A Secure Scheme for Heterogeneous Sensor Networks

Sujun Li, Weiping Wang, Boqing Zhou, Jianxin Wang, Yun Cheng, and Jie Wu, Fellow, IEEE

Abstract—Heterogeneous sensor networks (HSNs) consist of a small number of powerful high-end sensors (H-sensors) and a large number of low-end sensors (L-sensors). HSNs are vulnerable to H-sensors replication attack. In this letter, a scheme against the attack is proposed. The analysis and simulation results indicate that the scheme can improve networks’ resilience against H-sensors replication attack as compared with existing related schemes.

Index Terms—Heterogeneous sensor networks, H-sensors replication attacks, master-slaver model, EQ method.

I. INTRODUCTION

HETEROGENEOUS sensor networks (HSNs), which consist of a small number of H-sensors (e.g., PDAs) and a large number of L-sensors (e.g., the MICA2-DOT [1]), have attracted much attention due to their better performance and scalability compared with homogeneous sensor networks [2]. In HSNs, H-sensors are in charge of forwarding data to the Base station (BS). Therefore, they are vulnerable to suffer from various attacks; one of the most common attacks is replication attack. This attack once being launched successfully, HSNs will be subject to the following threats: 1. L-sensors will choose these replication nodes as cluster heads and submit their data to them; 2. These replication nodes can communicate with normal H-sensors in the networks, and can forge a great deal of false data. This false data is forwarded to the BS, which not only wastes power and bandwidth of H-sensors, but also lets the BS make wrong judgments.

To enhance the secrecy of HSNs, in the last few years, different pairwise key distribution schemes using symmetric key algorithms have been developed [3]–[5]. Du et al. [3] proposed AP-D scheme using asymmetric predistribution key (AP) method. In the scheme, before deployment, an L-sensor and an H-sensor randomly pick $t1$ and $t2$ $(t1 < t2)$ keys from a large key pool without replacement, respectively. After deployment, two nodes can establish a pairwise key if the number of common keys between them is greater than or equal to q ($q \geq 1$). The AP method is also used in [4] and [5]. In AP-L [4], the key pool of L-sensors is a subset of H-sensors. In [5], the CSS-SH scheme enhances the resilience by exploiting two dimensional backward key chains constructing disjoint and association key pools. Nevertheless, in the schemes, H-sensors and L-sensors share the same key pool; and H-sensors are needed to participate in the establishment of shared keys between them. As a result, replication H-sensors can easily establish pairwise keys with normal nodes by using compromised keys. Therefore, in HSNs, new schemes against H-sensor replication attack must be developed.

In this letter, a secure scheme against H-sensors replication attack, namely SS-H, is proposed. Main contributions of our scheme are summarized as follows: 1. A new secure communication model, namely master-slaver model, is created, and is realized using new two-dimension backward key chains; 2. A new method, namely EQ_i, for establishing pairwise key between an L-sensor and an H-sensor is presented.

The letter is organized as follows. Section II presents our protocol and Section III analyzes the protocol. The conclusion is given in Section IV.

II. SS-H SCHEME

In HSNs, H-sensors serve as cluster heads and form clusters around them [3]. The formation of clusters is as follows: Each L-sensor selects an H-sensor whose Hello message has the best signal strength as its cluster head, and records other H-sensors from which it has received Hello messages, will serve as backup cluster heads in the case that the cluster head fails.

In SS-H, we make use of the following assumptions:
1. Only a limited number of L-sensors may be compromised by an attacker during the short time period of the key establishment between L-sensors [5], [6].
2. BS and H-sensors will not be compromised by an attacker [3]–[5].

A. Two-Dimensional Backward Key Chain

The method for constructing a two-dimensional backward key chain C_j is as follows:
1. A backward key chain, whose length is n, is generated by a generation key g_i as follows:
$$k_j^i = H_1(k_j^{i+1})$$
where
$$k_0^i = H_1(g_i), \ 1 \leq i \leq n - 1.$$ (1)

Digital Object Identifier 10.1109/LWC.2017.2650986
2. A forward key chain, whose length is L, is generated by a generation key $k_j^{(l)}$ as follows:

$$k_j^{(l)} = H_2(k_j^{(l-1)}, k_j^{(l-1)}), \text{ where } k_j^{(1)} = H_2(k_j^1, k_j^1), 1 \leq l \leq L.$$ (2)

B. Master-Slaver Model

In this model, an H-sensor can calculate the key shared with an L-sensor, but an L-sensor cannot. The details about it are described as follows:

1. Key pool. The key pool, consists of m two-dimensional backward hash key chains, is divided into two parts. One is key pool of H-sensors, namely P_h ($P_h = \{g_j, 1 \leq j \leq m\}$). The other is key pool of L-sensors, namely P_l, which consists of two parts: a second-dimensional generation key pool, namely $P^1_l = \{k_j^{(1)}, 1 \leq j \leq m\}$ and an ordinary key pool, namely $P^2_l = \{k_j^{(l,1)}, 1 \leq j \leq m, 1 \leq l \leq L\}$.

