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Abstract—The lightning network (LN) is a layer-two solution
in Bitcoin for support scalability. LN uses offchain micropayment
channels to scale the blockchain’s capability to perform instant
transactions without a global block confirmation process. How-
ever, micropayment scalability in a large LN is still limited by its
relatively large searching space for a suitable route. Liquidation
for small nodes still remains major challenges for the LN as
the amount of transactions along a channel is predetermined by
the channel capacity defined by two end nodes of the channel.
In this paper, we introduce the notion of supernodes and the
corresponding supernodes-based pooling to address these chal-
lenges. In order to meet the high adaptivity and low maintenance
cost in the dynamic LN where users join and leave, supernodes
are constructed locally to avoid global information or label
propagation. Each supernode, together with a subset of (non-
supernodes) neighbors, forms a supernode-based pool. These pools
constitute a partition of the LN. Additionally, supernodes are self-
connected. Micropayment scalability is supported through node
set reduction as only supernodes are involved in searching and in
payment with other supernodes. Liquidation is enhanced through
pooling to redistribute funds within a pool to external channels of
its supernode. Extensive simulations using LN simulator CLoTH
have been conducted to validate the improvement in routing
scalability and liquidation of the proposed architecture under
different settings.

Index Terms—Bitcoin, blockchain, lightning networks, liquida-
tion, localized algorithms, pooling, scalability, supernodes.

I. INTRODUCTION

Nowdays, the Blockchain technology has been integrated
into multiple areas. The primary use of blockchains is as a
distributed ledger for cryptocurrencies, most notably bitcoin.
However, the blockchain application is limited by the time to
mine a block. Such time is called block time. Each network
has its own block time, for example, the Bitcoin’s block time
is around 10 minutes while the Etherum’s block is about 13
seconds. There are several proposals to improve blockchain
scalability [2], among which, payment channel network (PCN)
[3, 4] provides an off-chain solution. Composed of multiple
bidirectional payment channels, a PCN allows a transaction to
be quickly settled between two parties without submitting it to
the blockchain for confirmation, thus acting as a second layer
of the original blockchain network.
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(a) Simple path (b) Multiple paths
Fig. 1: A fund transfer of $4 from u to v via w in simple path (a) and in
multiple paths (b).

Lightning networks (LNs) [3] recently emerged as a promis-
ing PCN network that addresses the scalability issue of the
blockchain and its applications in Bitcoin [5]. In the original
blockchain, each transaction has to go through a global block
confirmation process. Using smart contracts, trusted neigh-
bors (or simply neighbors) in LNs can set up micropayment
channels (or simply channels) that support instant transactions
without block confirmation. Such a transaction can be done via
neighbors directly or non-neighbors with a path of microchan-
nels connecting these nodes. In this way, LNs offer more
opportunities for fast transactions between nodes. Each LN
node with a given amount of funds will split funds to channels
to set up bidirectional payment channels with its neighbors. A
node can send a payment to another party in LNs as long as
this payment does not exceed the funds allocated to this node
on the channel. Each channel maintains its balances on two
numbers associated with its two end nodes. The summation of
these numbers is called the capability of the channel.

LNs support non-neighbor transactions by supporting trans-
actions between two nodes that are not neighbors (as u and
v in Fig. 1 (a)) or two neighbors with inefficient funds along
connecting channels (as u and v in Fig. 1 (b)). In both cases,
a transaction involving a transfer of $4 from u to v has w as
the third node in the path. When u sends $4 to v in Fig. 1
(a), its balance on the channel {u,w} is changed to $1. The
balance of the channel associated with w is changed to $6.
The transaction completes through transferring $4 from w to
v. Various extensions of LNs have been proposed that address
different performance and/or security aspects since its advent
in 2016. For example, we can use multiple flows to implement
a transaction, e.g., $2 from u to v and $2 more from u to v
via w in Fig. 1 (b).

However, LNs and their extensions still face two challenges:
micropayment scalability in a large LN and liquidation for
small nodes (i.e., nodes with a small amount of funds with
funds assigned to different channels). A small node with the
lack of liquidation on one channel will seek help from its other
channels through a path connection process. However, when a
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transaction amount exceeds the total asset of a node, i.e., the
total sum of its adjacent channel values, no process can help
out the liquidation issue.

In this paper, we introduce an LN pooling method based on
a special clustering approach using the notion of supernodes.
Given a connected graph G = (V,E) with node set V and
channel (also known as a link) set E, we assume that E only
connects trust neighbors who are willing to join for payment
channels. It has been shown in [6] that when the node degree
of a random graph is sufficiently large, the resultant graph is
connected with a high probability.

Supernode-based pooling is constructed by partitioning G
into clusters such that each cluster has one supernode. This
supernode connects to all its members (as shown in Fig. 2).
Additionally, all supernodes are self-connected. In graph ter-
minology, we require that supernode-induced subgraph G[S]
be a connected graph for S ⊂ V and V − S ⊆ N(S) is in
G, where N(S) is the neighbor set of supernode set S. In
supernode-based pooling, each supernode pools and manages
all funds within the cluster to increase liquidation of the
network. As G[S] is an induced subgraph from G, there is no
extra maintenance cost. To support path searching (or routing)
scalability, we require that a relatively small S is derived to
reduce the routing space. In order to meet the high adaptivity
and low maintenance cost in the dynamic LN where users join
and leave, the selection process for S should be local.

In this paper, we address three challenges: (1) Formation
of connected supernodes in LNs should be local, rather than
global, to better fit a dynamic environment. (2) Mainte-
nance of supernodes and the corresponding clusters should
be lightweight. (3) Effectiveness of the proposed architecture
in addressing the issues related to microchannel scalability
for simple searching and liquidation for small nodes must
be experimentally validated. The following summarizes our
contributions:

1) We apply a localized algorithm to determine S without
any global information or label propagation by removing
nodes and pruning links.

2) We discuss how S can be maintained and updated in LNs,
including adding and deleting nodes and/or links.

3) We propose how to further reduce the size of S through
a hierarchy of supernodes and other means.

4) We evaluate the performance of the proposed scheme
on an LN simulator CLoTH in terms of scalability and
liquidation on different network settings.

