PTN-IDS: Prototypical Network Solution for the Few-shot Detection in Intrusion Detection Systems

> Nadia Niknami, Vahid Mahzoon, and Jie Wu Dept. of Computer and Info. Sciences Temple University

Outline

Introduction to Few-Short Learning (FSL) in Meta Learning

Introduction to Prototypical Networks (PTN)

The Proposed Approach: PTN-IDS

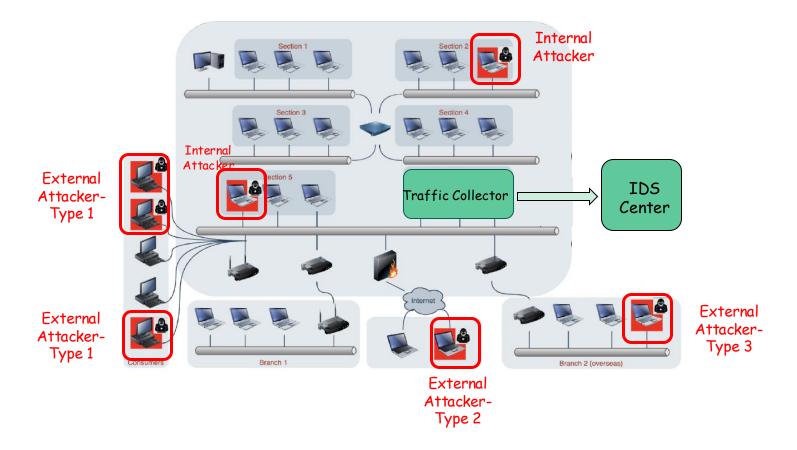
Experiment Results of PTD-IDS

Conclusions

0

1. Intrusion Detection Systems (IDS)

- IDS is a network security tool
 - monitors network traffic and devices for known malicious activity, suspicious activity, or security policy violations.



Problems of Existing IDS

Zero-day Attack Detection:

- A Zero-day attack exploits vulnerabilities for which no prior training data exists.
- Challenge: Traditional IDS struggle to detect such attacks without prior knowledge.

Domain Shift:

- Differences between training and testing data distributions.
- **Challenge:** Models trained on one dataset often fail to generalize to different datasets due to domain shifts.

Using Few-Shot Learning (FSL) and Prototypical Network (PTN) help IDS to detect attacks with minimal data and adapt to varying data distributions.

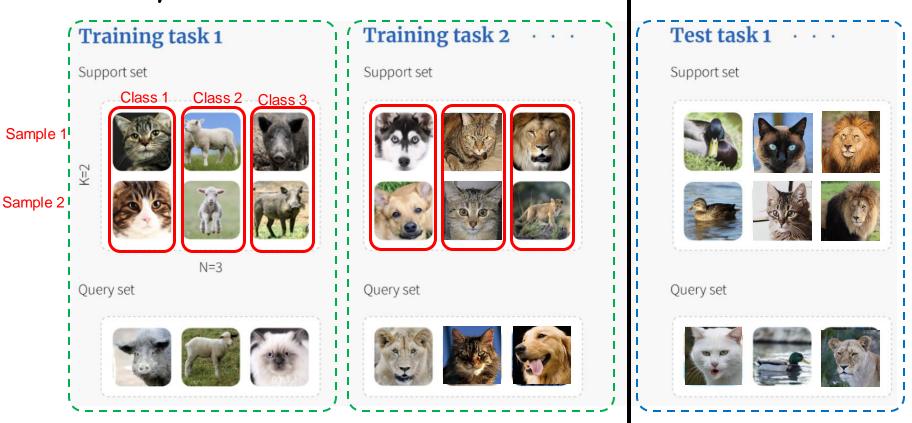
2. Few-Shot Learning in Meta-Learning

Goal: train the model to accurately classify new, unseen examples even when only a small number of examples are given during training.

