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Abstract

With the increasing popularity of cloud computing, there is increased moti-
vation to outsource data services to the cloud to save money. An important
problem in such an environment is to protect user privacy while querying
data from the cloud. To address this problem, researchers have proposed
several techniques. However, existing techniques incur heavy computational
and bandwidth related costs, which will be unacceptable to users. In this
paper, we propose a cooperative private searching (COPS) protocol that pro-
vides the same privacy protections as prior protocols, but with much lower
overhead. Our protocol allows multiple users to combine their queries to re-
duce the querying cost while protecting their privacy. Extensive evaluations
have been conducted on both analytical models and on a real cloud environ-
ment to examine the effectiveness of our protocol. Our simulation results
show that the proposed protocol reduces computational costs by 80% and
bandwidth cost by 37%, even when only five users query data.
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1. Introduction

Cloud computing as an emerging technology has attracted a lot of atten-
tion in recent years. The benefits of utilizing the cloud (lower operating costs,
elasticity, and so on) come with a tradeoff. Users will have to entrust their
data to a potentially untrustworthy cloud provider. As a result, cloud secu-
rity has become an important problem for both industry and academia [1, 2].

One important security problem is the potential privacy leakages that
may occur when outsourcing data to the cloud. For instance, let us consider
the application scenario as shown in Fig. 1. When the users want to search
for some files, they will query the cloud with certain keywords. The cloud will
evaluate the query and return the necessary files to the users. During this
process, the cloud will know what files a user is interested in from observing
the query and the type of files returned to that user. Preventing a leak of this
type of information to the cloud is difficult since the cloud must have access
to the information to efficiently return the appropriate files to the users.

A naive solution to this problem is for the user to request all of the files
from the cloud. While this does provide the necessary privacy, the overhead
will be excessive. More efficient protocols, known as private searching proto-
cols, have been proposed [3, 4, 5, 6, 7, 8, 9] to address this problem. In the
private searching protocol, files stored in the cloud are in the clear forms.
The user will send a special type of query that is encrypted under Paillier
cryptography [10] to the cloud so that the cloud never learns what keywords
the users are searching for. Using the homomorphic properties of Paillier
cryptography, the cloud will be able to return the appropriate files to the
user without knowing which files have been returned.

However, to protect user privacy, a private searching protocol must re-
quire the cloud to process the encrypted query on every file in a collection.
Omitting any file will inform the cloud that particular file is not related to
the user’s query and leak privacy. Therefore, it will quickly become a perfor-
mance bottleneck when the cloud needs to process thousands of queries over
a collection of hundreds of thousands of files. Alternatively, if we can com-
bine more than one queries together, we can save the overhead by reducing
the number of queries that the server has to process.

In this paper, we propose a new private searching protocol termed CO-
operative Private Searching (COPS). This protocol reduces the computation
and communication costs while providing similar privacy protection as in
prior protocols. Our solution introduces an aggregation and distribution layer
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Figure 1: Application scenario. Files Fy, F5, and F3 stored in the cloud are described with
keywords “Wireless sensor network, Coverage”, “Cloud computing, Security”, and “Cryp-
tography”, respectively. Alice uses keywords “Wireless sensor network, Cloud computing”,
and Bob uses keywords “Cryptography, Security” to query data from the cloud.

(ADL)-a middleware layer between the users and the cloud. Users will first
send their queries to the ADL, which will combine queries and query the
cloud on the users’ behalf. In this way, the cloud needs to execute query
only once to return files matching all users’ queries to the ADL. Further-
more, under the ADL, the files interested by many users need to be returned
only once. Thus, the communication cost will also be reduced. For exam-
ple, Alice and Bob first send their queries to the ADL, which will send to
the cloud a combined query containing keywords “Wireless sensor network,
Cloud computing, Cryptography, Security”. Given the combined query, the
cloud only needs to execute the private search once to return {|Fi|, |Fs|, |F3|}
to the ADL, which will return {|F}|, |Fz|} to Alice and {|Fy|, |F5|} to Bob.
Here, the computation and communication costs at the cloud are saved by
50% and 25%, respectively, compared to existing private searching protocols.

We envision that an ADL will be deployed in medium and large orga-
nizations that have outsourced their data operations to a cloud. Such or-
ganizations have thousands of users querying the cloud, and thus will have
an incentive to reduce the querying cost. The ADL is analogous to a web
cache or proxy server maintained by the organization and can be configured
based on different policies. An organization that is concerned with cost for
instance, can require the ADL to wait for a longer period of time to aggre-
gate sufficient queries before querying the cloud. A key feature of the COPS
protocol is that every user’s privacy is protected from the cloud, the ADL,



as well as from other users.

Our protocol is suitable for a cost-effective environment, where the user
can tolerate a certain delay while retrieving information from the cloud in
order to reduce cost. The COPS protocol will incur some processing delay
for aggregating queries. However, the degree of aggregation can be controlled
through a time-out mechanism to meet a given processing delay requirement.
When the time-out is set to zero, this is degraded to the sequential queries.

The COPS protocol allows us to provide the same privacy protection at
a much lower cost. The simulation results show that our protocol reduces
computational costs by 80% and bandwidth cost by 37%, even when only
five users query data from the cloud simultaneously. We make the following
contributions in this paper:

1. To the best of our knowledge, the COPS protocol is the first cooperative
private searching protocol for a cloud environment. The COPS protocol
introduces an ADL to aggregate multiple queries and to divide results
to each user, which outperforms existing private searching protocols
while providing the same privacy protection as before.

2. We thoroughly analyze the security and complexity of the COPS pro-
tocol. Our protocol protects user query privacy from the cloud, the
ADL, and other users.

3. Extensive experiments are performed using a combination of simula-
tions and real cloud deployments to validate our schemes. Simulation
experiments indicate that our protocol performs better than the ex-
isting scheme, even when there are only few users executing searches
simultaneously.

The remainder of this paper is organized as follows: We introduce related
work in Section 2 and present technical preliminaries in Section 3. Then, we
describe the COPS protocol scheme in Section 4 and theoretically analyze
its performance and security in Section 5. Next, we evaluate the perfor-
mance of the COPS protocol in Section 6 and provide additional discussion
in Section 7. Finally, we conclude this paper in Section 8.

2. Related work

Our work is on protecting user privacy while searching data on untrusted
servers. User privacy can be classified into search privacy and access privacy
[11]. Search privacy means that the servers knows nothing about what the
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user are searching for, and access privacy means that the cloud knows nothing
about which files are returned to the user. There has been a lot of work
conducted in this field including private searching [3, 4, 5, 6, 7, 8, 9], private
information retrieval (PIR) [12, 13, 14], and searchable encryption [15, 16,
17, 18, 19, 20], where user privacy can be protected in private searching and
PIR, but only search privacy can be protected in searchable encryption.