II. BACKGROUND

A. Payment channel in LNs

Micropayment channels are the core element of the LN. A
channel can be seen as a smart contract between two nodes,
allowing them to make multiple payments without the need to
commit every payment to the blockchain. In Fig. 1, u and w
jointly create a payment channel, in which they deposit funds,
e.g. u deposits $5 and w deposits $2. After this transaction
is committed to the blockchain, a channel with a capacity of

$7 ($5 + $2) is open between u and w. Thereafter, u and
w are able to perform payments back and forth freely by
issuing transactions. At any moment, u and w can close the
channel and refund the balance each one has in the channel by
committing a closing transaction with their final balances to
the blockchain. All commitment transactions are not published
in the blockchain to avoid the costly validation process among
the blockchain network, but they are stored by each end node
of the channel. The balance of each node is updated after each
successful transaction is executed based on mutual agreement.

B. Payment path in LNs

Payment channels are a suitable choice for any two nodes
with long-term and high-frequency mutual transactions. The
lifecycle of a payment channel starts with a creating transaction
and ends with a closing transaction, that have to be committed
to the blockchain. LNs can perform payments between nodes
not directly connected. Two nodes can make a transaction as
long as they can find a path consisting of multiple payment
channels between them where the transaction amount is no
larger than the minimum channel balance of the path. The
transaction sender is required to reward each intermediate
node with a small routing fee for routing help. For example,
in Fig. 1, if u wants to pay $4 to v, he could route this
transaction through w since the balance requirement can be
satisfied along with the path of (u,w, v). In general, routing
fees are significantly lower than blockchain transaction fees.

C. LN scalability and liquidation

In the current LN, the network topology together with all
channel capacities, is published to allow a routing algorithm to
find an existing path between two indirectly-connected nodes.
However, to preserve users’ privacy, the particular balances of
the channel at a given time is set confidential only to these
two channel holders, making efficient payment routing hard to
fulfill as each path has to be validated for balance even with
channel capacity information. Flare [7] uses a routing strategy
that optimizes the averaging searching time for a legitimate
payment channel. For a large LN, the search and validation
process will impact on the scalability of the LN.

Another issue associated with LN is the liquidation associ-
ated with channels with small capacity and nodes with small
total capacity of adjacent channels. Assume that we use single
path routing, a transfer of $4 is not possible from u to v
in Fig. 1 (b). Circular rebalancing [8] helps liquidation for
unbalanced channels and nodes. In Fig. 1 (b), we can first
perform a circular rebalancing involving nodes v, w, and u
by transferring $1 from v, w, v and back to v in a counter-
clockwise direction. A direct path from u to v via w with a
transfer of $4 is then possible. However, if the transfer amount
exceed $5, which exceeds the capacity of both channels (u, v)
and (w, u), no simple path route is possible.

D. Pooling via clustering

We assume that each node has a distinct ID and all nodes
are initially colored white in coloring schemes for pooling.
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Fig. 2: Supernode-based pooling.

In pseudo local clustering [9], when a white node has the
maximum ID among all its white neighbors, it becomes a
clusterhead and colors itself black. All white neighbors of
a black node join in the cluster and change their colors to
gray. This iterative process continues until there are no white
nodes left. The black nodes form the set of clusterheads. Each
gray node joins one clusterhead. This process is pseudo local
because it may require multiple rounds as color labels can
propagate sequentially. In another clustering approach [10], a
white node selects the node with the maximum ID within its
1-hop neighborhood (including itself) as its dominator. After
the white node has chosen its dominator, it colors itself gray if
it is not selected as a dominator by itself or by its neighbors;
otherwise, it marks itself black. The coloring process continues
until no white nodes are left. All of the black nodes become
clusterheads. This process is local in one step with no label
propagation.

The above approaches are not suitable in LNs as two
adjacent clusters may not be connected by their clusterheads,
making transactions among pools more complex. The third
clustering scheme [11, 12] works as follows: A node marks
itself black (i.e., a clusterhead) only when it has two un-
connected neighbors. We use k-hop neighborhood information
(for a small k, say k = 2) to determine the connectivity of
two neighbors for each node locally in a decentralized way.
Black nodes form a set of connected clusterheads, also called
the connected dominating set. In this case, a false negative
- as two connected neighbors u and v are falsely identified
as unconnected, may occur if after removing link (u, v), the
shortest path between u and v is longer than k hops. There are
several local pruning methods to further reduce the size of the
clusterhead set.

III. SUPERNODE-BASED LOCAL POOLING

A. Local pooling

Given an undirected connected graph G = (V,E), each
node v ∈ V is identified with a long term public key as its
distinct ID. The priority of a node pri(v) is a distinct integer
from each distinct ID based on mapping pri, to be used in
the symmetric breaking process of local pooling. To avoid
cheating at each node, asymmetric and homomophic encryption
are used for secure ID priority comparison without decryption
during local pooling, together with neighbor watchdogs. We
assume that trusted neighbors are willing to exchange their

(a) One-hop view. (b) Two-hop view.
Fig. 3: . One-hop view (a) and two-hop view (b) of node 1 in Fig. 1.

budget and neighbor sets. Each node v maintains a k-hop
view (Nk(v), Ek(v)). For example, a 2-hop subgraph has
its neighbor set N(v) and its 2-hop neighbor set N(N(v)),
denoted as N2(v), through neighbor set exchanges with its
neighbors. That is, v’s 2-hop subgraph is (N2(v), E2(v)),
where E2(v) = E ∪ (N1(v) × N2(v)). Note that in Fig. 2,
(3, 4) ∈ E2(1), but (4, 6) /∈ E2(2), although both 4 and 6 are
in N2(2). Fig. 3 (a) and (b) show a 1-hop view and 2-hop view
of node 1 of Fig. 2, respectively.

The following are highlights of our 3-step local pooling
scheme for a given graph G = (V,E):

1) Supernode selection. Using k-hop subgraph to find a set
of supernodes S ⊂ V locally at each node, such that the
induced subgroup G[S] is connected and V − S ⊆ N(S).