- Data is split into:
 - Support set (used for training on that task)
 - Query set (used for testing the task)
- The model must classify instances from N classes with K examples each in each task (N-way K-shot)
 - N-way: Support set has N classes
 - K-Shot: Every class has K samples
 - E.g., 5-shot learning is trained with 5 examples per class.

Few-Shot Learning Examples

3-way 2-shot

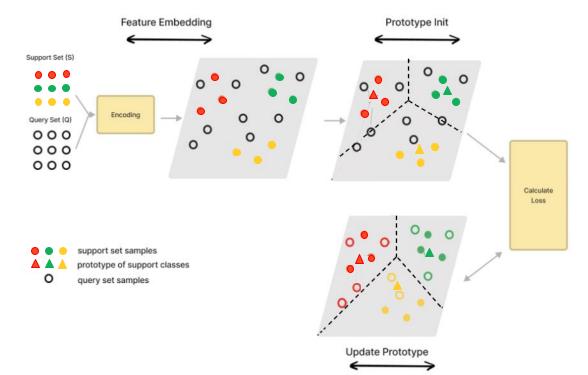


Few-Shot Learning (Cont'd)

- Task
 - A mini-classification problem with N classes and K examples per class.
- Number of tasks
 - Refers to how many distinct learning scenarios the model is exposed to during meta-training.
- Training across many tasks
 - To learn a generalizable representation that allows quick adaptation to new tasks, with very few examples per class.

3. Prototypical Networks (PTN)

- PTN: a metric-based method that computes distances to prototype representations of each class for classification.
 - Smaller distances indicate a higher likelihood
- Feature Embeddings: generating high-dimensional vectors that capture the important features of the input data.



Multi-class Classification Embedding

IDS is reliable if sufficient data is available for all attacks

t-distributed Stochastic Neighbor Embedding (t-SNE)

- Visualizing high-dimensional data by reducing it to 2D or 3D.
- A non-linear dimensionality reduction technique.

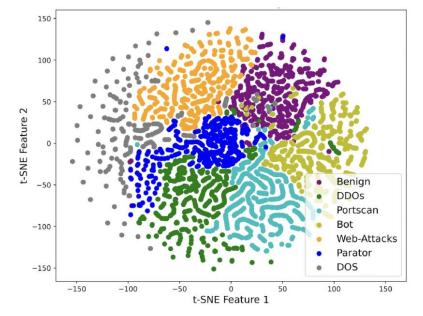
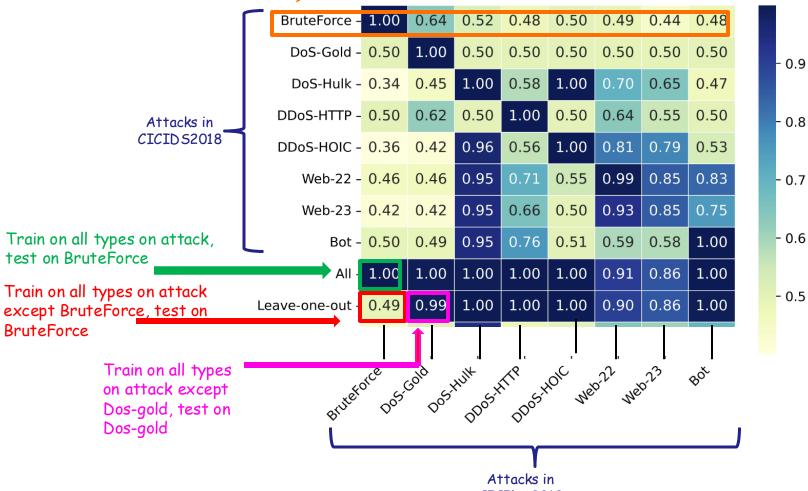


Fig. 2: Multi-class classification embedding.

