derivation privacy key

ÂP , ÂP ′ The previous/updated access policy
T , T ′ The previous/updated access policy tree

ĤP , H̃P The previous/updated ciphertext headers

UK Update key for updating ĤP to H̃P
ek The session key
∆ A set of secret shares for nodes in access tree T

f1(.) and f2(.) as follows:

vPcodel ← f1(vPcodek) = (vPcodek)
θ1Pcodek−Pcodel , P codek ≥ Pcodel

vNcodel ← f2(vNcodek) = (vNcodek)
θ2Ncodek−Ncodel , Ncodek ≥ Ncodel.

(4)

The most commonly used notations are shown in Table 1. As shown in
Fig. 5, the HCBE scheme consists of the following algorithms:

• Setup(1κ, Â)→ (MK,PKÂ): The data owner takes a security param-

eter κ and the attribute hierarchy Â as inputs, and outputs the master
key MK and the system public key PKÂ.

• GenKey(MK,U , L̂) → SKL̂: The data owner utilizes her master key

MK to generate a private key SKL̂ on an access privilege L̂ for user U ,
wherein each attribute Ak ∈ L̂, denoted as Ak(ta, tb, P codek, Ncodek),
is associated with the authorization time [ta, tb] and hierarchy codes
{Pcodek, Ncodek}.

• Encrypt(PKÂ, ÂP)→ (ĤP , ek): The data owner takes the public key

PKÂ and an access policy ÂP as inputs to generate a session key ek

and a ciphertext header ĤP , wherein each attribute Al ∈ ÂP , denoted
as Al(ti, tj, P codel, Ncodel), is associated with the time condition [ti, tj]
and hierarchy codes {Pcodel, Ncodel}.

14

Figure 5: Working process of the HCBE scheme.

• Delegate(SKL̂, L̂′)→ SKL̂′ : The data user takes the private key SKL̂
and an access privilege L̂′ as inputs to generate a derived private key
SKL̂′ for the proxy server if L̂′ ≼ L̂ 3.

• Decrypt1(SKL̂′ , ĤP) → Ĥ′
P : The proxy server takes the derived pri-

vate key SKL̂′ and a ciphertext header ĤP as inputs, and outputs a

new ciphertext header Ĥ′
P if L̂′ satisfies ÂP .

• Decrypt2(SKL̂, Ĥ′
P) → ek: The data user takes the private key SKL̂

and the new ciphertext header Ĥ′
P as inputs, and outputs a session key

ek, which can be used to decrypt the stored data.

4. Construction of HCBE Scheme

Setup(1κ, Â) → (MK,PKÂ): Given a bilinear map system SN = (N =
pq,G,GT, e), where G,GT are cyclic groups of composite order n = sn′, and
e : G×G→ GT, this algorithm first chooses the random generators ω ∈ G,
g ∈ Gs, and ϕ,ϕ,ϕ1,ϕ2 ∈ Gn′ , where Gs and Gn′ are two subgroups of G.

3Let S and S′ denote the set of attributes in L̂ and L̂′, respectively. L̂′ ≼ L̂
if and only if S′ ⊆ S, and for each attribute Ak(ta, tb, P codek, Ncodek) ∈ L̂ and
Al(ti, tj , P codel, Ncodel) ∈ L̂′, ta ≤ ti, tb ≥ tj , Pcodek ≥ Pcodel, and Ncodek ≥ Ncodel.

15

Thus, we have e(g,ϕ) = e(g,ϕ) = e(g,ϕ1,) = e(g,ϕ2) = 1, but e(g,ω) ̸= 1.
Then, it chooses four random numbers λ, µ, θ1, θ2 ∈ Z∗

n and employs a hash
function H : {0, 1}∗ → G, mapping the root attribute, R, described as a
binary string, to a random group element. Next, it chooses two random
exponents α, β ∈ Z∗

n and sets h = ωβ, η = g1/β, and ζ = e(g,ω)α. The
master key is set as MK = (gα, β, p, q, n′), and the public key is set as

PKÂ = (SN ,ω, g,ϕ,ϕ,ϕ1,ϕ2, h, η, ζ,λ, µ, θ1, θ2, H). (5)

GenKey(MK,U , L̂) → SKL̂: Given a user U with license L̂, this algo-
rithm chooses two random numbers τU , r ∈ Z, and then for each attribute
Ak(ta, tb, P codek, Ncodek) ∈ L̂, it calculates:

DAk
= (Dt, D′

ta , D
′
tb , D

′′
t , DPcodek , DNcodek)

= (gτUHAk

r, (vta)
r, (vtb)

r,ωr, (vPcodek)
r, (vNcodek)

r),
(6)

where HAk
= H(R) · vPcodek · vNcodek , vta = ϕλta , vtb = ϕµZ−tb , vPcodek =

ϕ
θ
Zm−Pcodek
1
1 , and vNcodek = ϕ

θ
Zm−Ncodek
2
2 . Then, the private key of U is set as

SKL̂ = (D = g(α+τU)/β, {DAk
}Ak∈L̂). (7)

Encrypt(PKÂ, ÂP) → (ĤP , ek): Given an access policy tree T over

access policy ÂP , the ciphertext header ĤP can be calculated using

ĤP = (T , C = hσ, {Cl = (C1,l, C2,l, C3,l, C4,l)}Al∈T). (8)

Here, each component of Cl is set as follows:

C1,l = (Ēti , E
′
ti) = (v̄tiω)

x, Hx
Al
),

C2,l = (Etj , E
′
tj) = ((vtjω)

y, Hy
Al
),

C3,l = (EPcodel , E
′
Pcodel) = ((vPcodel · ω)z1 , H

z1
Al
),

C4,l = (ENcodel , E
′
Ncodel) = ((vNcodel · ω)z2 , H

z2
Al
),

(9)

whereHAl
= H(R)·vPcodel ·vNcodel . The session key ek is set as ζσ = e(gα,ω)σ,

where σ is a main secret in Zn for tree T , and △σ(Al) = x+y+z1+z2 is the
secret share of σ in the tree T for an attribute Al (see Ref. [2]). In order to
implement dynamic policy updating for the encrypted data, the data owner
should preserve each secret share ∆σ(a) of σ for each node a in T .

Delegate(SKL̂, L̂′)→ SKL̂′ : Given a specified access privilege L̂′ and the
private key SKL̂ = (D, {DAk

}Ak∈L̂), this algorithm checks for each attribute

16

Al(ti, tj, P codel, Ncodel) ∈ L̂′ to ascertain whether Al is a generalized at-
tribute of Ak, ta ≤ tj, and tb ≥ ti. If so, this algorithm uses Eq. 2 and Eq. 4
to compute

D′
t ← gτUHAk

r · f1(DPcodek
)·f2(DNcodek

)

DPcodek
·DNcodek

= gτU (H(R) · vPcodek · vNcodek)
r · f1((vPcodek

)r)·f2((vNcodek
)r)

