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Outline



1. Intrusion Detection Systems (IDS)

- IDS is a network security tool

monitors network traffic and devices for known malicious
activity, suspicious activity, or security policy violations.
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Problems of Existing IDS

(Zer'o—day Attack Detection: )

A Zero-day attack exploits vulnerabilities for which no prior
training data exists.

Challenge: Traditional IDS struggle to detect such attacks
\_ without prior knowledge. Y

~

" Domain Shift:
Differences between training and testing data distributions.

Challenge: Models trained on one dataset often fail to
\ generalize to different datasets due to domain shifts. Y

Using Few-Shot Learning (FSL) and Prototypical Network (PTN)
help IDS to detect attacks with minimal data and adapt to

varying data distributions.



2. Few-Shot Learning in Meta-Learning

Goal: train the model to accurately classify new, unseen
examples even when only a small number of examples are
given during training.

Data is split into:
Support set (used for training on that task)
Query set (used for testing the task)

The model must classify instances from N classes with
K examples each in each task (N-way K-shot)
N-way: Support set has N classes

K-Shot: Every class has K samples
E.g., 5-shot learning is trained with 5 examples per class.



Few-Shot Learning Examples

3-way 2-shot
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Few-Shot Learning (cont'd)

Task

A mini-classification problem with N classes and K examples
per class.

Number of tasks

Refers to how many distinct learning scenarios the model is
exposed to during meta-training.

Training across many tasks

To learn a generalizable representation that allows quick
adaptation to new tasks, with very few examples per class.



3. Prototypical Networks (PTN)

PTN: a metric-based method that computes distances to
prototype representations of each class for classification.

Smaller distances indicate a higher likelihood

Feature Embeddings: generating high-dimensional vectors
that capture the important features of the input data.
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Multi-class Classification Embedding

IDS is reliable if sufficient data is available for all
attacks

t-distributed Stochastic Neighbor Embedding (+-SNE)

o Visudlizing high-dimensional data by reducing it to 2D or 3D.
o A non-linear dimensionality reduction technique.
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Fig. 2: Multi-class classification embedding.



Issue: Zero-day Attack

Train on BruteForce, test on

different types on attack \
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Issue: Domain Shift
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CICIDS2017 dataset:

Simulates real-world network traffic with benign and other attacks including
DDoS, DoS, Botnet, PortScan, Patator, and Web Attacks. It contains 80 feature.

CICIDS?2018 dataset:
It enhances the 2017 version, with more attacks, including DoS-Gold, DDoS-
HTTP, Brute Force, Botnet, and some new attack types.



4. Proposed PTN-based Intrusion
Detection System: PTN-IDS
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Proposed PTN-IDS (1)
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Step 1
e The network traffic dataset is divided into two distinct tasks:

« Training Source task
« Testing Target task.

« There is no overlap in the label spaces.

« Afttack types in the source and target tasks are different.



Proposed PTN-IDS (2)
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Step 2

* Preprocessing: cleaning and normalizing data

 Generate support set (labeled examples) and query set (examples
used to evaluate the model's performance on the task) in source
and target tasks.



Proposed PTN-IDS (3)
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P

« Feature extractor is a neural network (NN).

* NN processes the raw network traffic data, transforming it into
embeddings—high-dimensional vectors that capture the important
features of the input data.



Proposed PTN-IDS (4)
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* For each class, a prototype is computed by taking the mean
vector of the embeddings from the support seft.

* Predict label for query set.



Proposed PTN-IDS (5)
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Step 5

* Calculates the cross-entropy loss between the predicted and
true labels of the query set.

 Update the parameters of the feature extractor neural
network through backpropagation.



5. Experimental Results Different n,
k, and Distance Function

TABLE II: Comparison of Baseline and Proposed Method across Different n-values

Scenariol: n=1 Scenario2: n=2 Scenario3: n=3
Models
Accuracy  Fl-score Accuracy  Fl-score Accuracy  Fl-score
Baseline 0.6271 0.5814 0.5957 0.5488 0.5067 0.4541
1-shot Proposed 0.7918 0.7651 0.7014 0.6797 0.6345 0.5924
[ 5-shot Proposed 0.9102 0.9067 0.8297 0.8232 0.7946 0.7785 |
10-shot Proposed 0.9312 0.9296 0.8445 0.8370 0.8186 0.8084

TABLE III: Comparison of using Different Distance Function in PTN with 5-shot.

Scenariol: n=1 Scenario2: n=2 Scenario3: n=3
Models
Accuracy  Fl-score Accuracy  Fl-score Accuracy  Fl-score
Euclidean Distance 0.9102 0.9067 0.8297 0.8232 0.7946 0.7785 |
Manhattan Distance 0.8860 0.8779 0.8134 0.8035 0.7797 0.7682
Cosine Distance 0.9098 0.9048 0.7285 0.6964 0.7691 0.7560

Scenario 1:DDoS in the target task
Scenario 2: Web Attack and DoS
Scenario 3 :Web Attack, DoS, and PortScan



Experimental Results on Zero-day Attacks
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Experiment Results on Zero-day Attacks

« Scenario I:
« Source task is {DDoS, PortScan, Bot}
« Target task is {Web, BruteForce, DoS}

« Scenario 2:
« Source task is {Web, BroutForce, DoS}
« Target task is {DDoS, PortScan, Bot}
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Fig. 7: Detecting Zero-day attack in different scenarios.

As k increases, there is a further improvement in
classification accuracy.



Experiment Results on Domain Shift

* Fine-tuning is model's adaptation to the target task
in the source task.

* Fine-tuning improves the accuracy in the target task.

* With 5 shots, there is an improvement for accuracy
of attack detection.

Hl Baseline
1.0 { 3 Proposed K-sho
Il Proposed Finetuned K-shot 0.95

0.8

0.66

0.56

Accuracy

0.4 1

027 017 0.17

o.o-J ‘ . :
-SNo

k-shot




Conclusions

Effectiveness of FSL and PTN in scenarios with
limited labeled data.

Reach a high accuracy, using 5 samples from each
label.

Classifying Zero-day attacks with high accuracy.

Adaptability to domain shift between datasets.
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