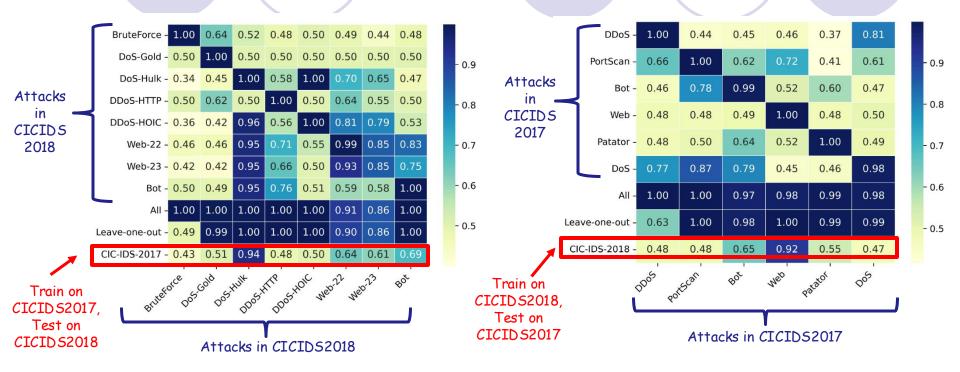
Issue: Zero-day Attack

Train on BruteForce, test on different types on attack



CICID S2018

Issue: Domain Shift



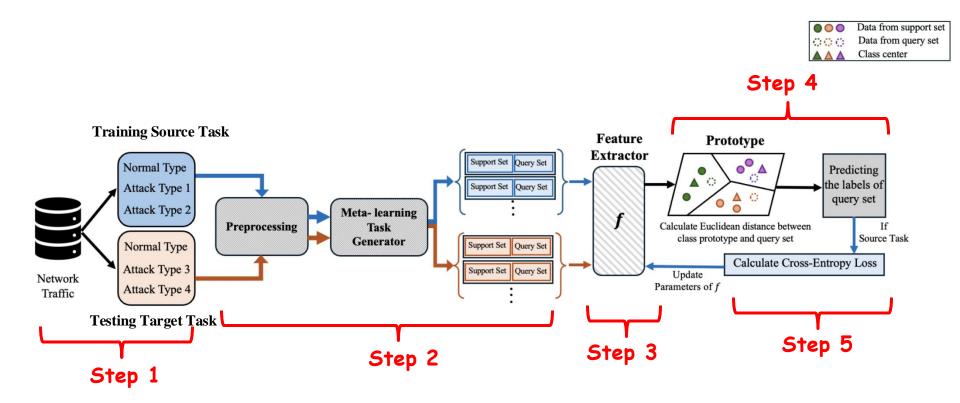
CICIDS2017 dataset:

Simulates real-world network traffic with benign and other attacks including DDoS, DoS, Botnet, PortScan, Patator, and Web Attacks. It contains 80 feature.

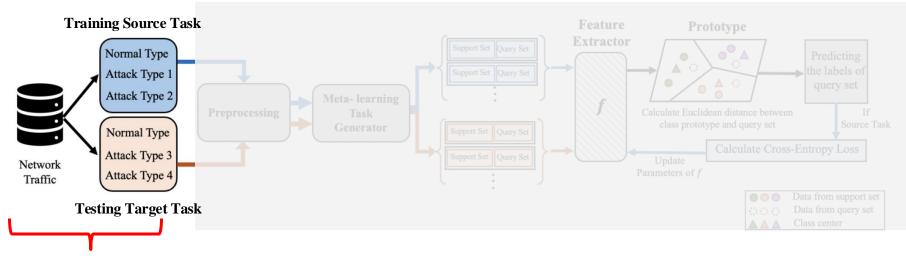
CICIDS2018 dataset:

It enhances the 2017 version, with more attacks, including DoS-Gold, DDoS-HTTP, Brute Force, Botnet, and some new attack types.