(vPcodek
)r·(vPcodek

)r

= gτUH(R)r · vPcodel
r · vNcodel

r = gτUHr
Al

D′
tj ← f(D′

ta) ·D
′′
t = f((vta)

r) · ωr = (vtj)
r · ωr,

D
′
ti ←

−
f(D

′
tb
) ·D′′

t = f((vtb)
r) · ωr = (vti)

r · ωr,
D′

Pcodel
← f1(DPcodek) ·D′′

t = f1((vPcodek)
r) · ωr = (vPcodel)

r · ωr,
D′

Ncodel
← f2(DNcodek) ·D′′

t = f2((vNcodek)
r) · ωr = (vNcodel)

r · ωr,

(10)

where

f((vta)
r) = (ϕrλta)λ

tj−ta
= ϕrλtj

= (vtj)
r,

f((vtb)
r) = (ϕrµZ−tb)µ

tb−ti = ϕrµZ−ti = (vti)
r,

f1((vPcodek)
r) = (ϕ

rθ
Zm−Pcodek
1

1)θ
Pcodek−Pcodel
1 = ϕ

rθ
Zm−Pcodel
1

1 = (vPcodel)
r,

f2((vNcodek)
r) = (ϕ

rθ
Zm−Ncodek
2

2)θ
Ncodek−Ncodel
2 = ϕ

rθ
Zm−Ncodel
2

2 = (vNcodel)
r.
(11)

Next, it chooses a random δ ∈ Z and computes

D̃t = D′
t · (gHAl

)δ = gτUHAl

r · (gHAl
)δ = gτU+δHr+δ

Al
= gτ

′
kHr′

Al
,

D̃′
tj = D′

tj · (vtjω)
δ = (vtjω)

r+δ = (vtjω)
r′ ,

D̃
′
ti = D

′
ti · (vtiω)

δ = (vtiω)
r+δ = (vtiω)

r′ ,

D̃′
Pcodel

= D′
Pcodel

· (vPcodelω)
δ = (vPcodelω)

r+δ = (vPcodelω)
r′ ,

D̃′
Ncodel

= D′
Ncodel

· (vNcodelω)
δ = (vNcodelω)

r+δ = (vNcodelω)
r′ ,

(12)

whereHAl
= H(R)·vPcodel ·vNcodel , τ

′
k = τU+δ, and r′ = r+δ . Finally, the

derivation privacy key is set as SKL̂′ = {D̃t, D̃′
tj , D̃

′
ti , D̃

′
Pcodel

, D̃′
Ncodel

}Al∈L′ .

Decrypt1(SKL̂′ , ĤP)→ Ĥ′
P : Given the private key SKL̂′ and a ciphertext

header ĤP , we check whether each attribute Al(ti, tj, P codel, Ncodel) ∈ L̂′

is consistent with Al(ti, tj, P codel, Ncodel) ∈ ÂP . If true, the secret share
△σ(Al) of σ over GT is reconstructed by using

F1 ←
e(D̃t,Eti)

e(D̃
′
ti ,E

′
ti
)
=

e(gτ
′
kHr′

Al
,(vtiω)

x)

e((vtiω)
r′ ,Hx

Al
)

= e(gτ
′
k , vxti) · e(g

τ ′k ,ωx) = e(gτ
′
k ,ω)x

(13)

17

F2 ←
e(D̃t,Etj)

e(D̃′
tj
,E′

tj
)
=

e(gτ
′
kHr′

Al
,(vtjω)

y)

e((vtjω)
r′ ,Hy

Al
)

= e(gτ
′
k , vytj) · e(g

τ ′k ,ωy) = e(gτ
′
k ,ω)y

(14)

F3 ←
e(D̃t,EPcodel

)

e(D̃′
Pcodel

,E′
Pcodel

)
=

e(gτ
′
kHr′

Al
,(vPcodel

ω)z1)

e((vPcodel
ω)r′ ,H

z1
Al

)

=
e(gτ

′
k ,(vPcodel

ω)z1)·e(Hr′
Al

,(vPcodel
ω)z1)

e((vPcodel
ω)r′ ,H

z1
Al

)

= e(gτ
′
k , vz1Pcodel

) · e(gτ ′k ,ωz1) = e(gτ
′
k ,ω)z1

(15)

F4 ←
e(D̃t,ENcodel

)

e(D̃′
Ncodel

,E′
Ncodel

)
=

e(gτ
′
kHr′

Al
,(vNcodel

ω)z2)

e((vNcodel
ω)r′ ,H

z2
Al

)

=
e(gτ

′
k ,(vNcodel

ω)z2)·e(Hr′
Al

,(vNcodel
ω)z2)

e((vNcodel
ω)r′ ,H

z2
Al

)

= e(gτ
′
k , vz2Ncodel

) · e(gτ ′k ,ωz2) = e(gτ
′
k ,ω)z2

(16)

Ft = F1 · F2 · F3 · F4 = e(gτ
′
k ,ω)△σ(Al), (17)

in which HAl
= H(R) · vPcodel · vNcodel . We have e(gτ

′
k , vxti) = e(gτ

′
k , vytj) =

e(gτ
′
k , vz1Pcodel

) = e(gτ
′
k , vz2Ncodel

) = 1 since gτ
′
k ∈ Gs and vxtj , v

y
ti , v

z1
Pcodel

, vz2Ncodel
∈

Gn′ . Next, the value C2 = e(gτ
′
k ,ω)σ is computed from {e(gτ ′k ,ω)△σ(Al)}Al∈T

by using the aggregation algorithm (see Ref. [2]). Finally, the new ciphertext

header Ĥ′
P = (C = hσ, C2) is returned.

Decrypt2(SKL̂, Ĥ′
P)→ ek: After receiving Ĥ′

P = (C,C2) = (ωβσ, e(gτ
′
k ,ω)σ),

the data user uses the secret δ to compute

D′ = D · ηδ = g(α+τU)/βgδ/β = g(α+τU+δ)/β = g(α+τ ′k)/β. (18)

Next, the session key is computed by

ek = e(D′,C)
C2

= e(g(α+τ ′k)/β ,(ωβ)σ)

e(gτ
′
k ,ω)σ

= e(gα,ω)σ. (19)

5. DPU Scheme

To reduce the communication and computation costs incurred by the
data owner, the DPU scheme utilizes the PRE technique to allow the data
owner to delegate the policy updating operations to the CSP. Inspired by the

18

(a) Attr2OR and AttrRmOR (b) Attr2AND and AttrRmAND

Figure 6: Operations of policy updating.

work in [27], we consider four basic operations involved in policy updating
as shown in Fig. 6, where the non-leaf nodes are AND and OR gates, and
the leaf nodes correspond to attributes. Specifically, Attr2OR denotes the
adding of an attribute to an OR gate, Attr2AND denotes the adding of an
attribute to an AND gate, AttrRmOR denotes the removing of an attribute
from an OR gate, and AttrRmAND denotes the removing of an attribute
from an AND gate.

Given access tree T over access policy ÂP , the data owner needs to
preserve∆ = {∆σ(x)}x∈T while running the Encrypt algorithm of the HCBE
scheme, where ∆σ(x) is the share of secret σ for node x in T . Suppose that
A1, . . . , Am are the attributes under the AND/OR gate node. We substitute
notation ∆σ(Ai) for notation ∆σ(x), where x is a leaf node representing
attribute Ai with i ∈ [1,m].

Let ĤP = (T , C, {Ci}Ai∈T) and H̃P = (T ′, C, {Ci}Ai∈T ′) denote the pre-
vious and new ciphertext headers for session key ek, respectively. The DPU
scheme consists mainly of the following three algorithms:

• UKGen({Ci}Ai∈T ,∆) → (UK): The data owner takes a part of ci-
phertext header {Ci}Ai∈T and secret shares ∆ as inputs, and outputs
an update key UK.