2. Before deployment, each H-sensor picks t_3 keys from P_h. An L-sensor a_i deployed in the t_i phase picks r_1 and r_2 keys ($r_1 + r_2 < t_3$) from P^1_l and P^2_l, respectively, which meets the following condition: the number of keys from a two-dimensional backward hash key chain is no more than 1. For example, if key $k_j^{(l,1)}$ has been pre-distributed to a_i, then key $k_j^{(l,1)}$ cannot be pre-distributed to a_i.

C. Pairwise Key Establishment

After deployment, shared keys between nodes should be established. The above establishment procedure is described as follows:

Between Two L-Sensors: The method of establishing a shared key between L-sensors is as same as in [6]. Their shared keys include the following two parts: 1. Pre-distribution common keys; 2. Shared keys obtained by calculation. For example, if key a_i and b_i are pre-distributed keys k_i and $k_i^{(l,1)}$, then a_i can calculate their shared keys $k_i^{(l,5)}$ using the formula (2). Once this procedure finishes, each L-sensor saves hashed keys in its key ring. For example, supposing L-sensor a_i is pre-distributed two keys $k_i^{(1)}$ and $k_i^{(l,1)}$. If this procedure ends, a_i saves the following two hashed keys: $H_2(k_i^{(1)}, ID_{a_i})$, and $H_2(k_i^{(l,1)}, ID_{a_i})$, where ID_{a_i} is the identity of a_i.

Between Two H-Sensors: If the number of common generation keys between two H-sensors is more than 0, their pairwise key is the hash of all common keys.

Between an L-Sensor and an H-Sensor: In SS-H, a pairwise key between an H-sensor and an L-sensor in its cluster is established using the following EQ method:

Step 1. Firstly, an L-sensor a_i randomly selects EQ keys, K_1, \ldots, K_{EQ}, from its key ring, then calculates the shared key, $K_{a_i-CH} = K_1 \oplus \cdots \oplus K_{EQ}$, lastly submits the following information to the cluster head CH:

$$inf_{a_i} = \{ID_{CH}, ID_{a_i}, ID_{K_1}, \ldots, ID_{K_{EQ}}, M_{K_{a_i-CH}}(ID_{K_1} \mid \cdots \mid ID_{K_{EQ}})\}$$

where ID_{K_i} is the identity of key K_i, $M_k(f)$ represents the authentication code of message f with key K.

Step 2. When CH receives all request information from L-sensors in its cluster, it divides the list of key IDs, namely $KList_{CH}$, into the following three categories: 1. These keys can be calculated by the CH; 2. These keys can be calculated by CH’s neighbors while CH cannot; 3. These keys do not belong to the above two categories, namely $KList_{CH}^3$. For these keys in $KList_{CH}^3$, CH randomly selects an assistant H-sensor, namely CH_{1}, from its neighboring H-sensors, and sends the following information to CH_{1}:

$$X_{inf} = \{ID_{CH_{1}}, ID_{CH_{1}}, KList_{CH}^3, MAC_{K_{CH_{1}-CH_{2}}}(KList_{CH}^3)\}.$$ When CH_{1} receives the above message, it divides the IDs list into three categories as CH does. If the third category IDs list $KList_{CH}^3$ is not empty, then CH_{1} performs the same operation as CH does, selects an assistant node CH_{2} from its neighboring H-sensors and sends the following request information to it:

$$X_{inf} = \{ID_{CH_{2}}, ID_{CH_{1}}, KList_{CH}^3, MAC_{K_{CH_{1}-CH_{2}}}(KList_{CH}^3)\}.$$ Assistant H-sensors repeat the above operations until the third key IDs list is empty.

