An Efficient Sorting Algorithm for a Sequence of Kings in a Tournament

Jie Wu
Department of Computer Science and Engineering
Florida Atlantic University
Boca Raton, FL 33431
Li Sheng
Department of Mathematics and Computer Science
Drexel University
Philadelphia, PA 19104

A king u in a tournament is a player who beats any other player v directly or indirectly. That is, either $u \rightarrow v$ (u beats v) or there exists a third player w such that $u \rightarrow w$ and $w \rightarrow v$. A sorted sequence of kings in a tournament of n players is a sequence of players, $S=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$, such that $u_{i} \rightarrow u_{i+1}$ and u_{i} is a king in sub-tournament $T_{u_{i}}=$ $\left\{u_{i}, u_{i+1}, \ldots, u_{n}\right\}$ for $i=1,2, \ldots, n-1$. The existence of a sorted sequence of kings in any tournament is shown in [2] where a sorting algorithm with a complexity of $\Theta\left(n^{3}\right)$ is given. In this paper, we present another constructive proof for the existence of a sorted sequence of kings of a tournament and propose an efficient algorithm with a complexity of $\Theta\left(n^{2}\right)$.

Keywords: King, sorting algorithm, tournament.

A directed graph with a complete underlying graph is called a tournament [3], representing a tournament of $n(\geq 1)$ players where every two players compete to decide the winner (and the loser) between them. A king u in a tournament is a player who beats any other player v directly or indirectly. That is, either $u \rightarrow v$ (u beats v) or there exists a third player w such that $u \rightarrow w$ and $w \rightarrow v$. The notion of sorted sequence of kings was proposed by J . Wu as an approximation for ranking players in a tournament. Specifically, a sorted sequence of kings in a tournament of n players is a sequence of players, $S=\left(u_{1}, u_{2}\right.$, \ldots, u_{n}), such that $u_{i} \rightarrow u_{i+1}$ and u_{i} is a king in sub-tournament $T_{u_{i}}=\left\{u_{i}, u_{i+1}, \ldots, u_{n}\right\}$ for $i=1,2, \ldots, n-1$. The existence of a sorted sequence of kings in any tournament is shown in [2] where a sorting algorithm with a complexity of $\Theta\left(n^{3}\right)$ is given. In this paper, we present another constructive proof for the existence of a sorted sequence of kings of a tournament and propose an efficient algorithm with a complexity of $\Theta\left(n^{2}\right)$.

Lemma 1: ([1]) Every tournament has a king.
Lemma 2: If u is a king for some tournament T and let $T^{\prime} \subseteq$ in $(u)=\{v \in T: v \rightarrow u\}$, then u is still a king in the sub-tournament induced by $T \backslash T^{\prime}$.

Proof: The only case that needs to be considered is when u beats some vertex $v \in T \backslash T^{\prime}$ indirectly in T. In this case, there exists a vertex w so that $u \rightarrow w$ and $w \rightarrow v$. Clearly, $w \notin T^{\prime}$. Therefore, u still beats v indirectly in $T \backslash T^{\prime}$.

Theorem 1: Sorted sequence of kings exists in any tournament T of n players.
Proof: We prove the theorem by induction on n. Clearly, it is true for $n=1$. Assume that the theorem is true for $n-1$, we will show for the case of n. By Lemma 1 we can pick a king of T, say u, and by induction hypothesis, we can also assume that $S=\left(u_{1}, u_{2}, \cdots, u_{n-1}\right)$ is a sorted sequence of kings of sub-tournament $T \backslash\{u\}$. We shall show that u can be inserted into sequence S without changing any relative position of the vertices in S.

Suppose $p(1 \leq p \leq n-1)$ is the first index such that $u \rightarrow u_{p}$ (such u_{p} always exists because u is a king of $T)$. We shall show that $S^{\prime}=\left(u_{1}, u_{2}, \cdots, u_{p-1}, u, u_{p}, u_{p+1}, \cdots, u_{n-1}\right)$ is the sorted sequence of kings in T. Again, denote T_{v} as the sub-tournament of T induced by v and the vertices after v in S^{\prime}. It is required to show that
v is a king in T_{v} for all $v \in\left\{u_{1}, u_{2}, \cdots, u_{p-1}, u, u_{p}, u_{p+1}, \cdots, u_{n-1}\right\}$
Clearly, condition (1) is true for all $v \in\left\{u_{p}, u_{p+1}, \cdots, u_{n-1}\right\}$. By Lemma 2, condition (1) is also true for $v=u$. Now, we consider $v=u_{i} \in\left\{u_{1}, u_{2}, \ldots, u_{p-1}\right\}$. By induction hypothesis, u_{i} is a king of the sub-tournament induced by $\left\{u_{i}, \cdots, u_{p-1}, u_{p}, \cdots, u_{n-1}\right\}$, together with $u_{i} \rightarrow u, u_{i}$ is still a king of the sub-tournament induced by $\left\{u_{i}, \cdots, u_{p-1}, u, u_{p}, \cdots, u_{n-1}\right\}$.

Based on Theorem 1, we can easily derive an algorithm that successively inserts a vertex to a partial sorted sequence of kings. The key is to find a king in each sub-tournament. The following theorem provides an efficient way to determine such a king.

Theorem 2 [3]: Let u be a vertex with the maximum out-degree in a tournament $T=(V, A)$. Then u is a king.

Proof: Suppose u is not a king. Then there is a vertex v such that $(v, u) \in A$ and that $(v, w) \in A$ for every vertex $w \in \operatorname{out}(u)=\{v \in T, u \rightarrow v\}$. This implies that $|\operatorname{out}(v)|>$ $|o u t(u)|$, a contradiction.