Private searching was first proposed by [3] (also referred to as the Os-
trovsky protocol), where data is stored in the clear form, and the query is
encrypted with the Paillier cryptosystem [10] that exhibits the homomorphic
properties. The server processes the encrypted query on each file and stores
the encrypted file into a compact buffer, with which the user can successfully
recover all wanted files with high probability. Since the query and the results
are encrypted under the user’s public key, the server cannot know the user’s
interests. The key merit of their work is that the buffer size depends on the
number of files matching the query and is independent of the number of files
stored on the server. Therefore, private searching can provide the same level
of privacy as downloading entire database from the server while incurring
significantly less communication costs. Among various extensions, the work
by [4, 5] reduced the communication cost by solving a set of linear equa-
tions to recover data; the work by [6] and [7] presented an efficient decoding
mechanism for private searching; the work by [8] applied private searching to
achieve public shuffling; and the work by [9] used private searching to protect
user query privacy in MapReduce [21, 22]. The main drawback of existing
private searching protocols is that both the computation /communication cost
will grow linearly with the number of users executing searches.

PIR was first introduced in [12], where the data is viewed as an n-bit
string * = x129,...,2,, and a user retrieves the bit x; while keeping the
index ¢ private from the database by accessing multiple replicated database
copies. The work by [13] provided a single-database PIR protocol to further
reduce incurred communication costs. Recently, the work by [14] applied
the private information retrieval technique to a relational database by hiding
sensitive constants contained in the predicates of a query. There are two main
differences between PIR and private searching. First, the communication
costs in existing PIR schemes depend on the size of the entire database other
than the size of retrieved messages. Second, PIR is first proposed to let a user
to retrieve a bit from a database without letting the database know which
bit is retrieved. Although some work addressed the problem of retrieval files
by keywords, none of them can support multi-keyword search.



Searchable encryption may be viewed as the flip side of private searching
and PIR, where the user conducts searches on encrypted data. Searchable
encryption was first proposed by [15], where both the user query as well
as the data is encrypted under a symmetric key setting. Therefore, only
the users with the symmetric key can encrypt data and generate queries.
The work by [16] proposed the first public key-based searchable encryption
protocol, where anyone with the public key can encrypt data, but only users
with the private key can generate queries. The work by [17] first used the
Bloom filter to build an index of keywords for each file. The work by [18§]
also developed a similar per-file index protocol. The work by [19] encrypts
files and queries with Order Preserving Symmetric Encryption (OPSE) [23]
and utilizes keyword frequency to rank results; the later work by [20] uses the
secure KNN technique [24] to rank results based on inner products. The main
difference between all these work and ours is that in searchable encryption
the cloud will know which files (file identifiers) are returned to each user,
even if the file contents are encrypted. Thus, the cloud may deduce whether
two users are interested in the same files.

Our protocol is built on top of the private searching technique. We
propose a protocol to enable many users to cooperatively execute private
searches to reduce both computation and communication costs.

3. Preliminaries

In this section, we will first formulate the problem for this work, and then
provide the security requirements. Finally, we will outline the Ostrovsky
protocol, which serves as a base of the COPS protocol.

3.1. Problem formulation

We consider a cost-effective cloud environment where a user can tolerate
a certain delay while retrieving information from the cloud in order to reduce
cost. Many unencrypted files are stored in a potentially untrusted cloud. The
users can query the cloud to retrieve files that they are interested in. When
the users do not want the cloud to know their interests, the private searching
technique can be adopted to protect user query privacy.

Now suppose there are n users, where each user issues a query to the cloud
using the private searching protocol. If each user independently requests the
data from the cloud, the cloud needs to execute private searches n times,
and return results to n users, respectively. Fig. 2 shows that both the
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Figure 2: Computation/communication costs in existing protocols. There are 1,000 files
stored in the cloud. Each file is described by 1-5 keywords, and each user randomly chooses
1-5 keywords from a dictionary of 1,000 keywords.

computation and communication costs at the cloud grow linearly with the
number of users in private searching protocols.

In this paper, we propose the COPS protocol that introduces an aggrega-
tion and distribution layer (ADL) that acts like an aggregator and distributor
as shown in Fig 3. The ADL is deployed in an medium and large organi-
zation that have outsourced their data operations to a cloud. For ease of
explanation, in this paper, we only use a single ADL, but multiple ADLs
can be deployed as necessary. The users, who want to retrieve files that they
are interested in, form a group. Each user will first send their queries to the
ADL, which will in turn query the cloud on the users’ behalf and return the
appropriate files to each user. In this way, the computational cost at the
cloud will be largely reduced, since the cloud needs to execute the private
search only once, no matter the number of users. The communication cost
at the cloud will also be largely reduced, since all users conceivably have
common interests and the number of files matching all users’ queries will not
grow linearly with the number of users.

3.2. Security and privacy requirements

Our goal is to protect each user’s privacy while querying data in the
cloud. The communication channels are assumed to be secured under existing
security protocols such as SSL to protect user privacy during information
transferring. There are three types of adversaries: the cloud, the ADL, and
other users. The cloud operated by a third party may leak user privacy for
making profits. The ADL as an aggregator will collect all messages and may
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Figure 3: System model of COPS protocol.

become a bigger target. To avoid possible information leaking, it is required
to hide user privacy from the ADL. A small number of malicious users may
want to know other users’ privacy. These adversaries are assumed to be
honest but curious. That is, they will obey our protocol, but they still want
to know some additional information.

The ADL is assumed to not collude with any other entities. However,
malicious users may either work together or collude with the cloud to know
other users’ interests. This assumption is reasonable, since the ADL, main-
tained by the organization, is reliable and independent, and thus has no
incentive to collude with other entities during our protocol. This assump-
tion has also been made in previous research by other researchers, e.g., the
proxy re-encryption systems [25, 26], where the proxy server is assumed to
not collude with other entity to ensure system-wide security.

We consider our protocol to fail if any of the following cases is true:

Case 1. The cloud knows keywords or file contents queried by any user.

Case 2. The ADL knows keywords or file contents queried by any user.

Case 3. The user knows keywords or file contents queried by other users.

3.3. Qutline of the Ostrovsky protocol

The Ostrovsky protocol [3] relies on a public key cryptosystem, Paillier
cryptosystem [10]. Let E(m) denote the encryption of a plaintext m. The
Paillier cryptosystem has the following homomorphic properties:

e E(a)- E(b) =FE(a+Db)
e E(a)=FE(a-b)

The homomorphic properties are achieved as follows: the ciphertexts of
a and b can be considered as ¢ and ¢°, where ¢ is a random generator.
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Figure 4: Working processes of the Ostrovsky protocol and COPS protocol.

a

g* - g® = ¢t ie., the product of ciphertexts of a and b is equal to the
ciphertext of a + b; (¢%)° = ¢*?, i.e., the ciphertext of a to the power of b is
equal to the ciphertext of a - b.

With the Paillier cryptosystem, the Ostrovsky protocol enables the cloud
to perform certain operations, such as multiplication and exponentiation,
on ciphertext directly. Given the resultant ciphertext, the user can obtain
the corresponding plaintext that is processed addition and multiplication
operations. We briefly outline the working process of the Ostrovsky protocol
while many users are querying data from the cloud, as shown in Fig. 4-(a).

Step 1: Fach user runs the QueryGen algorithm to send an encrypted
query to the cloud. Based on a public dictionary Dic that consists of an
array of keywords, user ¢ generates a query (J;, where each entry is set to 1 if
corresponding keyword in Dic is chosen, otherwise the entry will be 0. Then,
the user encrypts each entry of the query with the Paillier cryptosystem
under his public key. The query is an array of encrypted Os and 1s. Since
the Paillier cryptosystem is semantically secure, the ciphertext of every 1 or
0 is different from other 1s or 0s. Therefore, given the encrypted query, the
cloud cannot guess the user’s interest. The encrypted query as well as the
estimated number of files matching the query will be sent to the cloud.