2) Fund pooling. Each node in V −S joins one pool headed
by one of its neighbor supernodes. Each supernode “vir-
tually” pools funds from its members and re-distributes
funds to its external channels in G[S].

3) Routing in the induced subgraph. All fund transfers
among clusters are conducted in G[S].

Supernode set S basically forms a dominating set of G, i.e.,
each node not in S has a neighbor in S. G[S] is also connected.
In the proposed pooling, funds within a cluster are virtually
pooled and re-assigned to external channels of the supernode.
Note that each supernode and its members still maintain and
manage internal channels so that all members will not be over-
committed in transactions. Although, each member can still
maintain payment channels directly with nodes outside the pool
(like channel {1, 2} in Fig. 2).

To simplify discussion, we assume that all members allow
theirs supernode to bookkeeping their funds by only using
the channels connected to the supernode. Members still make
their transaction decisions independently. Although members
can even perform transactions with others directly using other
channels, we focus on using supernodes as bookkeepers of
their members and all their funds. The supernode then virtu-
ally re-allocates pool funds to its external channels to boost
liquidation. In Fig. 2, funds associated with nodes 1, 4, and 8
are redistributed to two external channels {4, 6} and {4, 3} in
the cluster headed by supernode 4, with each internal channel
to 4 having the initial budget of each member. Note that each
supernode itself is a member so its channel allocation should
be managed accordingly as well. Searching (via routing) is
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Fig. 4: Replacement paths for channel (1, 2) and subsequent channels (3, 4)
and (1, 4).

handled exclusively by supernodes. As S is smaller than V ,
the scalability issue is alleviated. Note that a supernode may
not have any other members – its role is primarily a connector.

B. Supernode selection

We adopt a scheme proposed in [13]:

• Supernode selection. All nodes are initially supernodes.
A supernode v becomes a non-supernode if any two
neighbors of v are connected by (a) a link or (b) a path
(constructed from the local 2-hop view of v) such that
for each node u (excluding two end nodes) on the path,
pri(u) > pri(v).

When two neighbors of v do not meet the conditions (a)
and (b), it is simply called unconnected, otherwise, they are
connected.

The formation of supernodes in a given graph depends
on topology, priority distribution, and the amount of local
information. For example, with 2-hop view, node 1 is a non-
supernode in Fig. 2, because any pair of node 1’s neighbors
are connected via nodes with a higher priority than node 1.
However, if link {1, 4} does not exist, node 1 with 2-hop view
will be labelled a supernode as node 1 does not “see” link
{3, 4}. In this case, 3-hop view (k = 3) is needed to label
node 1 as a non-supernode. The supernode selection process
is intriguing as non-supernodes are “removed” asynchronously
without any centralized coordination. The priority is used so
that nodes with the highest priority in the 2-hop view cannot
be removed to ensure both coverage and connectivity.

Local pooling can potentially be extended in a couple of
ways. To further improve searching (i.e., routing) scalability,
we can construct supernodes of supernodes. For example, in
Fig. 2, node 6 is the supernode (double-circled) in the supern-
ode set {3, 4, 6}. With this new structure, the routing process
becomes multi-level. The benefit of a multi-level process is
the ease of routing discovery, but at the cost of with more
maintenance overhead.

C. Neighbor set reduction

When we conduct routing, it is assumed that all neighbors
of a node in G[S] are involved in the routing process. In
reality, only a subset of the neighbors is needed in order to
allocate more funds per channel to improve liquidation. How

can we reduce a node’s neighbor set in G[S] without losing
reachability?

Here, we propose a link pruning (i.e., neighbor set re-
duction) process without global connectivity information in
G[S]. This is analogous to the supernode selection process by
replacing nodes with links. We first define the link priority
of {u, v} (like node priority in supernode selection) based
on the reverse lexicographical order of the two end nodes
of the link as pri(max{pri(u), pri(v)},min{pri(u), pri(v)}),
e.g. pri(3, 2) > pri(3, 1) > pri(2, 1).

• Link pruning. Link {u, v} can be removed if a replace-
ment path (under k-hop view) connecting u and v exists
such that all of the links along the path have a higher
priority than {u, v}.

To ensure the end nodes of a link make the same decision,
we assume that both nodes of each link exchange its local
view before the decision. In Fig. 2, suppose we assume that
link pruning happens before supernode selection, thus link {2,
1} can be removed under the 2-hop view of each node because
it can be replaced by a path ({2, 3}, {3, 4}, {4,1}). Link {3,
4} itself can be replaced by path ({3, 6}, {6, 4}), and link {4,
1} by path ({4, 8}, {8, 1}).

Given a graph, we can apply local pooling to generate the
supernode set S, and then, apply link pruning on G[S]; we
can also apply the link pruning on G first, followed by local
pooling. Note that in the latter case, link pruning reduces the
average node degree which will make it easier to reduce the
supernode set in the second step.

Fig. 5 (a) shows a 25-node LN that follows the power-law
distribution. Figs. 5 (b) and (c) apply supernode set selection
of 10 nodes colored red (node reduction), followed by link
pruning (link reduction). Figs. 5 (d) and (e) adopt link pruning
first, followed by supernode set selection of 7 nodes.

IV. SUPERNODE PROPERTIES AND MAINTENANCE

A. Properties
The link pruning process is asynchronous at each node and

without global coordination. To show that the link pruning
is correct, i.e., the resultant graph is still connected, we only
need to show that for a link {u, v} connecting u and v to be
removed, there always exists an “irreplaceable” replacement
path connecting u and v after link pruning. First, we give a
definition of a max-min link {x′, y′} from replacement paths
connecting x and y with link priorities higher than {u, v}. x
and y are node IDs, which are initialized as u and v.

Definition 1. Max-min link for (x, y, {u, v}): A min link in
a path is a link with the lowest priority. Assume {P} is a set
of paths connecting x and y such that all links of each path
in the set have a higher priority than {u, v}. A max-min link
{x′, y′} in {P} is a link with the highest priority among all
min links in {P}.

In the following, we define a recursive process called
MAXMIN(u, v, {u, v}) to construct an irreplaceable replace-
ment path for replacing link {u, v}.
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(a) The original LN topology. (b) Pooling only. (c) Pooling then pruning. (d) Pruning only. (e) Pruning then pooling.