• CTGen(PKÂ,∆σ(x)) → (Cm+1): To add an attribute Am+1 under
node x, the data owner takes system public key PKÂ and x’s share
∆σ(x) as inputs, and outputs the new ciphertext Cm+1 for attribute
Am+1.

• CTUpdate({Ci}Ai∈T , UK) → {C ′
i}Ai∈T ′ : The CSP takes a part of ci-

phertext header {Ci}Ai∈T and the update key UK as inputs, and out-
puts a new ciphertext header {C ′

i}Ai∈T ′ .

In general, the data owner first generates an update key UK by running
the UKGen algorithm and then sends UK to the CSP. Once UK is received

19

from the data owner, the CSP runs the CTUpdate algorithm to update the
previous access policy ÂP to the new access policy ÂP ′. In addition, for
the Attr2OR and Attr2AND operations, the data owner needs to run the
CTGen algorithm to generate a new ciphertext Cm+1 for the newly added
attribute Am+1 under the AND/OR gate, and then sends Cm+1 to the CSP,

which will incorporate Cm+1 into the new ciphertext header H̃P .
Here, we provide a generalized version (G-DPU) and an efficient version

(E-DPU) for the DPU scheme. G-DPU is a generalized policy update scheme
that transforms the updating of the AND/OR gating to the updating of a
threshold gate from a (t, n)-gate to a (t′, n′)-gate. However, G-DPU needs to
regenerate new secret shares for all attributes under the updating gate while
adding or deleting an attribute node. Therefore, the updating cost will grow
linearly with the number of attributes under the gate. In order to remedy
this defect, we provide E-GPU, which regenerates only new secret shares
for one attribute under the updating gate and the newly added attribute.
Therefore, E-GPU incurs only a constant cost for updating an attribute.

5.1. The Generalized DPU

In this subsection, we provide G-DPU, which transforms the operations to
the updating of the threshold gate, as shown in Fig. 6. Let node x denote the
AND/OR gate being updated, where A1, . . . , Am are the original attributes
under node x, and let ∆σ(x) and ∆σ(Aj) denote the share associated with n-
ode x and attribute Aj for j ∈ [1,m], respectively. The basic policy-updating
operations include adding a new attribute Am+1 under node x and removing
attribute Aj for j ∈ [1,m] from node x. In our scheme, ∆σ(x) will not be
changed in policy updating in order to save the computation cost for data
owners. Given a fixed ∆σ(x), the data owner first runs the secret-sharing
algorithm, as shown in Alg. 2, to regenerate shares for m′ children of node
x, denoted as ∆′

σ(A1), . . . ,∆′
σ(Am′).

1)Attr2OR: This operation is transformed to the updating of a (1,m) gate
to a (1,m′) gate, where m′ = m+1. After running Alg. 2, we have ∆′

σ(A1) =
. . . = ∆′

σ(Am) = ∆′
σ(Am+1) = ∆σ(x). Suppose that the previous ciphertext

header ĤP = (T , C, {Ci}Ai∈T). The data owner only needs to construct the
new ciphertext component Cm+1 = (C1,m+1, C2,m+1, C3,m+1, C4,m+1) for Am+1

20

Algorithm 2 Secret-Sharing Scheme
Input: x //Node x from an access tree T
Input: ∆σ(x) // The secret to be shared
Output: A set of shares ∆′

σ(A1), . . . ,∆′
σ(Am′)

1: Let qx be a polynomial for node x;
2: Set qx(0) := ∆σ(x);
3: Set degree dx := kx− 1; //kx is the threshold value of the node x
4: Let rest of points in qx be randomly chosen;
5: for the ith child Ai of node x, i ∈ [1,m′] do
6: Set ∆σ(Ai) = qx(i); //i is the index of attribute Ai

as follows:
C1,m+1 = ((v̄tiω)

xm+1 , Hxm+1

Am+1
),

C2,m+1 = ((vtkω)
ym+1 , Hym+1

Am+1
),

C3,m+1 = ((vPcodem+1 · ω)z1,m+1 , H
z1,m+1

Am+1
),

C4,m+1 = ((vNcodem+1 · ω)z2,m+1 , H
z2,m+1

Am+1
),

(20)

where xm+1, ym+1, z1,m+1, z2,m+1 ∈ Z such that xm+1+ym+1+z1,m+1+z2,m+1 =
∆σ(x).

2)AttrRmOR: This operation is transformed to the updating of a (1,m)
gate to a (1,m′) gate, where m′ = m − 1. From the output of Alg. 2, we
know that ∆′

σ(A1) = . . . = ∆′
σ(Am−1) = ∆σ(x). Therefore, in order to

remove an attribute Aj from an OR gate, the data owner only needs to send

a tuple (AttrRmOR, ĤP , j) to request the server to delete the corresponding
ciphertext component Cj from the ciphertext header .

3) Attr2AND: This operation is transformed to the updating of a (m,m)
gate to a (m′,m′) gate, where m′ = m+ 1. The data owner first calls Alg. 2
to output a set of shares ∆′

σ(A1), . . . ,∆′
σ(Am+1). Then, for j ∈ [1,m], the

data owner runs the UKGen algorithm to construct the update key UK as
follows:

UK = {UK1 = ((v̄tiω)
xj , H

xj

Aj
)
∆′

σ(Aj)−∆σ(Aj)

∆σ(Aj) ,

UK2 = ((vtkω)
yj , H

yj
Aj
)
∆′

σ(Aj)−∆σ(Aj)

∆σ(Aj) ,

UK3 = ((vPcodej · ω)z1,j , H
z1,j
Aj

)
∆′

σ(Aj)−∆σ(Aj)

∆σ(Aj) ,

UK4 = ((vNcodej · ω)z2,j , H
z2,j
Aj

)
∆′

σ(Aj)−∆σ(Aj)

∆σ(Aj) }.

(21)

21

(a) Attr2AND (b) New secret-share scheme

Figure 7: Converting an attribute to an AND gate.

Furthermore, the data owner needs to run the CTGen algorithm to
generate the new ciphertext Cm+1 for the newly added attribute Am+1,
where Cm+1 is constructed in the same way as Eq. 20. The main differ-
ence is that xm+1, ym+1, z1,m+1, z2,m+1 ∈ Z have to satisfy the requirement
of xm+1 + ym+1 + z1,m+1 + z2,m+1 = ∆′

σ(Am+1). Next, the data owner will
send the tuple (Attr2AND,Cm+1, UK) to the CSP, which will update the
ciphertext components {Cj}j∈[1,m] with UK and add Cm+1 to form the new

ciphertext header H̃P .
Upon receiving the update key UK, for each attribute Aj with j ∈ [1,m]

the CSP runs the CTUpdate algorithm to update corresponding ciphertext
component Cj to C ′

j as follows:

C ′
j = {C ′

1,j = C1,j · UK1 = ((v̄tiω)
xj , H

xj

Aj
)
∆′

σ(Aj)

∆σ(Aj) ,

C ′
2,j = C2,j · UK2 = ((vtkω)

yj , H
yj
Aj
)
∆′

σ(Aj)

∆σ(Aj) ,

C ′
3,j = C3,j · UK3 = ((vPcodej · ω)z1,j , H

z1,j
Aj

)
∆′

σ(Aj)

∆σ(Aj) ,

C ′
4,j = C4,j · UK4 = ((vNcodej · ω)z2,j , H

z2,j
Aj

)
∆′

σ(Aj)

∆σ(Aj) .}

(22)

4) AttrRmAND: This operation is transformed to the updating of a
(m,m) gate to a (m′,m′) gate, where m′ = m − 1. The data owner first
calls Alg. 2 to output a set of shares ∆′

σ(A1), . . . ,∆′
σ(Am−1). Then, for

j ∈ [1,m − 1], the data owner runs the UKGen algorithm to construct
the update key UK with Eq. 21. Next, the data owner will send the tuple
(AttrRmAND, j, UK) to the CSP, which will remove Cj from the ciphertext
header and run the CTUpdate algorithm to form the new ciphertext header
H̃P . Specifically, for j ∈ [1,m− 1], the updated ciphertext C ′

j is constructed
with Eq. 22.