Step 2: The cloud runs the PrivateSearch algorithm to return a compact
buffer to each user. For each user’s query, the cloud needs to execute the
private search once as follows: the cloud processes the encrypted query on
each file stored on the servers to obtain the encrypted file, and stores the
ciphertext into an encrypted buffer, which will be returned to the user. To
reduce the communication cost, the number of buffer entries (also referred to



as buffer size) only depends on the number of files matching the query, which
is smaller than the number of files stored in the cloud. Thus, it is unavoidable
that one entry may store more than one file. Due to the homomorphic
properties of the Paillier cryptosystem, each file mismatching the query is
encrypted to 0, which has no impact on the matched files, even if they are
stored in the same entry. Although a collision will result and all files will be
lost if more than one matched file is stored in the same entry, it is proven
that all matched files can be recovered with high probability, when each
file is mapped multiple times into a sufficiently large buffer. The buffer
size is determined as follows: if user ¢ wants to retrieve f; files with a failure
probability that is smaller than p, each file should be mapped log(f;/p) times
randomly into a buffer of size 2f; - log(f;/p).

Step 3: Fach user runs the FileRecover algorithm to recover matched files.
Given the buffer, each user uses his private key to decrypt the buffer entry
by entry to recover files.

Since the query and the results are encrypted under the user’s public key,
and the cloud processes each file similarly, the user can protect his query
privacy from the cloud. This protocol also provides a collision-detection
mechanism to let the user get rid of the conflicted file copies. We refer the
readers to [3] for more details.

4. COPS protocol

In this section, we will first provide an overview for the COPS protocol,
and then describe how the system is set up. Finally, we will describe the
working process of the COPS protocol in detail.

4.1. Overview

Our basic idea is to introduce an ADL to combine user queries and divide
appropriate results to each user. The users, who want to retrieve files that
they are interested in, form a group, where each member shares a group
public/private key pair. Asin [3], we assume that the ADL is able to estimate
the number of files matching the query.

As illustrated previously, the main reason for introducing an ADL to
combine queries and divide results is to save both computation and commu-
nication costs. We require the ADL to divide appropriate results to each user
instead of simply returning everything to protect user privacy. For example,
the results contain two files {|F}|, |F3|}, where |F}| is wanted by Alice, and
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|F3| is wanted by Bob. If the ADL directly passes {|Fi|,|Fs|} to Alice and
Bob, Alice will know Bob wants |F3|. The same case holds true for Bob.

Our protocol consists of five steps (see Fig. 4-(b)), where the second step
(running QueryMerge algorithm) and the fourth step (running ResultDivide
algorithm), executed by the ADL are newly added.

Step 1: Each user runs the QueryGen algorithm to send a shuffled query
to the ADL. The query is an array of Os and 1s as in [3]. To protect each
user’s query from the ADL, our protocol requires each user to shuffle his
query with a shuffle function. Since the ADL does not know the secret seed
of the shuffle function, the ADL cannot deduce the unshuffled query to know
what each user is searching for.

Step 2: The ADL runs the QueryMerge algorithm to send a combined
query to the cloud. The ADL executes OR operations on user queries entry
by entry to obtain a merged query. Since each user’s query is an array
of Os and 1s, the merged query is also an array of Os and 1s. Then, the
ADL encrypts each entry of the merged query with the Paillier cryptosystem
under its own public key. The encrypted query, the number of keywords in
the merged query, and the estimated number of files matching the merged
query will be sent to the cloud.

Step 3: The cloud runs the PrivateSearch algorithm to return two compact
buffers to the ADL. Since the merged query is encrypted under the ADL’s
public key, after processing the merged query on each file, each file is also
encrypted under the ADL’s public key. To protect file information from the
ADL, we design a new mechanism as follows: The cloud uses a pseudonym
function to replace the file name with the file pseudonym, and uses obfus-
cate functions to add some obfuscate factors to the file content. Without
the secret seeds of these functions, the ADL cannot deduce the file names or
the file contents. To enable the ADL to correctly distribute appropriate file
pseudonyms and obfuscated file contents for each user, the cloud first shuffies
the dictionary, and then constructs two buffers: file pseudonym buffer and
file content buffer. The positions of the file pseudonym in the file pseudonym
buffer are determined by a set of map functions and the positions of the file
keywords in the shuffled dictionary. The positions of the obfuscated file con-
tent in the file content buffer are determined by another set of map functions
and the file psecudonym. These map functions are publicly available.

Step 4: The ADL runs the ResultDivide algorithm to divide appropriate
results to each user. The ADL first decrypts each entry of the two buffers
sequently using its private key to obtain file pseudonyms and obfuscated file
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contents. Given each user’s shuffled query and a set of map functions, the
ADL can find pseudonyms of files wanted by this user. For this type of map
functions, the input is the location of the keyword in the shuffled query and
output is the locations of file pseudonym buffer that store pseudonyms of files
containing such a keyword. Then, given each file pseudonym and another set
of map functions, the ADL can find obfuscated file contents wanted by this
user. For this type of map functions, the input is the file pseudonym and
output is the locations of file content buffer that stores obfuscated file content
with such a pseudonym.

Step 5: Fach user runs the FileRecover algorithm to recover matched
files. After obtaining the obfuscated file contents from the ADL, the user
only needs to remove the obfuscate factors to recover the file contents.

4.2. System setup

The system setting of the COPS protocol is as follows: There are t files
{Fi,..., F} stored in the cloud. Each file F; can be described by keyword
set Wi, where ¢ € {1,...,t} denotes a file index. Each keyword w exists in
a public dictionary Dic that consists of an array of d keywords (wy, ..., wg).
Suppose n users constitute a group that shares a group public/private key
pair (PKg,SKg) Let (PKADLaSKADL) and (PKcloudaSKcloud) denote the
public/private key pairs of the ADL and the cloud, respectively. The sum-
mary of notations used in the COPS protocol is shown in Table 1.

Then, we describe the properties of functions used in the COPS protocol
as follows, the definitions of which will be provided in Appendix A. In
summary, there are three kinds of functions can be only executed by the
cloud and the user, i.e., shuffle function, pseudonym function, and obfuscate
function. Each function has its own unique secret seed. Therefore, there
are four secret seeds shared between the users and the cloud. Since all users
are in the same organization, the organization will manage and distribute
the secrets. When a new user join in, the organization will distribute the
secret seed to him off-line. This process can be analogous to an organization
providing the password to a new user. The secret seed should be changed
periodically. The rate of change is a system-defined parameter which out the
scope of this paper.

o Shuffle function F1(s1,pw) is used to shuffle a query or a dictionary.

e Pseudonym function F 5(s2,1) is used to calculate the pseudonym for a
file.
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Notation Description