We follow closely the proofs of Theorems 1 and 2 to generate a king sequence and a sorted sequence of kings in a tournament, respectively. The algorithm consists of three modules applied in sequence: OUT-DEGREE, KING-SEQUENCE, and KING-SORT. OUT-DEGREE computes the out degree of each vertex u and stores it in $O(u)$. KING-SEQUENCE generates a king sequence stored in an array B such that $B[i]$ is a king of sub-tournament $\{B[i], B[i+1], \ldots, B[n]\}$ for $i=1,2, \ldots, n$. KING-SORT successively inserts $B[i]$ into a sorted sub-sequence of kings $(B[i+1], B[i+2], \ldots, B[n])$ for $i=n-1, n-2, \ldots, 1$. Assume that $T=(V, A)$ is a given tournament such that $|V|=n$.

OUT-DEGREE

$1 \quad O(u) \longleftarrow 0$, for each $u \in V$
2 for each $e=(u, v) \in A$
$3 \quad$ do $O(u) \leftarrow O(u)+1$

KING-SEQUENCE

1 for $i=1$ to n
$2 \quad$ do $B[i] \longleftarrow$ king, where $O($ king $)=\max _{v \in V}\{O(v)\}$
$3 \quad O($ king $) \longleftarrow-1$
4 for each $e=(u$, king $) \in A$ such that $O(u)>0$
$5 \quad$ do $O(u) \longleftarrow O(u)-1$

KING-SORT
1 for $i=n-1$ downto 1
$2 \quad$ do king $\longleftarrow B[i]$

$$
\text { for } j=i+1 \text { to } n
$$

do if $B[j] \rightarrow k i n g$ then $B[j-1] \longleftarrow B[j]$ else $B[j-1] \longleftarrow k i n g$

Figure 1: A sample tournament

Theorem 3: The overall complexity of the algorithm is $\Theta\left(|V|^{2}\right)$.
Proof: The complexity of OUT-DEGREE is $\Theta(|A|)$. In KING-SEQUENCE, the cost of decrementing $O(u)$ is $\Theta(|A|)$. The cost of searching for new kings in $|V|$ sub-tournaments is $\Theta\left(|V|^{2}\right)$. Note that at each round only one king is selected although several kings may exist. The complexity of KING-SORT is $\Theta\left(|V|^{2}\right)$. Therefore, the overall complexity is $\Theta\left(|V|^{2}+|A|\right)=\Theta\left(|V|^{2}\right)$.

Consider a sample tournament of six players $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$. Figure 1 shows the graph representation of the tournament. Applying the OUT-DEGREE algorithm, we have $\left(O\left(u_{1}\right), O\left(u_{2}\right), O\left(u_{3}\right), O\left(u_{4}\right), O\left(u_{5}\right), O\left(u_{6}\right)\right)=(4,1,4,3,2,1)$. A step by step application of KING-SEQUENCE to generate $B[1 \ldots 6]$ is shown as follows:

$$
\begin{array}{llll}
(4,1,4,3,2,1) & \xrightarrow{u_{1}}(-1,1,3,3,2,1) & \xrightarrow{u_{3}}(-1,1,-1,2,2,1) & \xrightarrow{u_{4}} \\
(-1,1,-1,-1,1,1) & \xrightarrow{u_{2}}(-1,-1,-1,-1,1,0) & \xrightarrow{u_{5}}(-1,-1,-1,-1,-1, \mathbf{0}) & \xrightarrow{u_{6}}
\end{array}
$$

Therefore, the resultant king sequence is $B[1 \ldots 6]=\left[u_{1}, u_{3}, u_{4}, u_{2}, u_{5}, u_{6}\right]$. A step by step application of KING-SORT to $B[1 . . .6]$ is shown as follows:

1. $u_{1}, u_{3}, u_{4}, u_{2}, u_{5} \rightarrow u_{6}$
2. $u_{1}, u_{3}, u_{4}, u_{2} \rightarrow u_{5} \rightarrow u_{6}$
3. $u_{1}, u_{3}, u_{4} \rightarrow u_{2} \rightarrow u_{5} \rightarrow u_{6}$
4. $u_{1}, u_{4} \rightarrow u_{3} \rightarrow u_{2} \rightarrow u_{5} \rightarrow u_{6}$
5. $u_{1} \rightarrow u_{4} \rightarrow u_{3} \rightarrow u_{2} \rightarrow u_{5} \rightarrow u_{6}$

The final sorted sequence of kings is $u_{1} \rightarrow u_{4} \rightarrow u_{3} \rightarrow u_{2} \rightarrow u_{5} \rightarrow u_{6}$. Note that in general the sorted sequence of kings is not unique. For example, $u_{3} \rightarrow u_{1} \rightarrow u_{4} \rightarrow u_{2} \rightarrow$ $u_{5} \rightarrow u_{6}$ is another sorted sequence of kings for Figure 1.

References

[1] H. G. Landau. On dominance relations and the structure of animal societies, III: The condition for score structure. Bull. Math. Biophys. 15, 1953, 143-148.
[2] W. Lou, J. Wu, and L. Sheng. On the existence of a sorting sequence of kings in a tournament. Thirty-First Southeastern International Conference on Combinatorics, Graph Theorey, \mathfrak{G}^{3} Computing. March 2000, (Abstract only).
[3] D. B. West. Introduction to Graph Theory. Prentice Hall. 1996.