Fig. 5: Two different orders of processes using local pooling and neighbor set reduction on a 25-node LN (red nodes: supernodes).

MAXMIN(x, y, {u, v}):
1) If x = y then return ∅.
2) Determine the max-min link {x′, y′} for (u, v, {u, v}).
3) Return replacement path (MAXMIN(x, x′, {u, v}),

{x′, y′}, MAXMIN(y′, y, {u, v})), assuming x′ is closer
to x than y′ does in the corresponding replacement path.

To illustrate, for link {2, 1} in Fig. 2, the max-min link is
{2, 3} among four replacement paths: ({2, 3}, {3, 4}, {4, 1}),
({2, 3}, {3, 6}, {6, 4}, {4, 1}), ({2, 3}, {3, 4}, {4, 8}, {8, 1}),
and ({2, 3}, {3, 6}, {6, 4}, {4, 8}, {8, 1}). Fig. 3 shows how
a replacement path ({2, 3}, {3, 4}, {4, 1}) itself is replaced by
other replacement paths, both {3, 4}, and {4, 1}. 3 is closer to
1 than 2 is in the replacement path. Then, the max-min link
for a replacement path connecting node 3 and node 1 is {3, 6},
selected among four min links {4, 1}, {4, 1}, {3, 4}, and {3, 6}
from the same four replacement paths above after removing
link {3, 2}, respectively. The max-min link for a placement
path connecting node 6 and node 1 is {6, 4}. Eventually, the
irreplaceable replacement path for link {2, 1} is ({2, 3}, {3, 6},
{6, 4}, {4, 8}, {8, 1}).

Theorem 1. The process MAXMIN(u, v, {u, v}) will complete
in a finite number of steps and generate an irreplaceable
replacement path for {u, v} that cannot be further replaced.

Proof. We show that all links generated are distinct. Suppose
{x′, y′} is the max-min link among all links in replacement
paths connecting u and v. Clearly, {x′, y′} will not be se-
lected as the max-min link in MAXMIN(u, x′, {u, v}) or
MAXIMIN(y′, v, {u, v}) as any path includes no repeated
nodes/links. Next, we show that MAXMIN(u, x′, {u, v}) and
MAXIMIN(y′, v, {u, v}) have no common links. We assume
that MAXMIN(u, x′, {u, v}) is non-empty: ({u, u1}, {u1, u2},
..., {un, x

′}) and MAXIMIN(y′, v, {u, v}) is non-empty:
({y′, vm}, ..., {v2, v1}, {v1, v}). Suppose {ui, ui+1} =
{vj+1, vj} (a common link), then {{u, u1}, ..., {ui, vj}, ...,
{v1, v}} is a replacement path for {u, v}. The fact that all
links in this path have a higher priority than {x′, y′} contradicts
the fact that {x′, y′} is the max-min link. Since the recursive
call selects a distinct link, the process will complete in a
finite number of steps. Based on the max-min link definition,
{x′, y′} cannot be further replaced and the path generated from
MAXMIN is irreplaceable.

Corollary 1. Given a connected graph, the resultant graph
after the link pruning process is still connected.

Proof. This corollary follows Theorem 1 that each link has an
irreplaceable replacement path that cannot be replaced.

B. Node joining and leaving

When a node v joins or leaves, local pooling can perform
a status update of the 2-hop neighborhood of v without
propagation. This is because the status of a node (with label
supernode or non-supernode) depends only on the connections
of this node’s 2-hop neighborhood, not the status (i.e., label)
of the 2-hop neighborhood. When a node v joins or leaves,
v will first inform its neighbors N(v). Each node u in N(v)
in turn will inform its neighbors in N(u) through neighbor
set exchanges. Finally, each node in N2(v) (i.e., nodes within
2-hop view of v) will update its status. Once updated, node
v, together with the status changes of its 2-hop neighborhood,
will be published in the blockchain. When a channel {u, v} is
added or deleted, the status updates of the two end nodes u
and v, together with all nodes in N(u) and N(v), can be done
in a similar way.

Note that adding or deleting a node will cause status changes
in its 2-hop neighborhood, from supernode to non-supernode or
from non-supernode to supernode. For example, adding a new
node 9 connecting nodes 3, 4, 6, and 7 in Fig. 2 will change
node 6 to a non-supernode, while node 9 has a supernode
label. Adding a new node 9 connecting node 2 alone will
change node 2 to a supernode, while node 9 is labeled a non-
supernode. Similarly, adding or deleting a node may not cause
status changes of any nodes within its 2-hop neighborhood. For
example, removing node 2 from Fig. 2 will not cause status
changes of any node. The following theorems show the general
properties when k-hop neighborhood is used in both pooling
and pruning.

Theorem 2. When a node is added to and deleted from an
LN, the status change of supernodes and non-supernodes only
affects the k-hop neighborhood of the node.

Proof. As supernodes are constructed using k-hop neighbor-
hood without status propagation, it is easy to see that the status
of any node outside k-hop neighborhood of this node will not
be changed.

Similarly, a link can be added and deleted from an LN. The
status change is also limited to its k-hop neighborhood.

Theorem 3. When a link is added to and deleted from an
LN, the status change of supernodes and non-supernodes only
affects the k-hop neighborhood of two end nodes of the link.
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The proof of this theorem is similar to the one for the
node. The correctness follows from the fact that the supernode
construction uses k-hop neighborhood information of two end
nodes. In Fig. 2 with k = 2, deleting (1, 8) will not change the
status of any node. However, deleting (1, 4) will change the
status of node 1 from non-supernode to supernode. Addition
link (2, 5) will not change any node. For instance, neighbors
2 and 5 of node 2 is connected through nodes 3 and 4.

C. Other extensions

Supernode-based pooling can be extended in several ways.
The pooling idea can be applied on top of supernodes as they
are connected. Fig. 2 shows an example of applying pooling
on top of supernodes 3, 4, and 6 to form a new supernode
of supernode: 6. On the other hand, this hierarchical routing
process also increases the routing complexity and maintenance.