Dic, Did Original dictionary, Shuffied dictionary

By, By File pseudonym buffer, File content buffer

w Keyword in the dictionary

d Number of keywords in the dictionary

n Number of users

P Failure probability

K; User i’s keyword set

Q:,Q; User 4’s original query, User ¢’s Shuffled query
Q Merged query

fis f Estimated number of files matching @/, @

ki, k Number of keywords in @}, @

F,, F! File name, File pseudonym

|E3], | F5| File content, Obfuscated file content

W, F;’s keyword set

t Number of files stored in the cloud

F, File set containing keyword w

Fq, Fo Shuffle function, Pseudonym function

Fs, Fy Obfuscate functions

{hi}1<i<iogry Map functions for By

{9i1<i<iog(ry Map functions for B,

&w Concatenation of pseudonyms containing keyword w
M F;’s pseudonym

Puw Keyword w’s position in the dictionary or query
iy Ui Obfuscate factors for F;

{si}1<i<a Secret seeds shared by the cloud and the users

Table 1: Summary of Notations

e Obfuscate functions F 3(s3,m;) and F 4(s4,7;) are used to calculate a
obfuscate factor for the occurrence of user keywords in the file and a
obfuscate factor for the file content, respectively.

o Map functions {h;(0},)}1<j<iog(ry and {g; (1) }1<j<iog(s) ' are used to de-
termine the mapping locations of the file pseudonym in the file pseudonym
buffer and the mapping locations of the obfuscated file content in the

'We abbreviate log(f/p) and log(k/p) to log(f) and log(k), respectively.
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File name File keywords File content
F A, B |Fi |
Fy B,C F|
F; C,D F3|
F4 C |F4 |
Fy D | F5|

Table 2: Sample files in the cloud

Algorithm 1 Algorithms run by user ¢
QueryGen
for j=1toddo
if keyword w; € Dic is chosen by user ¢ then

Qi[j] =1
else
Qilj] =0

shuffle Q; to @} with
Message from user i to the ADL: MSGy,apr, = {Q}

FileRecover

for Each pseudonym-content pair (s, |Fy|') obtained from the ADL do
set z. = F 3(s3,7.) to be a obfuscate factor for keyword occurrence in
F
set ¥, = F 4(84,7s) to be a obfuscate factor for F,’s content
execute Eq. 6 to recover file content |F\|

file content buffer, respectively.

4.8. Protocol Description

The COPS protocol shown in Fig. 4-(B) consists of five steps. The
functions used in the COPS protocol are defined in Appendix A, and the
correctness of the COPS protocol is proven in Appendix B. We use a simple
example to illustrate its working process. The example assumes that the
original dictionary Dic = (A, B, C, D) and that the files stored in the cloud
are as in Table 2. Two users, Alice and Bob, wish to retrieve files with
keywords “A, B” and “A, C”, respectively.

Step 1: Fach user runs the QueryGen algorithm in Alg. 1 to send a
shuffled query to the ADL. The query is generated as follows: if a keyword
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w € Dic is chosen by user ¢, then the corresponding entry in @); is set to 1,
otherwise 0; then, @); is shuffled with f . Actually, this process is equivalent
to first shuffling the dictionary to Dic with f 1, and then checking whether
w; € Dic is chosen to determine the value (0 or 1) of Q;[7].

For example, Alice’s original query @ e = (1,1,0,0) and Bob’s original
query Qpo = (1,0,1,0). If the shuffle function f1(s1,1) =4, F1(s1,2) =1,
F1(s1,3) =2, Fi(s1,4) = 3, then Alice’s shuffled query Q'4;;.. = (1,0,0,1),
and Bob’s shuffled query @', = (0, 1,0, 1).

Step 2: The ADL runs the QueryMerge algorithm in Alg. 2 to send an
encrypted and combined query to the cloud. The query is generated as follows:
the ADL executes OR operations on user queries entry by entry to obtain a
combined query, and then encrypts each entry of the combined query with
its public key.

For example, the combined query Q = Q4. V Q% = (1 V0,0V
1,1v0,1Vv1) = (1,1,0,1). The encrypted query is in the form of @ =
<E<PKADL, 1), E(PKADL, 1), E(PKADL,O), E(PKADL, 1)) The ADL also
needs to estimate f, the number of files matching ), and determine k, the
number of keywords in ), to determine buffer size and mapping times. Here,
k is actually the number of 1s in Q).

Step 3: The cloud runs the PrivateSearch algorithm in Alg. 3 to return
two buffers to the ADL. Firstly, the cloud shuffles the dictionary to Dic/,
so that the position of each keyword in the shuffled dictionary matches its
position in the shuffled query. Then, it constructs two buffers B; of size
2-k-log(k) and By of size 2 f - log(f), where each entry is initialized with
(E(PKapr,0), E(PKapr,0)).

The file pseudonym buffer By is generated as follows: For each keyword
w € Dic, the cloud finds out all files containing w, denoted as F,,, calculates
the pseudonym for each file in F),, and concatenates pseudonyms of all files
in F,, (the concatenation is denoted as &,). Let p, denote the position of
keyword w in Dic’. The cloud sets ¢, with Q[p,], and powers n, to ¢, to
obtain e,,. Each keyword-pseudonym pair (cy,e,) is calculated with Eq. 1:

Cy = Q[/)w]§ Cw = Cfuw (1)

where ¢,, denotes whether w is chosen by at least one user, and e,, denotes
cw raised to the power of &,. Thus, if w is not chosen by any user, then
Qlpw] = 0, and both ¢, and e, will be encrypted to 0. Otherwise, ¢, is an
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Algorithm 2 Algorithms run by ADL

QueryMerge
for j=1toddo
Qlj] = Vi, QilJ]

encrypt Q[j] with PK apy,
set f to the estimated number of files matching @

set k to the number of keywords in )
Message from the ADL to the cloud: MSG apraciona = {Q, [, k}

ResultDivide
Decrypt By, By with SKapy,
for:=1tondo
for j=1toddo
if Qi[j] =1 then
for [ =1 to log(k) do
locate Bi[hy(j)] to obtain plaintext pair (¢, . €, )
calculate Eq. 4 to get concatenation of file pseudonyms &,
for each 7, = F 2(s9, %) in w, do
for [ =1 to log(k) do
locate Bs[gi(n:)] to obtain plaintext pair (¢, €,)
calculate Eq. 5 to get obfuscated file content |F,|
Message from the ADL to user i: MSGaprau, = {(ns, |Fi|')}

Keyword Encrypted occurrence Encrypted pseudonym

A EQ) E()% = E(L- F)

B E(1) E(1)* = E(1- F||F)

c E(1) E(1)% = E(L- Fj||F5]|F])
D E(0) E(0)® = E(0)

Table 3: Keyword-pseudonym pair

encryption of 1, and e, is an encryption of some value larger than 0. The
example pairs are generated as shown in Table. 3.