Step 3. After CH securely obtains all key information of $KList_{CH}$, it calculates each shared key K_{a_i-CH} with each L-sensor a_i. Then it recalculates the authentication code of $KList_{CH}$ using K_{a_i-CH} (see step 1). If the recalculated authentication code is not the same as it received from a_i, then it requests a_i to retransmit inf_{a_i} (see step 1). In the letter, the number of retransmission is not more than T. We will study the practical setting of T in our future research.). Otherwise, CH sends the following authentication message to a_i:

$$MX_j = \{ID_{a_i}, ID_{CH_{1}}, MAC_{K_{a_i-CH}}(ID_{a_i} \mid ID_{CH_{1}})\}.$$ Step 4. When a_i receives the above retransmission message, if the times of retransmission is not more than T, then it retransmits inf_{a_i} to CH. Otherwise, a_i reselects new cluster head. When a_i receives information MX_j, it recalculates the authentication code using K_{a_i-CH}. If the authentication code verifies success, then K_{a_i-CH} is their shared key. Otherwise, if the times of retransmission of MX_j is less than T, then a_i requests CH to retransmit MX_j. Or else, a_i reselects new cluster head.

Step 5. When CH receives the retransmission of MX_j, if the retransmission times are not more than T, then it retransmits MX_j.

III. Performance and Security Evaluation

In this section, we analyze the performance and security of our scheme. In our analysis and simulations, we use the following setups:

1. Deployment area is 500m×500m.
2. The value of R and r is 160m and 40m, respectively.
3. Nodes deployment includes 3 phases, and nodes are randomly and evenly distributed in the network in each phase. In each phase, H-sensors account for the ratio of is 8%, and the number of nodes deployed and captured is 400.
4. The number of key chains is 6000 ($m = 6000$), and the length of each forward key chain is 20 ($L = 20$).
In SS-H scheme, EQ method is used to improve resiliency of H-sensor replication attack. In EQ, a key path is needed to be established when a head master CH has not all keys requested by L-sensors in its cluster (see Section II-C). Therefore, the length of the key path, namely Hp, is a very important parameter. In our scheme, the value of Hp lies on the probability of keys selected by L-sensors existing in their cluster head’s key ring, namely P_{L,H}, and the expectation value of H-sensors’ neighbors. Next, we will describe it in detail.

The number of selecting two-dimensional backward key chains for H-sensors and L-sensors is (m+2) and (m), respectively. If there are x common key chains shared between an H-sensor and an L-sensor, then the number of selecting keys from these key chains is: \(\binom{m}{x} \cdot \frac{m-x}{2(1+t_1+t_2+t_3-x)} \cdot \frac{t_1+t_2+t_3-x}{t_3} \). The number of selecting a key by an L-sensor from the x common key chains is \(\binom{m}{x} \). Therefore, the above probability is:

\[
P_{L,H} = \sum_{x=1}^{m} \binom{m}{x} \cdot \frac{m-x}{2(1+t_1+t_2+t_3-x)} \cdot \frac{t_1+t_2+t_3-x}{t_3} \cdot \binom{m}{t_1+t_2+t_3}^{x-1}
\]

In our analysis, it is supposed that the length of a key path, when an H-sensor CH can directly calculate keys requested by L-sensors in its cluster, which is 0; when these above requested keys can be calculated by CH’s direct neighbors while CH cannot, which is 1; and so on. As a result, the probability of keys being obtained by i hops is:

\[
P_{h(i)} = \left(1 - \sum_{i=0}^{i-1} P_{h(i)} \right) \cdot \left(1 - (1 - P_{L,H})^{N_H} \right) (i \geq 1)
\]

where \(P_{h(0)} = P_{L,H}, N_H \) is the expectation value of H-sensors’ neighbors.

The formula (3) shows that \(P_{L,H} \) increases with the increase of \(t_1 + t_2 \) and \(t_3 \). The formula (4) indicates that the number of hops decreases with the increase of \(P_{L,H} \). This conclusion can be verified by Fig. 1. If the value of \(t_1 + t_2 \) is fixed, and \(t_3 \) increases to 4000 from 2000, then \(P_{L,H} \) increase to 0.66 from 0.33 and \(P_{h(2)} \) decrease to 0 from 0.003. Also, Fig. 1 shows that cluster head need about one hop to get all requested keys.

\[
A. \text{Performance}
\]

In SS-H scheme, EQ method is used to improve resiliency of H-sensor replication attack. In EQ, a key path is needed to be established when a head master CH has not all keys requested by L-sensors in its cluster (see Section II-C). Therefore, the length of the key path, namely Hp, is a very important parameter. In our scheme, the value of Hp lies on the probability of keys selected by L-sensors existing in their cluster head’s key ring, namely P_{L,H}, and the expectation value of H-sensors’ neighbors. Next, we will describe it in detail.