The efficiency of pooling and pruning depends on not only
network topology and but also node ID distribution. In the
regular pooling and pruning, we use the reverse lexicographical
order. To increase efficiency, we can apply different priority
orders in a sequential way in multiple rounds. Fig. 5 (a) shows
the result of applying two rounds of priority rotation: reverse
and then regular lexicographical orders. The supernode set is
reduced from 10 nodes (shown in Fig.5 (b)) to 7 nodes.

In applying pooling and pruning, there are two ways to
implement in LNs. In the first approach, only topology change
is broadcast in LNs and each node run the status change
individually. In the second approach, each local node calculates
status changes based on local topology changes and then
broadcast both topology and status changes are broadcast in
LNs.

D. Roles of supernodes

If we define intra-cluster transactions as transactions be-
tween members from different pools while inter-cluster trans-
actions as transactions between members of the same pool.
Both types of transactions will be managed (bookkeeping)
through supernodes. However, our proposed method does not
preclude direct transaction using the direct channel connecting
the two parties. In general, the bookkeeping process should be
managed by their supernodes, unless funds are partitioned into
two in advance: pooled funds and individual funds. Note that
setting aside individual funds will weaken the liquidation of
fund transfers.

The role of the supernode is primarily organized around
bookkeeping of all members’ transactions and managing ca-
pacity of channels to outside the pool. Each pool member is
still in charge of its own transactions. In addition, the number
of supernodes still represents a sizable fraction of the total
number of nodes in the blockchain networks (e.g., between
35% and 49% based on our simulation shown later) to avoid
centralized control.

In our paper, it is assumed that supernodes are selected from
trusted neighbors. To ensure that trusted nodes will correctly
process all transactions through proper bookkeeping, we can

extend our approach based on the notation of k-connected k-
dominated supernodes (i.e., dominating nodes) as discussed in
[14] . In this case, each member is covered (i.e., managed) by k
supernodes, no collusion can happen unless all k are untrusted
and collude in a coordinated fashion. In addition, such a system
is k − 1 fault tolerant and the resultant supernode-induced
subnetwork is still connected. This redundancy design is a form
of fault-tolerant architecture [15] for robustness support.

The LN network is a layer-two network protocol. The
network partition issue has been addressed in [16, 17] in
the traditional layer-one blockchain protocol on the sub-chain
management. Since the proposed supernode structure ensures
network connectivity, it will not introduce any new type of
network partition. Therefore, the proposed architecture can
resort to the exact same network partition solution provided
by the layer-one protocol in the regular blockchain.

V. PERFORMANCE EVALUATION

Our evaluation includes four parts, starting with a brief
description on how to set up our simulation and how to measure
the liquidation as well as scalability in LNs (Subsection V.A).
Then, we will focus on our proposed methods. First, we will
compare our local pooling algorithm with a classic supernode
selection algorithm [18] which uses global information (Sub-
section V.B). The results indicate an obvious tradeoff on the
supernode set size and the membership update cost once the
LN’s topology changes. Second, we show how the proposed
pooling series affect the LN’s performance (Subsection V.C).
We evaluate the LN running under four different methods, i.e.,
(1) a regular LN without pooling, (2) an LN with pooling only,
(3) an LN with pooling then pruning, and (4) an LN with
pruning then pooling, and the corresponding results show that
our proposed pooling series outperform in terms of liquidation
as well as scalability. Last, we conduct experiments on CLoTH,
a testbed for HTLC payment network (Subsection V.D). We
compare our pooling method with an existing mechanism,
Revive, which aims to improve the LN’s performance by
rebalancing channel funds. The outcome not only proves the
feasibility of our pooling method in real time, but also shows
a better performance when comparing with Revive.

A. Setup

In the simulation, we generate LN topologies using the
GraphStream library [19] in Java [20] and implement routing
algorithms using the Graph package in Matlab R2021a [21].

1) Topology: Based on [22], LNs can be approximated by
the scale-free model where the node degree distribution follows
the power law [6]. The network is comprised of a small central
clique and a loosely connected periphery. Low degree nodes
tend to connect to high degree nodes rather than low degree
ones. Thus, we apply the Barabasi-Albert (BA) model [23]
based on the preferential attachment rule: nodes are generated
one by one by attaching one or more edges to other existing
nodes, using a biased random selection that gives more chance
to a node with a higher node degree.
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Fig. 6: An LN with 90 nodes and 188 edges.
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Fig. 7: An LN with 70 nodes and 197 edges.

2) Channel capacity and balance: Each channel’s capacity
is set randomly from an interval ranging from [1000, 1500)
with probability 50%, [1500, 2000) with probability 35%, and
[2000, 2500) with probability 15%. For the balance of the pair
of nodes of a given channel at the start of an experiment, we
consider two scenarios: (1) randomly balanced, i.e., the two
nodes partition the channel capacity in a stochastic manner,
and (2) perfectly balanced, i.e., the two nodes of a channel
have an identical balance, half of the channel capacity.

3) Transaction parameters: For each transaction, the
sender-receiver pair is randomly selected. For the transaction
size, we use two settings, (1) homogeneous: each transaction
has an identical transfer amount, and (2) heterogeneous: 40%
of them are micro, with the transfer amount from (0, 200];
30% of them are small from (200, 800]; 20% of them are
medium from (800, 1000]; and 10% of them are large from
(1000, 1600]. All selections are random.

4) Metric and benchmark: We use two evaluation metrics
for liquidation: (1) single transaction success ratio: the number
of transactions that can find a reachable path over the number
of total transactions, and (2) transaction flow success ratio:
after sequentially executing all of the transactions of random
pairs in the given flow, the number of completed transactions
over the number of total transactions. Scalability is measured
by the node reduction ratio, i.e., the size of the supernode
set over the original set. We only use single path routing
under BSF searching, which favors the shortest path to save
routing fees for the sender. Routing fees are not included in
our evaluation, however, we measure the average path length
and node degree.