Finally, in order to return file pseudonyms matching the query, the cloud
multiplies each pair (¢, €,) to the file pseudonym buffer B; with Eq. 2:

Billi(pw)] = Billu(pw)] - (cw, w), (1 <1 < log(k)) (2)
Each entry of By is initialized with (E(PKapr,,0), E(PKapr,0)). The cloud
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Algorithm 3 Algorithms run by cloud

PrivateSearch
shuffle the dictionary to Dic’ with f

initialized each entry of Bj of size 2 -k - log(k) and By of size 2- f - log(f)

with (E(PKADL, 0), E(PKADL, 0))
for j=1toddo
for each keyword w € Dic do

set p,, to be the position of w in Did

set I, to be the file set containing keyword w

for each file F, € I, do

set 7 = F 2(S2, %) to be F,’s pseudonym

set &, to be the concatenation of file pseudonyms containing w
execute Eq. 1 to obtain (¢, €,)

for [ =1 to log(k) do
execute Eq. 2 to store (¢, e,) in the hi(p,)-th entry of By

for cach file F; do
set m; = F 2(82,1) to be the pseudonym of F;

set x; = F 3(s3,7;) to be a obfuscate factor for keyword occurrence in F;

set y; = F 4(s4,1;) to be a obfuscate factor for F;’s content
execute Eq. 3 to obtain (¢, €;)
for | =1 to log(f) do
execute Eq. 3 to store (¢, ¢;) in the g;(n;)-th entry of By
Message from the cloud to the ADL: MSGciouaapr = {B1, B2}

5 (A) £ (B) g (C) 5(D)
v ' (]+19F]'HFEI g ' '
1F 1+1,Fy"+F/||F T2 ) B[Ry [FaO 0.0
(LFY) ( EAED | e EEn (€ [F5'Fs+0))  (0,0)
iy » iy I
Success Collision Collision Collision Mismatching

recover

Figure 5: Map concatenation of file pseudonyms two times into B of five entries. a is used
to denote E(a); thus, E(a)- E(b) and E(a)® are replaced with a +b and a - b, respectively.

will multiply (cy, €,,) to the hy(py)-th entry of By, respectively. The example

&Cannot recover &Cannot recover

&Can recover

file pseudonym buffer is constructed as in Fig. 5.

The file content buffer By is generated as follows: For each file F}, the
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File name Encrypted occurrence Encrypted content
3 (E(1) - E1)™ E(2 - z)"T

=FE(2-x) =EQ2- -z -y |F1])
F E(1)- B(1))® E(2 - zy)lF2!

=F(2- 1) =E2- -x9-y2-|F1])
Fy E(1) - E(0))*s E(1 - xy) B0

— E(1-x3) = E(1-x3-ys - |F3)
F, E(1) E(1 - zg)ltl
F E(0)™ = E(0) E(0)""" = B(0)

Table 4: Occurrence-content pair

cloud calculates file pseudonym 7;, and obfuscates its content by setting
|Fy|" = |F;| - Fa(sq,m) = |Fi| - yi. Let p, denote the position of keyword
w in Dic. The cloud then multiplies the entries in @ that correspond to
file keywords to obtain the encrypted occurrence of user keywords in the file.
The cloud then obtains ¢; by powering the encrypted occurrence by z;, where
x; = F3(s3,1;). Next, the cloud raises the obfuscated file content |F;|" to ¢
to obtain the encrypted obfuscated file content e;. Each occurrence-content
pair (¢, €;) is calculated with Eq. 3:

¢ = [] B(PKapr, Qlou)™ = E(PKapr. Y Qlpu))™sei =l

weW; weW;

where ¢; denotes whether W; contains at least one keyword chosen by users,
and e; is the encryption of ¢; powered by the obfuscated file content |F;|.
Thus, if W; contains no keyword chosen by any user, then » . Q[pw] =0,
and both ¢; and e; are an encryption of 0. Otherwise, both of them are an
encryption of some values larger than 0. The example pairs are generated as
shown in Table. 4.

Finally, in order to return obfuscated file contents matching the query,
the cloud multiplies each pair (¢;, ¢;) to file content buffer By with Eq. 3:

Bolgi(mi)] = Balgi(ni)] - (cis e:), (1 <1 < log(f)) (3)

Each entry of Bs is initialized with (E(PKapr,0), E(PKapr,0)). The cloud
will multiply (¢;, e;) to the g;(n;)-th entry of Bs, respectively. The example
file content buffer is constructed as in Fig. 6.
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2F[) | +2.2[F\[42[Fa) [(+1,2[F+F3l) [(1+1,|Fs"HF4) | (1+0,[E4+0) | (0,0)

T te— _ :
Success Collision Collision  Mismatching
recover &Cannot recover &Can recover

Figure 6: Map obfuscated file content two times into By of six entries. a is used to denote
E(a); thus, E(a) - E(b) and E(a)® are replaced with a + b and a - b, respectively.

Step 4: The ADL runs the ResultDivide algorithm in Alg. 2 to distribute
obfuscated file contents to appropriate users. To ensure that each user only
obtains the files related to his query, and no files associated with other users,
the ADL has to first correctly locate file pseudonyms matching each user’s
query in Bj, and then locate obfuscated file contents associated with these
file pseudonyms in By. The file pseudonym is recovered as follows: The ADL
first checks the position of 1 in (). Suppose that the w; € Dic’ is chosen
by user i, ie., Qi[j] = 1. The ADL locates entries hl( )y Niogry (7) in
B; to obtain plamtext keyword-pseudonym pair (¢ Cus;» €, r ) If , 70, &, I8
calculated with Eq. 4:

f'wj = egvj/cgvj (4)
Then, the ADL decomposes &,,; to obtain separate file pseudonyms 2,
Suppose that 7, is a file pseudonym containing keyword w;. The ADL locates
entries g1(J), - - -, iog(s)(J) in By to obtain plaintext occurrence-content pair
(c,,e). If ¢, # 0, the obfuscated file content is calculated with Eq. 5:

|FLl = e./c, ()

In the example, the ADL first decrypts each entry of By and B,. Suppose
that all file pseudonyms and obfuscated file contents matching () can be
recovered. The ADL knows file pseudonyms matching @ 4. Will appear
in positions Bi[hi(1)], ..., Bilhiogk)(1)] and Bilhi(4)], ..., Bi[hiogw)(4)],

2Each file pseudonym can be set to log(t) bits equally, and the ADL can divide every
log(t) bits in the concatenation to obtain the separate pseudonyms.
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and matching @ o, Will appear in positions By [h1(2)], ..., Bi[hiogw)(2)], and
Bi[hi(4)], ..., Bilhiog)(4)]. It gets the concatenation of file pseudonyms
m||ne and n; for Alice, and ns||ns||ns and n; for Bob, and decomposes 7|12
and 12||ns|[n4 to n1,me and n9,m3,m4. Then, it determines that the file with
pseudonym 7; will be stored in Bs[g1(m:)], - .., BalGiog(s)(m:)], for 1 <@ < 4.
Finally, it returns {(n;, |Fi|")}iz12 to Alice and {(n;,|Fi|") }iz1234 to Bob,
respectively.

Step 5: The user runs the FileRecover algorithm in Alg. 1 to obtain
all files matching his query. Let (1., |F.|") denote a pseudonym-content pair
obtained from the ADL.

|F| = [Fi]'/F a(54,m2) (6)

Note that: (1) The user cannot obtain the file index/name from the
file pseudonym, since the pseudonym function is a one-way hash function.
Instead, the file index/name can be appended to the file content before the
cloud obfuscates the file content. After removing the obfuscate factors, the
user can extract the file name. (2) Only obfuscate function fF, is used by
the user to recover files. The obfuscate function F 3 is used to obfuscate the
number of common keywords between each file and the query.

5. Analysis

In this section, we will provide the security analysis for the COPS pro-
tocol, analyze its performance regarding computation and communication
costs, and make performance comparisons with existing works.