The number of selecting two-dimensional backward key chains for H-sensors and L-sensors is \((m+2) \) and \(m \), respectively. If there are x common key chains shared between an H-sensor and an L-sensor, then the number of selecting keys from these key chains is: \(\binom{m}{x} \cdot \frac{m-x}{2(1+t_1+t_2+t_3-x)} \cdot \frac{t_1+t_2+t_3-x}{t_3} \). The number of selecting a key by an L-sensor from the x common key chains is \(\binom{m}{x} \). Therefore, the above probability is:

\[
P_{L,H} = \sum_{x=1}^{m} \binom{m}{x} \cdot \frac{m-x}{2(1+t_1+t_2+t_3-x)} \cdot \frac{t_1+t_2+t_3-x}{t_3} \cdot \binom{m}{t_1+t_2+t_3}^{x-1}
\]

In our analysis, it is supposed that the length of a key path, when an H-sensor CH can directly calculate keys requested by L-sensors in its cluster, which is 0; when these above requested keys can be calculated by CH’s direct neighbors while CH cannot, which is 1; and so on. As a result, the probability of keys being obtained by i hops is:

\[
P_{h(i)} = \left(1 - \sum_{i=0}^{i-1} P_{h(i)} \right) \cdot \left(1 - (1 - P_{L,H})^{N_H} \right) (i \geq 1)
\]

where \(P_{h(0)} = P_{L,H}, N_H \) is the expectation value of H-sensors’ neighbors.

The formula (3) shows that \(P_{L,H} \) increases with the increase of \(t_1 + t_2 \) and \(t_3 \). The formula (4) indicates that the number of hops decreases with the increase of \(P_{L,H} \). This conclusion can be verified by Fig. 1. If the value of \(t_1 + t_2 \) is fixed, and \(t_3 \) increases to 4000 from 2000, then \(P_{L,H} \) increase to 0.66 from 0.33 and \(P_{h(2)} \) decrease to 0 from 0.003. Also, Fig. 1 shows that cluster head need about one hop to get all requested keys.

\[
B. \text{Resilience Against H-Sensors Replication Attack}
\]

SS-H scheme’s resilience against H-sensors replication attack can be evaluated from the following two aspects: 1. The probability that replication H-sensors can establish shared keys with normal H-sensors, namely P_{R_{H,H}}. 2. The probability that replicated H-sensors can establish shared keys with an L-sensor d, namely P_{R_{L,H}}.

1. P_{R_{H,H}}: The function of two-dimensional key chain shows that it is not feasible to calculate generation keys pre-distributed to an H-sensor using keys pre-distributed to an L-sensor. That is to say, P_{R_{H,H}} = 0.

2. P_{R_{L,H}}: In the ith capture, suppose the number of L-sensors’ pre-distribution keys are not hashed before being compromised is CC_i. After I times capture, the probability of keys from P_i being compromised is:

\[
P_{BK_i} = 1 - \left(1 - \frac{1}{m} \right)^{\sum_{t=1}^{m} CC_t} \cdot \left(1 - \frac{t_2}{m \cdot L} \right)^{CC_i}. \quad (5)
\]

Therefore, after I times capture, the expected value of the probability of key pool P_i being compromised is \(m \cdot P_{BK_i} \). P_{R_{L,H}} can be estimated as follows:

\[
P_{R_{L,H}} = \sum_{i=1}^{EQ} \left(\binom{m}{t_1+t_2+t_3} \cdot \binom{m-t_1-t_2-t_3}{t_1+t_2+t_3} \cdot \binom{m}{t_1+t_2+t_3} \cdot \binom{m}{t_1+t_2+t_3} \right) \cdot \left(1 - \frac{t_2}{m \cdot L} \right)^{CC_i} \quad (6)
\]

where min(t4,t5) represents the minimum of t4 and t5.