B. Supernode Selection

1) Global algorithm: In addition to our local pooling, we
will compare it with another pooling method using global
information for constructing a small connected supernodes:

D = 8 / 4 Global Local
3-hop 2-hop

# of supernode 17 / 15 19 / 17 23 / 17
rm-edge 23.4 / 22.7 1.82 / 1.47 1.78 / 1.44
rm-node 24.2 / 24 4.80 / 3.67 4.20 / 3.58
add-edge 23.6 / 22.2 1.96 / 1.33 1.90 / 1.29
add-node 23.9 / 22.6 1.11 / 1.06 1.10 / 1.05
add-node-with-edges 24.0 / 22.3 1.45 / 1.78 1.17 / 1.52

TABLE I: Average supernode set size and membership updates

The classic Guha and Khuller’s algorithm [18] works as
follows: All nodes are initially colored white. The node with
the maximum node degree is selected and colored black, all its
neighbors are colored gray. An iterative selection process runs
until there is no white node left. Select a gray node that has
the maximum number of white neighbors, color the selected
node black and its white neighbors gray. A modified algorithm
selects the gray node u and its neighbor v if they can cause the
maximum number of white nodes to change color to gray when
both u and v are changed to black. The modified algorithm
guarantees an approximation ratio O(ln∆) under any random
graph, where ∆ is the maximum node degree of the network.

2) Measurement: We consider two ways to measure a
supernode selection algorithm in the setting of LNs. The most
important measurement is the size of the supernode set, which
reflects the LN’s scalability. We also consider the cost of
membership updates as another essential measurement. Here,
we take the network dynamics into consideration, i.e., the
joining and leaving of nodes as well as the addition and
deletion of channels. We show how the topology changes will
affect the supernode set as well as the membership binding
between supernodes and non-supernodes. For a given network,
we compute the supernode set and the memberships first using
different selection algorithms. For each topology change, we
recompute the newest supernode set and memberships based
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Fig. 8: A custom network of 100 nodes and 340 edges (not shown), where node degrees are represented in colors (yellow: high degree, blue: low degree).

on the new topology. We will record the supernode size as
well as the cost of membership updates, i.e., how many nodes
change its leaders, including those nodes that currently become
supernodes even if they were not selected as non-supernodes
in the original network. To change the network topology, we
perform 5 operations: (1) rm-edge, i.e., each time an edge
will be removed, (2) rm-node, i.e., each time a node will be
removed, (3) add-edge, i.e., each time there will be an edge
added between two randomly selected nodes, (4) add-node, i.e.,
each time a new node will be added to the network and will
connect to a randomly selected node, and (5) add-node-with-
edges, ie each time a new node will be added to the network
and will connect to k randomly selected nodes, where k is the
average node degree.

3) Networks of different diameters: We generate two dif-
ferent networks based on the BA model. The first network
contains 90 nodes and 188 edges, with an average node degree
of 4.2. Its diameter is D = 8. The second network contains
70 nodes and 197 edges, with an average node degree of 5.6.
Its diameter is D = 4. To compute the supernode set and the
memberships, three methods are compared, the classic global
Guha and Khuller’s algorithm, our proposed local algorithm
with 3-hop neighbor information as well as 2-hop neighbor
information. Fig. 6 and Fig. 7 show the detailed information
of these two LNs, respectively. The measurement results are
given in Table I, respectively.

4) Discussion: Based on Table I, we can conclude that, the
more information an algorithm uses, the smaller supernode
set it will compute. However, our proposed local algorithm
shows a better performance on the cost of membership updates
after topology changes, meaning that our pooling method
produces a more stable supernode set and supernode-to-non-
supernode matching. Meanwhile, we also observe that the
network diameter is another factor affecting the performance
the pooling methods. Usually, a network with a longer diameter
will be affected more after topology changes.

C. Pooling Performance

We generate a custom network based on the BA model with
100 nodes and 340 edges in Fig. 8 (a). Each node is colored
based on its node degree, where yellow is the highest and
the purple the lowest. After pooling, we obtain a set of 42
supernodes, red nodes in Fig. 8 (b), and the size of each pool
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(b) Transaction flow success ratio.
Fig. 9: Transactions of identical transfer over randomly balanced channels.
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(b) Transaction flow success ratio.
Fig. 10: Transactions of identical transfer over perfectly balanced channels.

is shown in Fig. 8 (c). Since the supernode set size depends
on ID distribution, we perform ID permutation on the network
100 times and obtain the set size varies from 35 to 49 with
43 as the mean. In the following simulation, ID assignment is
fixed so we can focus on the other metrics.

1) Pooling only: We conduct experiments on the custom
network of Fig. 4 and the network generated by pooling only.
We specify an identical transfer amount for each transaction
in the homogeneous setting. We generate a flow of 150
transactions with random parings. To see the impact of the
transfer amount, we vary its value and re-run the experiment
under the fixed network setting, including 150 sender-receiver
pairs. Fig. 9 (a) shows the single transaction success ratio
under different transfer amounts when all the channels are
randomly balanced initially. Obviously, pooling improves the
success ratio, especially when the transfer amount grows. We
can observe from Fig. 9 (b) that pooling outperforms without
pooling for the transaction flow, although its success ratio
deteriorates quicker than the single transaction results. Figs. 10
(a) and (b) show success ratios for the single transaction and
the transaction flow, respectively, when all of the channels are
balanced initially. The performance without pooling stays close
to the one with pooling for small transaction sizes. Like in
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(b) Transaction flow success ratio.
Fig. 11: Transactions of random transfer amounts.
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(b) Transaction flow success ratio.
Fig. 12: Transactions of identical transfer over randomly balanced channels.

Fig. 9, pooling helps the success ratio as the transaction size
grows, even under an elephant (i.e., large) transaction flow.

Figs. 11 (a) and (b) show the results from the heterogeneous
setting on the custom network, under the two different channel
balance settings: random and perfect. We generate 17 transac-
tion flows, each containing 150 transactions. On average, our
pooling strategy could improve network liquidation: for the
single transaction by 66% for random and by 33% for perfect,
and for the transaction flow by 60% for random and by 34%
for perfect, compared to without pooling.

2) Pooling and pruning: We conduct experiments under
three different topologies generated by pooling only, pooling
then pruning, and pruning then pooling, respectively, on the
custom network. The pooling-only topology contains 255 links
connecting 42 supernodes. Based on this topology, we remove
some channels through link pruning, and obtain the pooling
then pruning topology with 213 links. The pruning then pooling
is generated by applying the reversing order and contains
43 supernodes with 226 links. Again, each supernode re-
distributes its fund equally to all of its external channels.