5.1. Security analysis

The security and privacy requirements in Section 3 are satisfied if the
following three cases are true:

Case 1. The cloud knows neither keywords nor file contents queried by
any user.

The messages between the ADL and the cloud are @), f, k, and two
buffers, where k is the only information which we leak more than the work
by [3, 5]. Note that the query @ and two buffers are encrypted under the
ADL’s public key. Therefore, even if the cloud collude with a small number
of malicious users, it cannot know what the honest users are searching for
nor which files are returned to the honest users.
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Since f is an estimated value for the number of files matching the com-
bined query, the cloud cannot know users’ interests from f. Given the ad-
ditional information k, the cloud only knows the number of total keywords
specified by the users. It cannot know what these k keywords exactly are.
Furthermore, the cloud knows a shuffle function, a pseudonym function, two
obfuscate functions, and a set of map functions. Given the shuffle function,
the cloud can shuffle the dictionary. Since the shuffle function has nothing to
do with user interests, it cannot reveal any valuable information. Given the
pseudonym function, obfuscate functions, and map functions, the cloud can
store file pseudonyms and obfuscated file contents into two buffers, respec-
tively. Since the cloud runs these functions on every file equally to generate
two buffers encrypted under the ADL’s public key, it cannot know which files
are actually of interest to the users. Therefore, Case 1 is true.

Case 2. The ADL knows neither keywords nor file contents queried by
any user.

The messages from each user to the ADL is a shuffled query Q. The
secret seed of the shuffle function is only known by the users and the cloud.
Therefore, the ADL itself cannot deduce the un-shuffled query. Given a
shuffied query @, the ADL knows k;, the number of keywords in the shuffled
query. The probability for the ADL to guess one keyword is 1/d, and all k;
keywords is (1/d)*. Given the combined query @, the ADL knows k, the
number of keywords in the merged query. The probability for the ADL to
guess one keyword is 1/d, and all k keywords is (1/d)*. When the dictionary
is large enough, it is hard for the ADL to guess each user’s interests.

The messages from the cloud to the ADL are By and Bsy. The buffers are
encrypted with the ADL’s public key, and thus the ADL can decrypt each
entry in two buffers to know file pseudonyms and obfuscated file contents.
The pseudonyms cannot reveal any valuable information. The secret seeds
of the obfuscate functions are only known by the users and the cloud, and
thus the ADL cannot remove the obfuscate factors to recover the file con-
tents. Furthermore, the ADL knows a set of map functions {hl}lglglog(k) and
{ gl}lglglog( ), which enable the ADL to know where file pseudonyms and file
contents will be stored in B; and Bs, respectively. These functions take the
shuffled keyword position or the file pseudonym as input, which cannot leak
any valuable information to the ADL. Therefore, Case 2 is true.

Case 3. The user knows neither keywords nor file contents queried by
other users.

Since the ADL can correctly divide results to each user, each user can
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only obtain its own results. Even if a small number of malicious users work
cooperatively or collude with the cloud, they cannot know other honest users’
interests. Therefore, Case 3 is true.

5.2. Performance analysis

Computational cost. The running time of the QueryGen algorithm
is negligible, since each user only needs to shuffle his query. The running
time of the FileRecover algorithm is negligible, since each user only needs to
execute O(f;) divisions.

The running time of the QueryMerge algorithm is mainly on encrypting
the combined query ) with Paillier encryption, which is O(d). The cost
is exactly the same as a user generating a query in [3, 5]. More precisely,
the QueryMerge algorithm requires d exponentiations and & multiplications.
Since the cost on exponentiations is 1000 times that of the cost on multi-
plications, we only consider the cost on exponential operations. The run-
ning time of the ResultDivide algorithm is to decrypt two buffers, which is
O(f -log(f/p) + k- log(k/p)).

The running time of the PrivateSearch algorithm mainly is on the gener-
ation of t + d pairs, which is O(t + d). The running time of the generations
of By and B requires the execution of ¢ - log(f) + d - log(k) multiplications,
which is much less than the time of the generations of pairs.

Communication cost. We first consider the communication costs at
the ADL. The communication costs can be classified into two kinds: (1) The
costs between all users and the ADL; (2) The costs between the ADL and
the cloud. In terms of the costs between all users and the ADL, the ADL
will first receive n queries from all users, which is O(|Dic|). Then, it will
distribute results to each user, which is O(}_;_, f;). In terms of the costs
between the ADL and the cloud, the ADL will first send a combined query
to the cloud, which is O(|Dic|). Then, it will receive two buffers from the
cloud, which is O(f - log(f/p) + k - log(k/p)).

During the interaction with all users, all messages are transferred through
local area networks, the speed of which is much faster than accessing Internet
and the communication cost is lower. In practice, even without any cryp-
tographic approach, the messages from each user to the cloud are forward
by organization gateway. The communication cost at the ADL is almost the
same as the cost at the gateway.

Then, We will consider the communication cost at the cloud. The transfer-
in cost of the cloud is to receive a combined query ) from the ADL, which is
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Protocl Communication Computation
Ostrovsky O, fi - log(f;)) O(n-t)
Bethencourt O(>_7, fi) O(n-t)
COPS O(f -log(f)+Ek-log(k))) O(t+d)

Table 5: Performance comparison

O(|Dicl), where | Dic| is the size of the dictionary. The transfer-out cost of the
cloud is to return two buffers to the ADL, which is O(f-log(f/p)+k-log(k/p)).

The buffer size is determined as follows: In the Ostrovsky protocol, it is
proven that if m files are stored uniformly at random ~ times into a buffer of
size 2ym, the failure probability to recover m files will be smaller than m/27.
Therefore, if we want to retrieve file pseudonyms for k£ keywords with a failure
probability that is smaller than p, we should construct a pseudonym buffer
with size 2k -log(k/p), and map each pseudonym into log(k/p) buffer entries.
If we want to retrieve the contents of f files with a failure probability that is
smaller than p, we should construct a content buffer with size 2f - log(f/p),
and map each into log(f/p) buffer entries.

We compare the computation cost and communication cost at the cloud
among our protocol, the Ostrovsky protocol, and the work by Bethencourt
et al. [5], as shown in Table 5. Suppose that there are n users querying the
cloud with failure probability p, t files stored in the cloud, f; files matching
the i-th user’s query, and f files matching the combined query.

6. Evaluation

In this section, we first conduct simulations to compare the computa-
tion/communication costs incurring at the cloud between the Ostrovsky pro-
tocol and the COPS protocol. Our simulation results are partially based
on the results in [5]. Then, based on the simulation results, we deploy our
program in Amazon Elastic Compute Cloud (EC2) to test the transfer-in
and transfer-out time at the cloud when executing private searches. The
parameters used in the experiments are summarized in Table 6.

6.1. Computation cost

As described in Section 5-(B), the computation cost in the COPS protocol
is mainly determined by the number of exponentiations, which is affected by
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Notation Description Value
|F| File content 1KB
|w| Keyword content 1KB
n Number of users 1-100
d Number of keywords in the dictionary 100-1,000
k Number of keywords in each query 1-5
Number of keywords in each file 1-5
t Number of files stored in the cloud 103
P Failure probability 0.1

Table 6: Parameters

two parameters: the number of files stored in the cloud ¢ and the number of
keywords in the dictionary d.