In Fig. 2, in each phase, CC_i is fixed, and it is represented by CC. Formulas (5)-(6) indicate that: 1. P_{R_{L,H}} is more likely to be affected by t1 as comparing with t2. 2. P_{R_{L,H}} decreases dramatically with the increase of CC. 3. P_{R_{L,H}} increases with the increase of CC. The above three conclusions can be verified by Fig. 2. For example, in the 3rd phase, when \(t_1 + t_2 = 70, EQ = 2, \) and CC is 30, t1 increases to 35 from 15, P_{R_{L,H}} increases about to 0.076 from 0.02 (see fig. 2(a)). When \(t_1 = 20, t_2 = 50 \) and CC is 30, EQ increases to 3 from 1, P_{R_{L,H}} increases about to 0.006 from 0.167 (see fig. 2(b)). When \(t_1 = 20, t_2 = 50 \) and EQ is 2, CC increases to 40 from 10, P_{R_{L,H}} increases about to 0.046 from 0.005 (see fig. 2(c)).
In CSS-MH, key pools of any two phases are different, that is, about 1, 0.83 and 0.01, respectively.

C. Comparison With Existing Scheme

In the section, performance and security between SS-H and schemes AP-D [3], AP-L [4] and CSS-SH [5] are compared. For the sake of fairness, assumptions in the other three schemes are the same as in SS-H. That is to say, pre-distribution keys of L-sensors are hashed after pairwise key establishment between L-sensors, and CC equals to 5. For four schemes, the size of key pool is 6000, and the number of pre-distribution keys of an H-sensor and an L-sensor is 3000 and 70, respectively. In AP-L, the key pool of L-sensors is a subset of H-sensors and its size is 5800. In CSS-SH, an H-sensor only picks keys from P'_1. In AP-D, AP-L and CSS-SH, pairwise key can be established between an H-sensor and an L-sensor, and between two H-sensors if the number of their shared keys is no less than 4 and 500, respectively. In SS-H, EQ equals to 2. Other parameters settings are as same as Section IV.

In AP-D, AP-L and CSS-SH, H-sensors and L-sensors share the same key pool. Therefore, an adversary can easily successfully launch replication H-sensors attack by capturing L-sensors. Ideally, when there are 8 L-sensors are captured, in this case, $8 \times 70 > 500$, then $PR_{H,H}$ equals to 1. However, in SS-H, previous analysis indicates that no matter how many L-sensors are captured, $PR_{H,H}$ equals to 0.

In AP-D, AP-L and CSS-SH, shared keys, between an L-sensor and an H-sensor, are from L-sensors’ key pool, and H-sensors are needed to participate in the establishment of pairwise key. If L-sensors are compromised before their pre-distribution keys are not hashed, then replication H-sensors can establish pairwise key with normal L-sensors using these compromised keys. Fig. 3 shows the comparisons of $PR_{L,H}$ of each scheme. In AP-D and AP-L, the key pool is fixed throughout the lifecycle of HSNs. The size of L-sensors’ key pool of AP-L scheme is less than that of AP-D scheme, as a result, $PR_{L,H}$ of AP-L scheme is higher than that of AP-D scheme.

In CSS-MH, key pools of any two phases are different, that is, $P^1 \cap P^2 = \emptyset$ ($i_1 \neq i_2$). Therefore, $PR_{L,H}$ of CSS-MH is less than that of AP-D and AP-L scheme. In SS-H, shared keys, between an H-sensor and an L-sensor, are selected randomly from the key ring of the L-sensor, which will lead to a significant reduction in the value of $PR_{L,H}$. As shown in Fig. 3, in the 3rd phase, $PR_{L,H}$ of AP-D, AP-L, CSS-SH and SS-H is about 1, 1, 0.83 and 0.01, respectively.

In HSNs, secure communication between L-sensors also is very important [3]–[5]. To measure the local connectivity of the four schemes precisely, in here, secure local connectivity (SPC) is used, namely $SPC = PC \times (1 - PRC)$, where PC is the probability of pairwise keys establishment between L-sensors, and PRC denotes the probability that pairwise keys established between nodes are not compromised after CC L-sensors are captured. In AP-L, the size of L-sensors’ key pool is less than that of the other three schemes. Therefore, in the 1st phase, secure local connectivity of AP-L is slightly higher than that of the other three schemes. But its secure local connectivity decreases quickly. In CSS-MH and SS-H, their key pools of each phase are different, so their secure local connectivity drops slowly. As shown in Fig. 4, in the 3rd phase, SPC of AP-D, AP-L, CSS-SH and SS-H is about 0.503, 0.507, 0.511 and 0.511, respectively.

IV. Conclusion

In this letter, master-slaver model, is created, and is realized using a new two-dimension backward key chain. In addition, EQ method is presented. Analysis and simulation indicate that the master-slaver model can prevent replication H-sensors from communicating with normal H-sensors no matter how many L-sensors are compromised and the EQ method can significantly reduce the probability of pairwise key establishment between replication H-sensors and normal L-sensors.

References