The performance comparison starts by specifying an identi-
cal transfer amount for each transaction in the homogeneous
setting. We show the impact caused by the transfer amount
in Fig. 12. As before, we generate a flow of 150 transactions
with random pairs, then gradually increase the transfer amount.
In Figs. 12 (a) and (b), we can observe that the network
after pruning has higher success ratios for both cases. This
is intuitive, as fewer links lead to more funds assigned to each
external channel. Because relatively fewer links are pruned
after pooling, the improvement of the success ratio for pruning
is less obvious than pooling for the custom network.

In a separation simulation for the case of Fig. 12 (b) but with
a 20% variation in the identical transfer size of the transaction
flow, the success ratio increases by around 5% compared with
Fig. 12 (b). Hence, we conduct simulations of transaction flow

(|V |, |E|) Operation STSR TFSR PL ND
(100, 340) W/O pooling 0.45 0.48 4.89 6.80
(42, 255) W/ pooling 0.75 0.77 6.35 12.14
(42, 213) Pooling, pruning 0.88 0.83 7.01 10.14
(43, 226) Pruning, pooling 0.87 0.86 7.12 10.51

TABLE II: A comprehensive comparison of methods on the custom network.

Topo(|V |, |E|) Operation STSR TFSR PL ND
ISP(42, 66) W/O pooling 0.64 0.68 2.8 3.14
ISP(12, 18) W pooling 0.85 0.84 3.2 3
ISP(12, 15) Pooling, pruning 0.94 0.95 3.8 2.5
ISP(10, 13) Pruning, pooling 0.98 1 3.4 2.6

WS(100, 200) W/O pooling 0.52 0.49 4.2 4
WS(81, 133) W pooling 0.61 0.66 6.7 3.28
WS(81, 108) Pooling, pruning 0.69 0.76 7.1 2.67
WS(82, 117) Pruning, pooling 0.67 0.74 6.9 2.85

TABLE III: Summary of performance comparison over ISP and WS topologies.

in the heterogeneous setting with random transfer amounts, a
more realistic setting. We use the same set of flows for Fig. 11
and apply them to the following: (1) the custom network,
(2) pooling only, (3) pooling then pruning, (4) pooling then
pruning with p = 0.5, for probabilistic pruning, (5) pruning
then pooling, and (6) pruning with p = 0.5 then pooling.
All external channel capacities are assumed to be randomly
balanced after pooling. The corresponding mean results are
shown in Table II. STSR, TFSR, PL, ND are short for single
transaction success ratio, transaction flow success ratio, average
path length, and average node degree, respectively.

Based on Table II, success ratios of both single transaction
and transaction flow improve after pooling and pruning. How-
ever, the impact of the ordering between pooling and pruning
is less obvious for the custom network. Probabilistic pruning
offers a desirable trade-off among success ratio, path length,
and node degree. Note that the success ratio increases due to
the pruning efficiency, but will cause a longer path on average,
meaning the sender has to pay more routing fees since each
intermediate node should be rewarded, according to [24]. The
path length (PL) after pooling represents the hop count between
sender and receiver, which includes internal channels. The node
degree (ND) after pooling measures only supernodes, which
includes external channels only. As the custom network is
constructed based on the power-law model, a supernode tends
to have a higher node degree, even after removing internal
channels connecting pool members.

We also evaluate the algorithms on two popular topologies:
an ISP topology [25] and a Watts-Strogatz (WS) topology [26].
The same setting used in Table II for channels and transactions
is applied, but generate 1, 000 random transactions for ISP and
5, 000 for WS. We summarize the performance comparison in
Table III, which shows the same trend as that of Table II, except
for the relatively low ND after pooling. This is because ISP
and WS do not follow the power-law distribution, supernodes
usually do not have high node degrees as in the BA model,
which are further reduced after discounting internal channels.

3) Summary: Our simulation on the custom network shows
a node reduction between 51% to 65%, which is a desirable
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Success ratio
improvement

Custom ISP WS
STSR TFSR STSR TFSR STSR TFSR

Pooling only 66% 60% 33% 24% 17% 35%
Pooling, pruning 95% 73% 47% 40% 32% 55%
Pruning, pooling 93% 79% 53% 47% 29% 51%

TABLE IV: A summary of transaction success ratio improvement.

result for searching scalability. Simulations using the hetero-
geneous setting on three networks show promising results on
network liquidation in terms of the success ratio improvement,
as is summarized in Table IV. The improvement of pooling
then pruning and pruning then pooling varies dependents
primarily on the network topology. Note that link pruning
comes at the cost of a longer routing path, as any two non-
supernodes have to perform transactions through supernodes.
Among all proposed algorithms, we find that pooling then
pruning and pruning then pooling tend to perform better than
pooling only in terms of transaction liquidation, as these two
algorithms enlarge the channel capacity among supernodes.

D. Testbed

1) CLoTH testbed: In this part, we use CLoTH [27], a
testbed for HTLC payment networks (of which LN is the
best working example). It simulates input-defined payments
on an input-defined HTLC network and produces performance
measures in terms of payment-related statistics (such as the
time needed to complete payments and probability of payment
failure). CLoTH helps to predict issues and obstacles that
might emerge in the development stages of an HTLC payment
network and to estimate the effects of an optimisation action
before deploying it.

2) Revive rebalancing scheme: Revive enables a set of
members in a payment network to shift balances between
their payment channels safely. Rather than to enact previously
mandatory on-chain channel closing and re-opening, this al-
lows participants to safely revive a channel by real-locating off-
chain the funds they have assigned to their payment channels.
To be more precise, a rebalancing cycle will be found if each
channel along the cycle has the same direction of fund-shifting
requirements. The original scheme computes the rebalancing
cycles with an objective to maximize the amount of funds
moved between channels while setting constraints to maintain
the sanity and fairness of the generated transaction set. Here,
we simplify the objective by removing the constraints.