Given t = 1,000 is fixed, we will first compare the computation costs in
the Ostrovsky protocol and the COPS protocol under different dictionary
settings (d = 100 and d = 1,000). In each setting, there are 1 to 100 users
randomly choosing 1-5 keywords from the dictionary to execute queries. The
comparisons of computation cost at the cloud are shown in Fig. 7. While the
number of users ranges from 1 to 100, the computation cost approximately
ranges from 14.8881s to 1, 488.8s in the Ostrovsky protocol and from 14.8988s
to 14.9495s in the COPS protocol under a dictionary of 100 keywords; under
a dictionary of 1,000 keywords, it ranges approximately from 14.8494s to
1,484.7s in the Ostrovsky protocol and from 14.9559s to 15.0718s in the
COPS protocol. In both dictionary settings, the most expensive operation is
executing searches, which approximately ranges from 14.7190s to 1,471.9s in
the Ostrovsky protocol, and is approximately 14.7190s in the COPS protocol.

Therefore, our protocol consumes less computation cost than the Ostro-
vsky protocol as the number of users increases. Specifically, our protocol
performs better than the Ostrovsky protocol, even when there are only few
users executing searches. For example, the computation cost is saved by 80%
when n = 5 and by 96% when n = 25.

6.2. Communication cost

As described in Section 5-(B), given p is fixed, the communication cost
in the COPS protocol mainly depends on the number of keywords k in @)
and the number of files f matching (). From Eq. 7, we know that e, the
expected value of k, is different under different dictionary settings:
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Figure 7: Comparison of computation cost at the cloud.

er=d-(1- (1= 2y 7)
where k= Y | k;/n is the average number of keywords chosen by each user.
Thus, we will make comparisons under two dictionary settings (d = 100
and d = 1,000). Furthermore, the number of files matching queries f is
different when users have different common interests. Therefore, in each dic-
tionary setting, we will making comparisons under different common interests
as shown in Fig. 8. Here, a common interest can be calculated as follows:
Suppose that there are n users, where each user chooses k; keywords, and
the number of keywords after combination is k. Common interests can be
calculated with (30 ki —k)/ > 0 ki.

From Figs. 9 and 10, we know that our protocol performs better as
the common interests between users increase. When the dictionary contains
100 keywords, in the worst cases, where user common interest is less than
70%, the buffer size ranges from 2,478 KB to 239,840K B in the Ostrovsky
protocol, and from 2, 532K B to 36, 286 K B in the COPS protocol; in the best
cases, when user common interest is more than 80%, the buffer size ranges
from 2,525K B to 255,870K B in the Ostrovsky protocol, and from 2, 577K B
to 14,846 K B in the COPS protocol. When the dictionary contains 1,000
keywords, in the worst cases, where user common interest is less than 40%,
the buffer size ranges from 218K B to 21,337K B in the Ostrovsky protocol,
and from 270K B to 1,901 K B in the COPS protocol; in the best cases, when
user common interest is more than 80%, the buffer size ranges from 212K B
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Figure 10: Comparison of communication cost at the cloud under different common inter-
ests when the dictionary contains 1,000 keywords.

to 21,369K B in the Ostrovsky protocol, and from 265K B to 1,904.7TK B.

Therefore, we combine user queries only when they have a certain percentage
of common interests.

Specifically, our protocol performs better than the Ostrovsky protocol,

26



even when there are only few users executing searches. For example, when
the dictionary contains 100 keywords, our protocol can reduce the bandwidth
by 4% in the worst cases, and by 37% in the best cases, while only 5 users;
our protocol can reduce the bandwidth by 50% in the worst cases, and by
80% in the best cases, while only 25 users.

6.3. Transferring time in real cloud

For the sake of verifying the feasibility of the proposed protocol, we deploy
our program in the real cloud environment, Amazon EC2, to test the transfer-
in (receiving query) and transfer-out (sending buffer) time at the cloud. The
local machine is with Intel Core 2 Duo E8400 3.0 GHz CPU and 8 GB
Linux RAM. We subscribe EC2 amzn-ami-2011.02.1.i386-ebs (ami-8clfeceb)
AMI and a small type instance with the following specs: 32-bit platform, a
single virtual core equivalent to 1 compute unit CPU, and 1.7 GB RAM. The
average bandwidth from EC2 to the local machine is 33.43 MB/s, and from
the local machine to EC2 is 42.98 MB/s.

First, we will test the transfer-in time in the real cloud under different
dictionary settings (100 keywords and 1000 keywords). Since each keyword is
1K B, the query size is 100K B and 1M B under a dictionary of 100 keywords
and 1,000 keywords, respectively. The local machine will send a combined
query to the EC2 and count the transferring time. We conduct experiment
for 1000 times and take the average transferring time to eradicate any dis-
crepancies. In Fig. 11, the transfer-in time is approximately 32.8891s when
the dictionary size is 100K B and is approximately 179.2363s when the dic-
tionary size is 1M B.

Then, based on the results in Figs. 9 and 10, we test the transfer-out
time at the cloud in the COPS protocol under different common interests
and dictionary settings. In the experiments, each user chooses 1-5 keywords
from the dictionary according to normal distribution with different standard
deviations (deviation 3, deviation 15, and deviation 60). In Fig. 12, when
the dictionary contains 100 keywords, the transfer-out time is approximately
from 761s to 3,651s in the best cases, from 636s to 6,928s in the medium
cases, and from 713s to 8,066s in the worst cases; when the dictionary con-
tains 1,000 keywords, the transfer-out time is approximately from 107s to
509s in the best cases, from 138s to 1,956s in the medium cases, and from
1855 to 4,420s in the worst cases.
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Figure 12: Transfer-out time at the cloud.

7. Discussion

In this section, we will provide additional details about our further work.

Removing the ADL. The ADL in the COPS protocol can be removed
by letting users perform the function of the “ADL”. The users are first
arranged into groups. For each group, a member from a different group will
act as the ADL (see Fig. 13). The ADL can be chosen in the following way:
For each group, an ID ring is constructed as in Fig. 14, where each node has
an ID. Each user is denoted by a set of nodes in the ring, where the number
of nodes is to be determined by the capability of a user’s client, a user’s
trusted rank, and so on. Suppose the number of nodes in the ring is n. To
elect an ADL, we can randomly generate a number r, and let the user who is
denoted by the node with an ID of (r mod n) in the ring to be the ADL. The
user is denoted by more nodes, making the probability of him being chosen
as the ADL for other groups higher

28



O—User in group 1 D—User in group 2

Figure 13: No ADL COPS.

Figure 14: ID ring.

Grouping. In the previous no-ADL protocol, there are two interesting
problems: Classifying users into groups and determining how many groups
are appropriate. The basic idea is to classify the users with the most common
interests into one group. Note that the computation cost at the cloud will
grow linearly with the number of groups since the cloud needs to execute
private searching once for each group. The transfer-in communication cost
at the cloud also grows linearly with the number of groups since each group
needs to send a query of size Q(|Dic|) to the cloud. However, the transfer-
out communication cost on the cloud in the case of g groups may be less
than that in the case of one group, if the following equation is satisfied:
2k - log(k/p) +2f - log(f/p) > 327, (2ki - log(k;/p) + 2f; - log(fi/p))-

Common noises. Given each user’s shuffled query, the ADL can know
the number of keywords k; in each query. After the combination of queries,
the ADL further knows the number of keywords in the merged query £ as well
as common keywords between the users Y1 k; — k. After the decryption
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of two buffers, the ADL can know the common files between users, even if it
cannot know the exact file name or file content. To solve this problem, all
users can add some common noises to their queries. The drawback of such
a method is that the cloud will return a set of unrelated files matching the
common noises to increase the communication cost.