22

5.2. The Efficient DPU
The main drawback of G-DPU is that the cost for updating an AND gate

will grow linearly with the number of attributes under the gate. Therefore, we
provide E-DPU, which incurs only a constant cost for updating an attribute.

As shown in Fig. 7(a), in terms of the Attr2AND operation, the combina-
tion of the new attribute Am+1 and the attribute Aj in the new access policy
plays the same role as the attribute Aj in the previous policy. Therefore, we
can modify the previous ciphertext component Cj corresponding to Aj into
a new version C ′

j and construct the new ciphertext component for Am+1.
As shown in Fig. 7(b), we take ∆σ(Aj) as the secret to be shared. To

generate shares ∆′
σ(Aj) and ∆σ(Am+1) for attributes Aj and Am+1 , the data

owner randomly chooses ε ∈ Z such that ∆σ(Am+1) = ∆σ(Aj) + 2ε, and
∆′

σ(Aj) = ∆σ(Aj) + ε. Then, she runs the UKGen algorithm to generate
the update key UK as follows:

UK = {UK1 = ((v̄tiω)
xj , H

xj

Aj
)

ε
∆σ(Aj) ,

UK2 = ((vtkω)
yj , H

yj
Aj
)

ε
∆σ(Aj) ,

UK3 = ((vPcodej · ω)z1,j , H
z1,j
Aj

)
ε

∆σ(Aj) ,

UK4 = ((vNcodej · ω)z2,j , H
z2,j
Aj

)
ε

∆σ(Aj)}.

(23)

In addition, the data owner runs the CTGen algorithm to generate the
new ciphertext component Cm+1 as follows:

Cm+1 = {C1,m+1 = ((v̄tiω)
xj , H

xj

Am+1
)
1+ 2ε

∆σ(Aj) ,

C2,m+1 = ((vtkω)
yj , H

yj
Am+1

)
1+ 2ε

∆σ(Aj) ,

C3,m+1 = ((vPcodem+1 · ω)z1,j , H
z1,j
Am+1

)
1+ 2ε

∆σ(Aj) ,

C4,m+1 = ((vNcodem+1 · ω)z2,j , H
z2,j
Am+1

)
1+ 2ε

∆σ(Aj)}.

(24)

Next, the data owner will send the tuple (Attr2AND,UK,Cm+1) to the

CSP and ask the CSP to update the ciphertext header from ĤP to H̃P . The
CSP first adds Cm+1 to H̃P and then runs the CTUpdate algorithm to update
the previous ciphertext component Cj to the new version C ′

j as follows:

C ′
j = {C ′

1,j = C1,j · UK1 = ((v̄tiω)
xj , H

xj

Aj
)
1+ ε

∆σ(Aj) ,

C ′
2,j = C2,j · UK2 = ((v̄tiω)

yj , H
yj
Aj
)
1+ ε

∆σ(Aj) ,

C ′
3,j = C3,j · UK3 = ((vPcodej · ω)z1,j , H

z1,j
Aj

)
1+ ε

∆σ(Aj) ,

C ′
4,j = C4,j · UK4 = ((vNcodej · ω)z2,j , H

z2,j
Aj

)
1+ ε

∆σ(Aj)}.

(25)

23

Algorithm 3 New Secret-Sharing Scheme
Input: ∆σ(x) //Secret share associated with parent of Aj

Input: {∆σ(Ai)}i∈[1,m]∧i ̸=j //Secret shares associated with m−1 children
Output: ∆′

σ(Aj) //New secret share for attribute Aj

1: Generate a polynomial L(x) by performing Lagrange interpolation;
2: ∆′

σ(Aj) = L(j); //j is the index of attribute Aj

Similarly, we also provide the construction for the AttrRmAND opera-
tion in E-DPU. This operation involves converting an AND gate, Aj

∧
Am+1,

into Aj by removing an attribute Am+1. The data owner first runs Alg. 3 to
generate the new share associated with attribute Aj, ∆′

σ(Aj). Specifically,
given the secret share associated with Aj’s parent node x, denoted as ∆σ(x),
and the secret shares associated with other attributes under node x, denoted
as {∆σ(Ai)}i∈[1,m]∧i ̸=j, Alg. 3 generates a Lagrange interpolation polynomial,
L(x), and then takes j, the index of Aj under node x, as input, and outputs
a new secret share ∆′

σ(Aj).
Next, the data owner runs the UKGen algorithm to generate the update

key UK with Eq. 21. Then, the data owner will send the tuple (AttrRmAND,

m + 1, UK) to the CSP, which will update the ciphertext header from ĤP

to H̃P . Specifically, the CSP first deletes the ciphertext component Cm+1

from ĤP and then runs the CTUpdate algorithm to update the previous
ciphertext component Cj corresponding to Aj to the new version C ′

j with
Eq. 22.

5.3. Correctness Proof

To verify the correctness of the DPU scheme, we need to prove that the
new ciphertext H̃P , generated from Attr2OR, AttrRmOR, Attr2AND, and
AttrRmAND operations in both G-DPU and E-DPU, can be used to recover
the session key ek by running the Decrypt2 algorithm. Because of space
limitations, we provide only the correct proof for the Attr2AND operation
in G-DPU.

As shown in Eq. 22, for each attribute Aj with j ∈ [1,m], the updated

24

ciphertext component C ′
j is constructed as follows:

C ′
j = {C ′

1,j = (Ēti , E
′
ti) = ((v̄tiω)

xj , H
xj

Aj
)
∆′

σ(Aj)

∆σ(Aj) ,

C ′
2,j = (Etk , E

′
tk) = ((vtkω)

yj , H
yj
Aj
)
∆′

σ(Aj)

∆σ(Aj) ,

C ′
3,j = (EPcodej , E

′
Pcodej) = ((vPcodej · ω)z1,j , H

z1,j
Aj

)
∆′

σ(Aj)

∆σ(Aj) ,

C ′
4,j = (ENcodej , E

′
Ncodej) = ((vNcodej · ω)z2,j , H

z2,j
Aj

)
∆′
σ(Aj)

∆σ(Aj)}.