3) Generation of network and transaction: We generate
a network with 100 nodes and 224 edges, as is shown in
Fig. 13. The distribution of the channel capacity and balance
strictly follow the rules we mentioned in the setup. Each
node’s minimal htlc is set as 1000 millisatoshi and its timelock
is set as 144ms. To get rid of the external effects, we set
the routing fee charged by each routing node as an identical
value of 10 millisatoshi, which is far less than the channel
balances and the transaction amounts. We also generate a flow
of 1200 heterogeneous transactions. We specify a start time for
each transaction and ensure that the interval between any two
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(a) Testbed network. (b) Pooling: supernodes marked red.

Fig. 13: Testbed network of 100 nodes and 224 edges (not shown).

TFSR W/O pooling W/ pooling REVIVE
every 200 tx every 400 tx

Random 0.718 0.967 0.932 0.921
Perfect 0.788 0.985 0.941 0.927

TABLE V: A summary of transaction flow success ratio under 4 different
network mechanisms.

subsequent transactions is with in the range of [50, 250)ms.
Here, we only apply pooling, which leads to a set of 32
supernodes. We compare the transaction flow success ratio
under 4 different network mechanisms, i.e., (1) a regular LN
without pooling or rebalancing, (2) an LN with pooling, (3)
an LN with rebalancing every 200 transactions, and (4) an LN
with rebalancing every 400 transactions. The corresponding
results are shown in Table V.

4) Discussion: Obviously, our pooling mechanism still
shows good performance when running in the real-time testbed.
Although increasing the rebalancing frequency can lead to a
higher success ratio for Revive scheme, its performance is
still lower than that of our pooling mechanism. Meanwhile,
in the experiment, we ignore the rebalancing time which is
quite time-consuming in reality. This means those involved
channels cannot be used for routing during the rebalancing
period, which may lead some transactions to fail due to the
path being unavailable.

VI. RELATED WORK

A. Blockchain scalability

The major challenge that hinders the full adoption of
blockchain is its scalability. Many efforts have been made
to improve the scalability of blockchain. These works can
be classified into: on-chain and off-chain. On-chain solutions
are also called layer-one solutions, which include increasing
the block-size [28], introducing the sharding technique [29–
31], using other lightweight consensus such as proof of stake
(PoS) [32], or even exploring alternative ledger structures,
such as utilizing a directed acyclic graph to organize blocks
[33, 34]. Off-chain solutions, i.e., layer-two solutions, focus
on constructing a new network that operates on top of an
underlying blockchain protocol so that a portion of on-chain
transactional burden can be shifted to this adjacent system
architecture. Examples of off-chain solutions include SegWit
(short for Segregated Witness) [35], side/tree chain [36, 37],
rollups [38], and payment channel network (PCN) [3, 4, 39].
Our paper focuses on LN, an exemplification of PCN.
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B. Payment channel networks (PCNs)
There are several PCNs [40, 41], and duplex micropayment

channels [42] is one of the first PCNs. This scheme can also
support incremental channel capability at a relatively low cost
[43]. The Raiden network [4] is similar to LN design, but based
on the Etherum blockchain using smart contract. Sprites [39]
uses merits of both LN and Raiden but a slightly different
objective in reducing off-chain channel cost. Several others
PCNs apply specific switching and routing techniques. Spider
[44] uses packet-switching based routing with payment being
split into several micro-payment to alleviate the channel de-
pletion problem. Both SilentWhipser [45] and SpeedyMurmurs
[46] utilizer landmark routing where landmarks are the center
of the payments. Bolt [47] uses only one intermediary node
between the sender and receiver to reduce path length and
search complexity.

C. Routing in LNs
The original routing algorithm described in the LN white

paper [48] applies a BGP-like protocol, where every node
accumulates a global map of the network to perform routing. To
support scalability, Flare [7] reduces the size of routing tables
maintained by nodes, allowing them to only store neighbors
within certain hops. Meanwhile, Flare introduces beacon nodes
with a richer network information to supplement a node’s local
view, while violating the spirit of decentralization. Both Silen-
tWhispers [45] and SpeedyMurmurs [46] propose landmark-
based routing schemes. The above routing algorithms fall into
static routing, without capturing the payment channel dynam-
ics. Thus, Revive [8], Spider [44], and Flash [49] propose
dynamic routing algorithms, leading to a higher throughput and
success volume of an LN. [50] discusses tradeoffs between
privacy and utility in routing cryptocurrency over payment
networks. We focus on reducing the routing space itself, and
hence, all of the above extensions can be directly applied.

D. Supernode selection
Supernode selection usually goes through a cluster forma-

tion, where a distinct IP address is used to select supernodes.
In non-local solutions, an iterative process is applied to iden-
tify supernodes (also called clusterheads) such that all other
non-clusterhead nodes are directly connected to at least one
supernode. Clusterheads generated out of the iterative process
usually have some desirable properties such as clusterheads
forming a maximal independent set as in [9] that aims to
reduce the number of clusters. However, this approach is hard
to directly apply to LNs as clusterheads of adjacent clusters are
not necessarily directly connected, making transactions among
clusterheads more complex.

To better handle network dynamics, local solutions are used
to identify self-connected clusterheads using local information
and without label propagation as in [10, 11]. Our approach
adopted from [13] is local and can also ensure that the derived
clusterheads are connected. Additionally, we introduce the
neighbor set reduction process to control network density.

VII. CONCLUSION

This paper introduces a new notion of local pooling to
address two challenges in lightning networks: scalability and
liquidation. The central idea of local pooling is local clustering
with supernodes as clusterheads such that supernodes are self-
connected. Supernodes pool all funds in the whole network
and they form a smaller network for searching. Local pooling
can also be extended by introducing multi-level clustering. Our
simulation results show the effectiveness of the local pooling
in terms of supporting routing scalability as well as overall
network liquidation, especially for transactions that involves
high transfer amounts. Our future work will focus on the
impact of view (k), pruning probability (p), and routing fees on
performance and cost trade-offs. The impact of the diversity of
transfer amounts in transaction flows on the network liquidation
is still an open research topic. Finally, a performance-centric
(such as delay measurement) evaluation in a natural LN system
will be part of our future work.
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