8. Conclusion

In this paper, we propose the COPS protocol for the cost-effective cloud
environment to allow multiple users to collaboratively execute private search-
ing on the cloud. Our simulation results show that COPS reduces the com-
putational and bandwidth costs, and hence reduce the bottleneck between
the ADL and the cloud. Our future work will avoid the potential bottleneck
between the users and the ADL. This bottleneck may occur when too many
users have unique queries. One approach is to deploy multiple ADLs, and
then map users with similar queries to the same ADL.
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pendix A. Function definitions

The functions used in the COPS protocol are defined as follows, where
secret seeds {s;}1<;<4 are shared by the cloud and the users:
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Shuffle function. Shuffle function F1(s1, pw) — pl, takes the secret seed sy
and keyword w’s position p,, in the original query or dictionary as inputs to
generate a new position pl, in the shuffled query or dictionary. The shuffle
function can be considered to generate a random permutation of keywords
[27] with a secret seed. Thus, without the secret seed, the ADL cannot deduce

pu from g,

Pseudonym function. Pseudonym function F o(ss,1) — 1; is a secure hash
function, such as SHA-1, that takes the secret seed so and the file index i as
inputs to calculate the file pseudonym n;.

Obfuscate function. Obfuscate functions F 3(s3,m;) — x; and F 4(S4,7;) —
y; are secure hash functions, such as SHA-1. [ 3 takes the secret seed s3 and
the file pseudonym n; as inputs to calculate an obfuscate factor x; for the
occurrence of keywords in the file. F4 takes the secret seed sy and the file
pseudonym n; as inputs to calculate an obfuscate factor y; for the file content.

Map functions. Map functions hj(p.,) — pw; for 1 < j < log(k) and
gj(ni) = pij for 1 < j <log(f) are a set of hash functions as those in Bloom
filter[28] and can be publicly available. The h; map function takes keyword
w’s position p., in the shuffled query or dictionary as inputs to determine
Puw,j the positions of keyword-pseudonym pair in the file pseudonym buffer.
The g; map function takes file F;’s pseudonym n; as inputs to determine p; ;
the positions of occurrence-content pair in the file content buffer.

Appendix B. Correctness analysis
We prove the correctness of the COPS protocol using following theorems:

Theorem 1. The QueryMerge algorithm can generate a query containing
all users’ interests.

PrROOF OF THEOREM 1. To verify the correctness of the QueryMerge algo-
rithm, we need to prove that the merged query generated by this algorithm
contains all users’ interests. Query (); denotes that user ¢ wants to retrieve
files containing at least one keyword in its keyword set K;. The merged
query (@), generated by executing “OR” operations on all user queries entry
by entry, denotes that the users want to retrieve files containing at least one
keyword in VI, K;. Thus, the merged query contains all users’ interests. W
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Theorem 2. The privateSearch algorithm can return files matching each
user’s query with high probability.

PRrROOF OF THEOREM 2. To verify the correctness of the privateSearch al-
gorithm, we need to prove that this algorithm can return files matching each
user’s query with high probability. The work by [3] has proved that f files
matching the query can be returned with high probability if each file-content
pair is mapped log(f) times in a buffer of size 2f - log(f), where unrelated
information is encrypted to 0, and related information is encrypted to some
value larger than 0. Therefore, when we set the buffer size and mapping
times as in [3], we need to prove that unmatched information is encrypted
to 0, but matched information is encrypted to some value larger than 0.
Note that each pair (¢, €,) is generated with Eq. 1:

Cy = Q[pw] - E(PKADLa v?:le[pw])a Cw = Cﬁ,w - E(PKADLagw : V?:le[pw])

If there are no users interested in keyword w, then VI, Q;[p,] = 0. Thus
we have:
cw = E(PKapr,0);e = E(PKapr,0)

Therefore, each unmatched keyword-pseudonym pair is encrypted to 0.
In a similar way, each pair (¢;, ;) is generated with Eq. 3:

Ci = HwGWi E(PKapr, Qlpw])” = E(PKapr, T; - ZweWi Qlpw))
ei = N = B(PKapi,yi - |- - X pew, Qlow))

If no keyword in W is interested by any user, then )y Q[pw,] = 0. We
have:
ci=E(PKapr,0);¢; = E(PKapr,0)

Therefore, each unmatched occurrence-content pair is encrypted to 0.

Now, we need to prove that matched information is encrypted to some
value larger than 0. Note that, in Eq. 1, if there is at least one user interested
in keyword w, then VI ,Q:[pw] = u, where u is some value larger than 0.
Thus, we have:

Cy = E(PKADL7U>§ €y = E<PKADL7U : Ew)

Therefore, each matched keyword-pseudonym pair is encrypted to some value
larger than 0.
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In the similar way, in Eq. 3, if at least one keyword in W, is interested
by one user, then »_ .. Q[pw] = u, where u > 0. We have:

¢i=E(PKapr, ;- u);e; = E(PKapr,yi - |Fi| - z; - u)

Therefore, unmatched information is encrypted to 0, but matched infor-
mation is encrypted to some value larger than 0. |

Theorem 3. The ResultDivide algorithm can correctly divide files to each
user.

PROOF OF THEOREM 3. To verify the correctness of the ResultDivide al-
gorithm, we need to prove that the ADL can correctly divide files to each
user, so that the user can only obtain files matching his query. Based on
user i’s query i, the ADL knows the positions of user i’s keywords in the
shuffled query, which are actually the positions of 1s. With Eq. 4, for each
position j where Q}[j] = 1, the ADL can determine the pseudonyms of files,
which contain the keyword with position j in @}, will be stored in Bi[hy(j)],
ooy Bilhogy (7)]. In Eq. 2, the pair (cy, ey), where p,, = j in the shuffled
dictionary, is just stored in By[hq(J)], ..., Bi[hiogk)(j)]. Therefore, the ADL
can correctly obtain all file pseudonyms for each user.

With Eq. 5, for each pseudonym 7,, the ADL can determine that the

blinded file content |F,|" will be stored in Bs[g1(n:)], ..., Balgiog(s)(ns)]. In
Eq. 3, the pair (c,, e,), is just stored in these locations. Therefore, the ADL
can correctly divide results to each user. |

Theorem 4. The FileRecover algorithm can successfully recover file contents
for each user.

PROOF OF THEOREM 4. To verify the correctness of the FileRecover algo-
rithm, we need to prove that each can successfully recover file contents given
the results obtained from the ADL. Note that the results sent to each user
are in the form of {(n., |F.|")}. In Eq. 5, |F.| is generated as follows:

|EL] = e./c.
In Theorem 1, we know that:
€. = |E] yuu-msd, = u-zael /e, = [F -y
With Eq. 6, the user can recover |F,| as follows:
Ny, = ey
Bl fy. = e = |7

Therefore, each user can successfully recover all wanted files. [ |
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