(26)

Let κ denote ∆′
σ(Aj)

∆σ(Aj)
. Then, for j ∈ [1,m], the outputs of the Decrypt1

algorithm of the HCBE scheme are as follows:

F1 ←
e(D̃t,Eti))

e(D̃
′
ti ,E

′
ti
)
=

e(gτ
′
kHr′

Aj
,(vtiω)

κxj)

e((vtiω)
r′ ,H

κxj
Aj

)

= e(gτ
′
k , v

κxj

tk) · e(gτ ′k ,ωκxj) = e(gτ
′
k ,ω)κxj

(27)

F2 ←
e(D̃t,Etk)

e(D̃′
tk
,E′

tk
)
=

e(gτ
′
kHr′

Aj
,(vtkω)

κyj)

e((vtkω)
r′ ,H

κyj
Aj

)

= e(gτ
′
k , v

κyj
tk) · e(gτ ′k ,ωκyj) = e(gτ

′
k ,ω)κyj

(28)

F3 ←
e(D̃t,EPcodej

)

e(D̃′
Pcodej

,E′
Pcodej

)
=

e(gτ
′
kHr′

Aj
,(vPcodej

ω)κz1,j)

e((vPcodej
ω)r′ ,H

κz1,j
Aj

)

= e(gτ
′
k , v

κz1,j
Pcodej

) · e(gτ ′k ,ωκz1,j) = e(gτ
′
k ,ω)κz1,j

(29)

F4 ←
e(D̃t,ENcodej

)

e(D̃′
Ncodel

,E′
Ncodej

)
=

e(gτ
′
kHr′

Aj
,(vNcodej

ω)κz2,j)

e((vNcodej
ω)r′ ,H

κz2,j
Aj

)

= e(gτ
′
k , v

κz2,j
Ncodej

) · e(gτ ′k ,ωκz2,j) = e(gτ
′
k ,ω)κz2,j

(30)

Ft = F1 · F2 · F3 · F4

= e(gτ
′
k ,ω)κ(xj+yj+z1,j+z2,j)

= e(gτ
′
k ,ω)

∆′
σ(Aj)

∆σ(Aj)
·∆σ(Aj)

= e(gτ
′
k ,ω)∆

′
σ(Aj).

(31)

The new ciphertext component Cm+1 corresponding to Am+1 is shown
in Eq. 20. Therefore, the outputs of the Decrypt1 algorithm of the HCBE
scheme are as follows:

25

F1 ←
e(D̃t,Eti)

e(D̃
′
ti ,E

′
ti
)
=

e(gτ
′
kHr′

Am+1
,(vtiω)

xm+1)

e((vtiω)
r′ ,H

xm+1
Am+1

)

= e(gτ
′
k , vxm+1

ti) · e(gτ ′k ,ωxm+1) = e(gτ
′
k ,ω)xm+1

(32)

F2 ←
e(D̃t,Etk)

e(D̃′
tk
,E′

tk
)
=

e(gτ
′
kHr′

Am+1
,(vtkω)

ym+1)

e((vtkω)
r′ ,H

ym+1
Am+1

)

= e(gτ
′
k , vym+1

tk) · e(gτ ′k ,ωym+1) = e(gτ
′
k ,ω)ym+1

(33)

F3 ←
e(D̃t,EPcodem+1

)

e(D̃′
Pcodem+1

,E′
Pcodem+1

)
=

e(gτ
′
kHr′

Am+1
,(vPcodem+1

ω)z1,m+1)

e((vPcodem+1
ω)r′ ,H

z1,m+1
Am+1

)

= e(gτ
′
k , v

z1,m+1

Pcodem+1
) · e(gτ ′k ,ωz1,m+1) = e(gτ

′
k ,ω)z1,m+1

(34)

F4 ←
e(D̃t,ENcodem+1

)

e(D̃′
Ncodem+1

,E′
Ncodem+1

)
=

e(gτ
′
kHr′

Am+1
,(vNcodem+1

ω)z2,m+1)

e((vNcodem+1
ω)r′ ,H

z2,m+1
Am+1

)

= e(gτ
′
k , v

z2,m+1

Ncodem+1
) · e(gτ ′k ,ωz2,m+1) = e(gτ

′
k ,ω)z2,m+1

(35)

Ft = F1 · F2 · F3 · F4

= e(gτ
′
k ,ω)(xm+1+ym+1+z1,m+1+z2,m+1)

= e(gτ
′
k ,ω)∆σ(Am+1)

. (36)

Therefore, the value C ′
2 = e(gτ

′
k ,ω)σ is computed from {e(gτ ′k ,ω)△σ(Al)}Al∈T ′

by using the aggregation algorithm, and with the new ciphertext header
H̃P = (C = hσ, C ′

2), a data user can run the Decrypt2 algorithm to recover
the session key ek. !

6. Analysis

6.1. Performance Analysis

In this subsection, we analyse the complexity of the CBE scheme and
of our scheme. For simplification, we provide the following notations to
denote the times for various operations in both schemes: E(G) and E(GT)
are used to denote the exponentiation in G and GT, respectively. B is used
to denote the bilinear pairing e : G × G → GT. For the CBE scheme, we
neglect the operations in ZN , the hash function H : {0, 1}∗ → G, and the
multiplication in G and GT since they are significantly less expensive than
other exponentiation and paring operations.

Table 2 and Table 3 show the computation and communication complex-
ity for each phase in the CBE scheme and the HCBE scheme, respectively.

26

Table 2: Performance Analysis of CBE

Computation Complexity Communication Complexity
Setup 1 ·B + 3 · E(G) 6 · lG + 1 · lGT + 2 · lZn

GenKey (1 + 4 · |S|) · E(G) (1 + 4 · |S|) · lG
Encrypt (1 + 4 · |T |) · E(G) + 1 · E(GT) 4 · |T | · lG + 1 · lGT

Delegate (1 + 5 · |S|) · E(G) 3 · |S| · lG
Decrypt1 2 · |S| · B + |T | · E(GT) 1 · lG + 1 · lGT

Decrypt2 1 ·B + 1 · E(G)

Table 3: Performance Analysis of HCBE

Computation Complexity Communication Complexity
Setup 1 · B + 3 · E(G) 8 · lG + 1 · lGT + 4 · lZn

GenKey (1 + 6 · |S|) · E(G) (1 + 6 · |S|) · lG
Encrypt (1 + 8 · |T L|) · E(G) + 1 · E(GT) 8 · |T L| · lG + 1 · lGT

Delegate (1 + 8 · |S|) · E(G) 5 · |S| · lG
Decrypt1 4 · |S| · B + |T L| · E(GT) 1 · lG + 1 · lGT

Decrypt2 1 · B + 1 · E(G)

Here, |T L| denotes the number of generalized attributes in the access tree T ,
|T | denotes the number of specific attributes in the access tree T , S denotes
the set of attributes of the data owner and the data user, and lZn , lG, and
lGT denote the lengths of elements in Z∗

n, G, and GT, respectively.
From the perspective of the data owner, the encryption cost in the HCBE

scheme is impacted primarily by the number of generalized attributes |T L|.
With a well-designed attribute hierarchy, the encryption cost can largely be
avoided. For example, if |T | = 2 · |T L|, then the computation cost will be
reduced by 50%. Our GenKey algorithm may cost a little more than the
CBE scheme, since the HCBE scheme needs to generate the key components
on the Pcode and Ncode.

For a data user, our decryption cost is the same as that of the CBE
scheme, but the delegation process may be more expensive. However, for
a given attribute hierarchy of L levels, the Pcode/Ncode derivation process
will be calculated at least L times, unlike the time derivation process, which
needs to be performed continually. Therefore, in the long run, the cost of
our Delegation algorithm is similar to that of the CBE scheme. Finally, our
Decrypt1 algorithm will be more expensive than the CBE scheme. However,

27

this part of the decryption operation is delegated to the proxy server, which
may be located in a private cloud platform. Therefore, the HCBE scheme is
acceptable for application in the cloud-based PHR environment.

