An Efficient Sorting Algorithm for a Sequence of Kings in a Tournament

Jie Wu

Department of Computer Science and Engineering Florida Atlantic University Boca Raton, FL 33431

Li Sheng Department of Mathematics and Computer Science Drexel University Philadelphia, PA 19104

A king u in a tournament is a player who beats any other player v directly or indirectly. That is, either $u \to v$ (u beats v) or there exists a third player w such that $u \to w$ and $w \to v$. A sorted sequence of kings in a tournament of n players is a sequence of players, $S = (u_1, u_2, ..., u_n)$, such that $u_i \to u_{i+1}$ and u_i is a king in sub-tournament $T_{u_i} =$ $\{u_i, u_{i+1}, ..., u_n\}$ for i = 1, 2, ..., n - 1. The existence of a sorted sequence of kings in any tournament is shown in [2] where a sorting algorithm with a complexity of $\Theta(n^3)$ is given. In this paper, we present another constructive proof for the existence of a sorted sequence of kings of a tournament and propose an efficient algorithm with a complexity of $\Theta(n^2)$.

Keywords: King, sorting algorithm, tournament.

A directed graph with a complete underlying graph is called a *tournament* [3], representing a tournament of $n (\geq 1)$ players where every two players compete to decide the winner (and the loser) between them. A king u in a tournament is a player who beats any other player v directly or indirectly. That is, either $u \to v$ (u beats v) or there exists a third player w such that $u \to w$ and $w \to v$. The notion of sorted sequence of kings was proposed by J. Wu as an approximation for ranking players in a tournament. Specifically, a sorted sequence of kings in a tournament of n players is a sequence of players, $S = (u_1, u_2, ..., u_n)$, such that $u_i \to u_{i+1}$ and u_i is a king in sub-tournament $T_{u_i} = \{u_i, u_{i+1}, ..., u_n\}$ for i = 1, 2, ..., n - 1. The existence of a sorted sequence of kings in any tournament is shown in [2] where a sorting algorithm with a complexity of $\Theta(n^3)$ is given. In this paper, we present another constructive proof for the existence of a sorted sequence of kings of a tournament and propose an efficient algorithm with a complexity of $\Theta(n^2)$.

Lemma 1: ([1]) Every tournament has a king.

Lemma 2: If u is a king for some tournament T and let $T' \subseteq in(u) = \{v \in T : v \to u\}$, then u is still a king in the sub-tournament induced by $T \setminus T'$.

Proof: The only case that needs to be considered is when u beats some vertex $v \in T \setminus T'$ indirectly in T. In this case, there exists a vertex w so that $u \to w$ and $w \to v$. Clearly, $w \notin T'$. Therefore, u still beats v indirectly in $T \setminus T'$.

Theorem 1: Sorted sequence of kings exists in any tournament T of n players.

Proof: We prove the theorem by induction on n. Clearly, it is true for n = 1. Assume that the theorem is true for n-1, we will show for the case of n. By Lemma 1 we can pick a king of T, say u, and by induction hypothesis, we can also assume that $S = (u_1, u_2, \dots, u_{n-1})$ is a sorted sequence of kings of sub-tournament $T \setminus \{u\}$. We shall show that u can be inserted into sequence S without changing any relative position of the vertices in S.

Suppose p $(1 \le p \le n-1)$ is the first index such that $u \to u_p$ (such u_p always exists because u is a king of T). We shall show that $S' = (u_1, u_2, \dots, u_{p-1}, u, u_p, u_{p+1}, \dots, u_{n-1})$ is the sorted sequence of kings in T. Again, denote T_v as the sub-tournament of T induced by v and the vertices after v in S'. It is required to show that

$$v \text{ is a king in } T_v \text{ for all } v \in \{u_1, u_2, \cdots, u_{p-1}, u, u_p, u_{p+1}, \cdots, u_{n-1}\}$$
 (1)

Clearly, condition (1) is true for all $v \in \{u_p, u_{p+1}, \dots, u_{n-1}\}$. By Lemma 2, condition (1) is also true for v = u. Now, we consider $v = u_i \in \{u_1, u_2, \dots, u_{p-1}\}$. By induction hypothesis, u_i is a king of the sub-tournament induced by $\{u_i, \dots, u_{p-1}, u_p, \dots, u_{n-1}\}$, together with $u_i \to u, u_i$ is still a king of the sub-tournament induced by $\{u_i, \dots, u_{p-1}, u_p, \dots, u_{n-1}\}$.