We also provide an analysis of the performance of the DPU scheme. Let
m denote the number of attributes under an AND/OR gate node that is to be
updated. Since the Attr2OR and AttrRmOR operations will not change the
secret shares of the remaining attributes, their cost is almost constant and
will not be listed. Here, we only compare the performance of the Attr2AND
and AttrRmAND operations for the two versions of the DPU scheme. From
Table 4 and Table 5, we can see that under an AND gate, the cost of G-DPU
grows linearly with the number of attributes in the gate node.

Table 4: Performance Analysis of G-DPU

Computation Complexity Communication Complexity
UKGen 8m · E(G) 8m · lG
CTGen 8 · E(G) 8 · lG

CTUpdate 8m · E(G) 0

Table 5: Performance Analysis of E-DPU

Computation Complexity Communication Complexity
UKGen 8 · E(G) 8 · lG
CTGen 8 · E(G) 8 · lG

CTUpdate 8 · E(G) 0

6.2. Security Analysis

As described in Section 2, the HCBE scheme fails if either CASE 1 or
CASE 2 occurs. In this subsection, we sketch the security of our scheme as
follows:

The data file stored in the cloud is encrypted with a session key ek =
e(gα,ω)σ. For ease of illustration, we assume that ek is encrypted with the

access policy ÂP = Al(ti, tj, P codel, Ncodel)∧Ax(ti, tj, P codex, Ncodex). We
consider the first condition in CASE 1 to be true if user U1, whose access
privilege L̂1 = Al(ti, tj, P codel, Ncodel), can recover ek by colluding with U2,

whose access privilege L̂2 = Ax(ti, tj, P codex, Ncodex). The construction of
the HCBE scheme allows them to recover Ft1 = e(gτ

′
k1 ,ω)∆σ(Al) and Ft2 =

28

e(gτ
′
k2 ,ω)∆σ(Ax) with private keys SKL̂1

and SKL̂2
, respectively. However, τ ′k1

and τ ′k2 are uniquely chosen to distinguish different users. Therefore, with
Ft1 and Ft2, they cannot obtain either T1 = e(gτ

′
k1 ,ω)σ or T2 = e(gτ

′
k2 ,ω)σ

to recover ek, and the first condition in CASE 1 is false.
Next, we assume that ek is simply encrypted with the access policy ÂP =

Al(ti, tj, P codel, Ncodel). We consider the second condition in CASE 1 to be

true if user U1, whose access privilege L̂1 = Al(ta, tb, P codel, Ncodel), can
recover ek while tj < ta (or ti > tb). Note that, because of the one-way

property of the FDF and BDF in CBE, U1 cannot derive D′
tj and D

′
ti from

D′
ta and D

′
tb
while tj < ta (or ti > tb). Therefore, U1 cannot obtain F1 and

F2 to recover ek, and the second condition in CASE 1 is false.
Finally, we consider the third condition in CASE 1 to be true if user U1,

whose access privilege L̂1 = Al(ta, tb, P codel, Ncodel), can recover ek while

access policy ÂP = Ax(ta, tb, P codex, Ncodex) while Pcodex > Pcodel or
Ncodex > Ncodel. Note that, because of the one-way property of the BDF
in CBE, U1 cannot derive D′

Pcodex from D′
Pcodel

while Pcodex > Pcodel. The
same situation holds for Ncodex > Ncodel. Therefore, the third condition in
CASE 1 is false, and CASE 1 will not occur. !

The proof of CASE 2 is similar to that of CASE 1. To obtain ek, the
CSP needs to calculate F1 ·F2 ·F3 ·F4 to obtain e(gτ

′
k ,ω)∆σ(Al) for a sufficient

number of attributes Al ∈ T . Since the CSP is not allowed to access the
PHR system, it cannot obtain a sufficient number of private keys. As proven
in CASE 1, the entities that do not meet the access policy specifications
cannot recover ek. Therefore, CASE 2 will not occur. !

As described in Section 2, the DPU scheme is considered to fail if either
CASE 1 or CASE 2 occurs after policy updating. In Subsection 5.3, we
proved that the new ciphertext H̃P generated from our DPU scheme is equal
to the output of the Delegate algorithm under the updated access policy.
Therefore, because of the security of the PRE technique, the security of the
DPU scheme can be attributed to the HCBE scheme. !

7. Experimental Results

In this section, we first compare our HCBE scheme with the CBE scheme
in terms of computation cost. Then, we describe the experiments we con-
ducted to test the performance of the DPU scheme.

29

Table 6: Computational Time for Various Operations

Operation Time(ms)
The bilinear pairing operation 1, 102

The power operation in group G 865
The power operation in group GT 128
The power operation in group Gs 868
The power operation in group Gn′ 862

H : {0, 1}∗ → G 176

7.1. Computation Cost in HCBE

Our experiments were conducted with the Java Pairing-Based Cryptog-
raphy library. We used a symmetric elliptic curve of 160-bit group order,
a1-curve , for which the base field size is 1024 bits and the embedding degree
is 2. We implemented our scheme in a stand-alone mode on a PC with an
Intel Core i3 CPU running at 2.3 GHz with 2 GB of memory. Let G and GT

denote cyclic groups of composite order n, where n = sn′, and let Gs and Gn′

denote the subgroups of order s and n′ in G. Table 6 shows the computation
overhead of pairing operations, the power operations in different groups, and
hash operations.

The computational costs of algorithms Setup, GenKey, Encrypt,Delegate,
Decrypt1, andDecrypt2 in the CBE and HCBE schemes are shown in Fig. 8–
Fig. 13. Let M and m denote the number of specific attributes in an access
policy ÂP and the number of nodes in an access policy tree T , respectively.
In our experiments, M was set to 10, and m was set to [50, 100] . Given
the maximal integer Z ranging from 7 to 70,000, we generated a private key
with privilege [t1, t2], where t1 ∈R [1, Z/4] and t2 ∈R [3Z/4, Z], for a certain
comparison range [1, Z]. The message was encrypted by the time condition
t ∈R [Z/4, 3Z/4] to ensure that max(t− t1, t2 − t) ≥ Z/4.

From Fig. 8–Fig. 13, we observe that the growth of time overhead was
insignificant as the value of Z increases for both the CBE and HCBE schemes.
Meanwhile, in our scheme, the growth of time overhead was insignificant,
whereas m grew from 50 to 100. Because of the introduction of an attribute
hierarchy, the computational overhead of the Setup and GenKey algorithms
in our scheme was greater than that for the CBE scheme. However, the
difference is minor. For example, as shown in Fig. 8, the computation time
of our Setup algorithm grew from 5.43 s to 5.46 s under the setting ofm = 50,
and the computation time of the Setup algorithm in the CBE scheme grew

30

0 10 100 1,000 10,000 100,0004.9

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

Ti
m

e
(s

)

Z

CBE scheme
Our scheme(m=50)
Our scheme(m=100)

Figure 8: Computation cost of Setup.

0 10 100 1000 10000 100,0006

7

8

9

10

11

12

Z

Ti
m

e
(s

)

CBE scheme
Our scheme(m=50)
Our scheme(m=100)

Figure 9: Computation cost of GenKey.

from 4.94 s to 4.95 s as Z ranged from 7 to 70, 000; as shown in Fig. 9, the
computation time of our GenKey algorithm grew from 9.62 s to 9.85 s under
the setting of m = 100, and the computation time of the GenKey algorithm
in the CBE scheme grew from 6.20 s to 6.36 s as Z ranged from 7 to 70, 000.

In the experiments, we employed M = 10 specific attributes in the CBE
scheme, and we employed 5 generalized attributes in our scheme for better
comparison. As shown in Fig. 10, the encryption time in our scheme is much
lower than that in the CBE scheme. For example, the computation time
of our Encrypt algorithm grew from 25.75 s to 25.98 s under the setting
of m = 50, and the computation time of the Encrypt algorithm in the
CBE scheme grew from 38.95 s to 40.00 s as Z ranged from 7 to 70, 000.
Furthermore, with the decrease in the value of m, our scheme had better
performance.

The algorithms run by the data user included Delegate and Decrypt2.
From Fig. 11 and Fig. 13, we observe that our scheme incurred a bit more
computation cost for the data user than did the CBE scheme. We also show
the comparison of time overhead of the Decrypt1 algorithm, executed by the
proxy server, in Fig. 12. The above experimental results are consistent with
our theoretical analysis in Section 6.

7.2. Computation Cost in DPU

In this subsection, we evaluate the computation time for each type of
operation in both G-DPU and E-DPU. Letm denote the number of attributes

31

0 10 100 1000 10000 10000025

30

35

40

45

Z

Ti
m

e
(s

)

CBE scheme
Our scheme(m=50)
Our scheme(m=100)

Figure 10: Computation cost of Encrypt.

0 10 100 1000 10000 100,0004

5

6

7

8

9

10

Z

Ti
m

e(
s)

CBE scheme
Our scheme(m=50)
Our scheme(m=100)

Figure 11: Computation cost of Delegate.

0 10 100 1000 10000 100,0007

8

9

10

11

12

13

14

Z

Ti
m

e
(s

)

CBE scheme
Our scheme(m=50)
Our scheme(m=100)

Figure 12: Computation cost of Decrypt1.

0 10 100 1000 10000 1000001.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

Z

Ti
m

e
(s

)

CBE scheme
Our scheme(m=50)
Our scheme(m=100)

Figure 13: Computation cost of Decrypt2.

under an AND/OR gate node to be updated, where m ranged from 1 to 5 in
our experiments. For the Attr2AND and AttrRmAND operations, the time
overhead of the CTUpdate algorithm is shown in Fig. 14, from which we can
see that G-DPU incurred more computational cost for the CSP compared
with E-DPU. As for the Attr2OR and AttrRmOR operations, the secret
shares associated with the remaining attributes does not change , and thus
the time overhead incurred by the CSP for both versions approached 0.

Fig. 15 shows the cost of the UKGen algorithm in Attr2AND and
AttrRmAND operations. From the figure, we can see that the time cost

32

0 2 4 60

5

10

15

20

25

30

m

Ti
m

e(
m

s)

G−DPU
E−DPU

(a) Attr2AND

0 2 4 60

5

10

15

20

25

30

m

Ti
m

e(
m

s)

G−DPU
E−DPU

(b) AttrRmAND

Figure 14: Computation cost of CTUpdate.

0 2 4 60

10

20

30

40

m

Ti
m

e(
s)

G−DPU
E−DPU

(a) Attr2AND

0 2 4 60

10

20

30

40

m

Ti
m

e(
s)

G−DPU
E−DPU

(b) AttrRmAND

Figure 15: Computation cost of UKGen.

of G-DPU is proportional to m, the number of attributes under the updating
gate. Similarly, the Attr2OR and AttrRmOR operations do not change the
secret shares associated with the remaining attributes, and the time cost of
the UKGen algorithm is 0 in the above two operations. Furthermore, the
CTGen algorithm is run by the data owner while performing Attr2OR and
Attr2AND operations. In the experiments, the cost of generating the new ci-
phertext component for a newly added attribute was about 11 s. Therefore,
G-DPU incurs a much heavier workload for the data owner during policy
updating compared with E-DPU.

From the above experiment results, we also can see that the cost of the
Encrypt algorithm is far greater than that of the UKGen algorithm. If the

33

data owner performs the re-encryption operation on her own, the overhead
will be extensive. In our proposed schemes, the data owner’s time overhead
will be greatly reduced by delegating the re-encryption operation to the CSP,
thereby getting a better service experience.

8. Related Work

Today, many CSPs such as Amazon, Google, and Microsoft have provided
PHR services. PHRs contain a significant amount of sensitive information,
thus creating the problem of how to preserve individual privacy while using a
cloud-based PHR system [9]. To prevent the exposure of information to unau-
thorized individuals, cryptographic tools and access control mechanisms are
proposed as promising solutions [16]. Furthermore, forensic techniques [22]
are useful tools for recovering sensitive user data.

For example, Gondkar et al. [7] proposed a novel framework for secure
sharing of PHRs in cloud computing. Liu et al. [15] provided an efficient and
safe access management mechanism to solve the security problems associated
with the implementation of PHR in a cloud environment. Yao et al. [29] uti-
lized order-preserving symmetric encryption (OPSE) [4] for preserving data
privacy in multi-source personal health record clouds. Li et al. [13] utilized
predicate encryption [20] in order to achieve authorized search on PHRs in
cloud computing. Nepal et al. [19] discussed the challenges and possible so-
lutions for achieving trustworthy processing of healthcare big data in hybrid
clouds. Liu et al. [18] proposed a Ciphertext-Policy Attribute-Based Sign-
cryption (CP-ABSC) scheme for the fine-grained access control of PHRs in
cloud computing.

Most existing work has adopted ABE [8, 21, 2] as the cryptographic tool
to achieve fine-grained access control in cloud-based PHR systems. The o-
riginal ABE systems only support monotone access policy and assume the
existence of a single private key generator (PKG). Much research has been
done to achieve more expressive access policies [14, 11] and distributed key
management [10, 12]. On the basis of the ABE scheme, Zhu et al. [31] pro-
posed the CBE scheme by making use of the forward and backward derivation
functions and applied CBE to the cloud environment. However, the encryp-
tion cost of the CBE scheme grows linearly with the number of attributes
in the access policy. To solve this problem, we have proposed the HCBE
scheme by incorporating the attribute hierarchy into the CBE scheme.

34

To achieve dynamic access control in cloud computing, Wang et al. [26]
and Yu et al. [30] applied the proxy re-encryption (PRE) technique [3] to
ABE. Shi et al. [24] proposed a dubbed directly revocable key-policy ABE
with verifiable ciphertext delegation (drvuKPABE) scheme to achieve direc-
t revocation and verifiable ciphertext delegation. Liu et al. [17] proposed a
time-based proxy re-encryption scheme, which allowed the cloud to automat-
ically re-encrypt the ciphertexts based on time . Yang et al. [28] presented a
conditional proxy re-encryption scheme to achieve cloud-enabled user revo-
cation. However, these previous schemes focused on how to revoke a specific
user from the system rather than on updating of the attribute-based access
policy in the ciphertext. Rezaeibagha and Mu [23] presented an access con-
trol mechanism for an EHR system with a hybrid cloud structure; the system
features dynamic policy transformation based on some useful cryptographic
building blocks. Yang et al. [27] proposed a novel scheme that enables effi-
cient access control with dynamic policy updating in cloud computing. They
designed policy updating algorithms for different types of access policies so
as to simultaneously achieve correctness and completeness and meet security
requirements.