Based on Theorem 1, we can easily derive an algorithm that successively inserts a vertex to a partial sorted sequence of kings. The key is to find a king in each sub-tournament. The following theorem provides an efficient way to determine such a king.

Theorem 2 [3]: Let u be a vertex with the maximum out-degree in a tournament T = (V, A). Then u is a king.

Proof: Suppose u is not a king. Then there is a vertex v such that $(v, u) \in A$ and that $(v, w) \in A$ for every vertex $w \in out(u) = \{v \in T, u \to v\}$. This implies that |out(v)| > |out(u)|, a contradiction.

We follow closely the proofs of Theorems 1 and 2 to generate a king sequence and a sorted sequence of kings in a tournament, respectively. The algorithm consists of three modules applied in sequence: OUT-DEGREE, KING-SEQUENCE, and KING-SORT. OUT-DEGREE computes the out degree of each vertex u and stores it in O(u). KING-SEQUENCE generates a king sequence stored in an array B such that B[i] is a king of sub-tournament $\{B[i], B[i + 1], ..., B[n]\}$ for i = 1, 2, ..., n. KING-SORT successively inserts B[i] into a sorted sub-sequence of kings (B[i + 1], B[i + 2], ..., B[n]) for i = n - 1, n - 2, ..., 1. Assume that T = (V, A) is a given tournament such that |V| = n.

OUT-DEGREE

- 1 $O(u) \leftarrow 0$, for each $u \in V$
- 2 for each $e = (u, v) \in A$
- 3 do $O(u) \leftarrow O(u) + 1$

KING-SEQUENCE

1 for i = 1 to n2 do $B[i] \leftarrow king$, where $O(king) = \max_{v \in V} \{O(v)\}$ 3 $O(king) \leftarrow -1$ 4 for each $e = (u, king) \in A$ such that O(u) > 05 do $O(u) \leftarrow O(u) - 1$

KING-SORT

Figure 1: A sample tournament

Theorem 3: The overall complexity of the algorithm is $\Theta(|V|^2)$.

Proof: The complexity of OUT-DEGREE is $\Theta(|A|)$. In KING-SEQUENCE, the cost of decrementing O(u) is $\Theta(|A|)$. The cost of searching for new kings in |V| sub-tournaments is $\Theta(|V|^2)$. Note that at each round only one king is selected although several kings may exist. The complexity of KING-SORT is $\Theta(|V|^2)$. Therefore, the overall complexity is $\Theta(|V|^2 + |A|) = \Theta(|V|^2)$.

Consider a sample tournament of six players $\{u_1, u_2, u_3, u_4, u_5, u_6\}$. Figure 1 shows the graph representation of the tournament. Applying the OUT-DEGREE algorithm, we have $(O(u_1), O(u_2), O(u_3), O(u_4), O(u_5), O(u_6)) = (4, 1, 4, 3, 2, 1)$. A step by step application of KING-SEQUENCE to generate B[1...6] is shown as follows:

Therefore, the resultant king sequence is $B[1...6] = [u_1, u_3, u_4, u_2, u_5, u_6]$. A step by step application of KING-SORT to B[1...6] is shown as follows:

- 1. $u_1, u_3, u_4, u_2, u_5 \to u_6$
- 2. $u_1, u_3, u_4, u_2 \to u_5 \to u_6$
- 3. $u_1, u_3, u_4 \rightarrow u_2 \rightarrow u_5 \rightarrow u_6$
- 4. $u_1, u_4 \rightarrow u_3 \rightarrow u_2 \rightarrow u_5 \rightarrow u_6$
- 5. $u_1 \rightarrow u_4 \rightarrow u_3 \rightarrow u_2 \rightarrow u_5 \rightarrow u_6$

The final sorted sequence of kings is $u_1 \rightarrow u_4 \rightarrow u_3 \rightarrow u_2 \rightarrow u_5 \rightarrow u_6$. Note that in general the sorted sequence of kings is not unique. For example, $u_3 \rightarrow u_1 \rightarrow u_4 \rightarrow u_2 \rightarrow u_5 \rightarrow u_6$ is another sorted sequence of kings for Figure 1.

References

- [1] H. G. Landau. On dominance relations and the structure of animal societies, III: The condition for score structure. *Bull. Math. Biophys.* 15, 1953, 143-148.
- [2] W. Lou, J. Wu, and L. Sheng. On the existence of a sorting sequence of kings in a tournament. Thirty-First Southeastern International Conference on Combinatorics, Graph Theorey, & Computing. March 2000, (Abstract only).
- [3] D. B. West. Introduction to Graph Theory. Prentice Hall. 1996.