Inspired by the work in [27], we have developed the DPU scheme to effi-
ciently achieve dynamic policy updating in cloud-based PHR environments.

9. Conclusion and Future Work

In this paper, we have proposed an HCBE scheme and a DPU scheme for
achieving dynamic access control in cloud-based PHR systems. The HCBE
scheme supports time comparison in attribute-based encryption in an efficient
way by incorporating attribute hierarchy into CBE. The DPU scheme utilizes
the PRE technique to delegate the policy updating operations to the cloud.
However, because of space limitations, we only provide a sketch of the security
of the HCBE scheme. In our future work, we will endeavour to prove that
the HCBE scheme is secure against CP attacks, KS-CDAs, and SS-CDAs.

Acknowledgements

This work was supported in part by NSFC Grants 61402161 ; by the Hu-
nan Provincial Natural Science Foundation of China (Grant No. 2015JJ3046);
and by NSF grants ECCS 1231461, ECCS 1128209, CNS 1138963, CNS
1065444, and CCF 1028167.

35

[1] M. Armbrust, A. Fox, R. Griffith, et al, “A view of cloud computing”,
in Communications of the ACM, 2010, vol. 53. no. 2, pp. 50-58.

[2] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute
based encryption”, in Proceedings of IEEE S&P, 2007, pp.321-349.

[3] M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and atomic
proxy cryptography,” in Proceedings of EUROCRYPT, 1998, pp. 127-
144.

[4] A. Boldyreva, N. Chenette, and A. O. Neill, “Order-preserving encryp-
tion revisited: Improved security analysis and alternative solutions”, in
Advances in Cryptology-CRYPTO, 2011, vol. 6841, pp. 578-595.

[5] D. Boneh and M. Franklin, “Identity-based encryption from the weil
pairing”, in Advances in Cryptology–CRYPTO, 2001, vol. 2139, pp.213-
229.

[6] T. Elgamal, “A public key cryptosystem and a signature scheme based
on discrete logarithms,” in Proceedings of CRYPTO, 1984, pp. 10-18.

[7] D.Gondkar, V S.Kadam, et al, “Attribute based encryption for securing
personal health record on cloud,” in Proceedings of IEEE ICDCS, 2014,
pp. 1-5.

[8] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data”, in Proceedings of
ACM CCS, 2006, pp.89-98.

[9] L. Guo, C. Zhang, J. Sun, et al, “PAAS: A privacy-preserving attribute-
based authentication system for ehealth networks”, in Proceedings of
IEEE ICDCS, 2012, pp. 224-233.

[10] J. Han, W. Susilo, Y. Mu, J. Zhou, “Improving privacy and secu-
rity in decentralized ciphertext-policy attribute-based encryption”, in
IEEE Transactions on Information Forensics and Security, 2015, vol.10,
pp.665-678.

[11] T. Jung, X.Y. Li, Z. Wan, M. Wan, “Control cloud data access privilege
and anonymity with fully anonymous attribute-based encryption”, in
IEEE Transactions on Information Forensics and Security, 2015, vol.10,
pp.190-199.

36

[12] A. Lewko and B. Waters, “Decentralizing attribute-based encryption”,
in Advances in Cryptology–EUROCRYPT, 2011, vol. 6632, pp. 568-588.

[13] M. Li, S. Yu, N. Cao, et al, “Authorized private keyword search over
encrypted data in cloud computing”, in Proceedings of IEEE ICDCS,
2011, pp. 383-392.

[14] K. Liang, M.H. Au, et al, “A secure and efficient ciphertext-policy
attribute-based proxy re-encryption for cloud data sharing”, in Future
Generation Computer Systems, 2015, vol.52, pp.95-108.

[15] C.H. Liu, F.Q. Lin, C.S. Chen, “Design of secure access control scheme
for personal health record-based cloud healthcare service”, in Security
and Communication Networks, 2015, vol.8, pp.1332-1346.

[16] X. Liu, et al, “Efficient and privacy-preserving outsourced calculation of
rational numbers”, in Proceedings of IEEE TDSC, 2016, pp. 1.

[17] Q. Liu, G. Wang, J. Wu, “Time-based proxy re-encryption scheme for
secure data sharing in a cloud environment,” in Information Sciences,
2014, vol. 258, pp. 355-370.

[18] J. Liu, X. Huang, J. K. Liu, “Secure sharing of personal health records
in cloud computing: ciphertext-policy attribute-based signcryption,” in
Future Generation Computer Systems, 2015, vol.52, pp.67-76.

[19] S. Nepal, R. Ranjan, K. K. R. Choo, “Trustworthy processing of health-
care big data in hybrid clouds”, in IEEE Cloud Computing, 2015, vol.
2, pp. 78-74.

[20] T. Okamoto and K. Takashima, “Hierarchical predicate encryption for
inner-products”, in Advances in Cryptology–ASIACRYPT, 2009, vol.
5912, pp. 214-231.

[21] R. Ostrovsky, A. Sahai, B. Waters, “Attribute-based encryption with
non-monotonic access structures”, in Proceedings of ACM CCS, 2007,
pp.195-203.

[22] D. Quick and K. K. R. Choo, “Google Drive: Forensic analysis of data
remnants,” in Journal of Network and Computer Applications, 2014, vol.
40, pp. 179-193.

37

[23] F. Rezaeibagha, Y. Mu, “Distributed clinical data sharing via dynamic
access-control policy transformation”, in International journal of medi-
cal informatics, 2016, vol.89, pp. 25-31.

[24] Y. Shi, Q. Zheng, et al, “Directly revocable key-policy attribute-based
encryption with verifiable ciphertext delegation”, in Information Sci-
ences, 2015, vol.295, pp. 221-231.

[25] P. Tang, J. Ash, D. Bates, et al, “Personal health records: definitions,
benefits, and strategies for overcoming barriers to adoption”, in Journal
of the American Medical Informatics Association, 2006, vol. 13, no. 2,
pp. 121-126.

[26] G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryption
for fine-grained access control in cloud storage services”, in Proceedings
of ACM CCS, 2010, pp. 735-737.

[27] K. Yang, X. Jia, K. Ren, et al, “Enabling efficient access control with
dynamic policy updating for big data in the cloud,” in Proceedings of
IEEE INFOCOM, 2014, pp. 2013-2021.

[28] Y. Yang, H. Zhu, et al, “Cloud based data sharing with fine-grained
proxy re-encryption”, in Pervasive and Mobile Computing, 2015.

[29] X. Yao, Y. Lin, Q. Liu, et al, “Efficient and privacy-preserving search
in multi-source personal health record clouds”, in Proceedings of IEEE
ISCC, 2015, pp. 803-808.

[30] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure,scalable, and
fine-grained data access control in cloud computing”, in Proceedings of
IEEE INFOCOM, 2010, pp. 534-542.

[31] Y. Zhu, H. Hu, G. Ahn, et al, “Comparison-based encryption for fine-
grained access control in clouds”, in Proceedings of ACM CODASPY,
2012, pp. 105-116.

[32] Googlehealth. https://www.google.com/health/.

[33] Healthvault. http://www.healthvault.com/.

38