4. Proposed PTN-based Intrusion Detection System: PTN-IDS



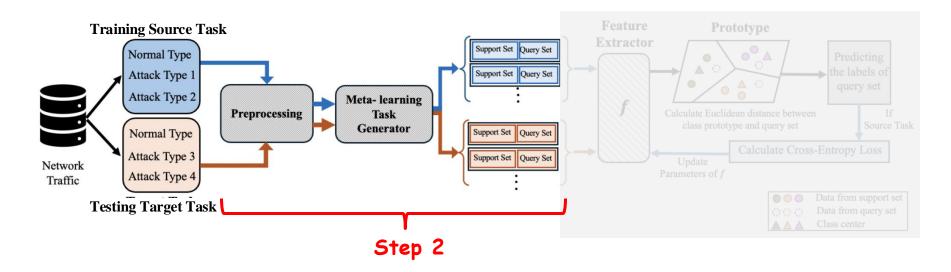
Proposed PTN-IDS (1)



Step 1

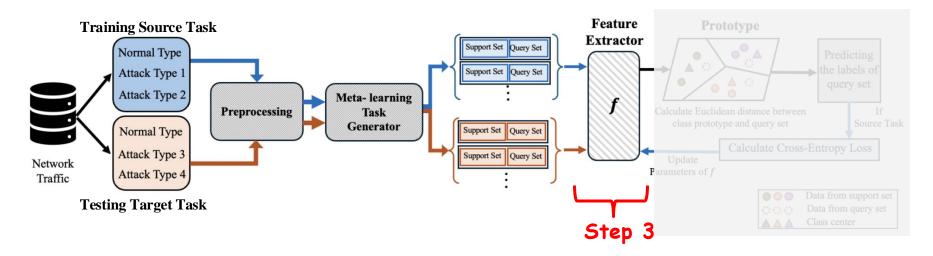
- The network traffic dataset is divided into two distinct tasks:
 - Training Source task
 - Testing Target task.
- There is no overlap in the label spaces.
- Attack types in the source and target tasks are different.

Proposed PTN-IDS (2)



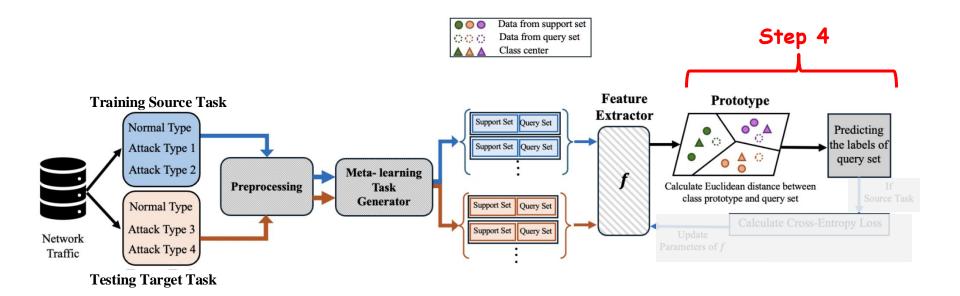
- Preprocessing: cleaning and normalizing data
- Generate support set (labeled examples) and query set (examples used to evaluate the model's performance on the task) in source and target tasks.

Proposed PTN-IDS (3)



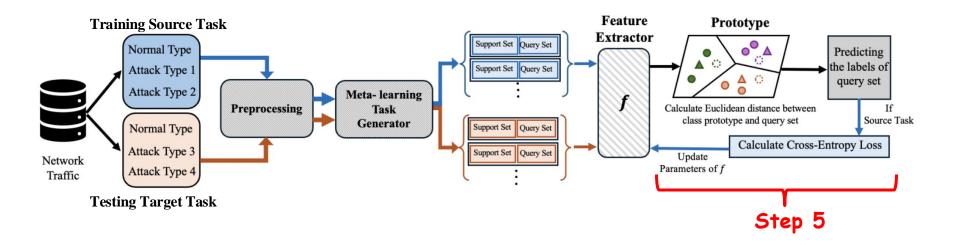
- Feature extractor is a neural network (NN).
- NN processes the raw network traffic data, transforming it into embeddings—high-dimensional vectors that capture the important features of the input data.

Proposed PTN-IDS (4)



- For each class, a prototype is computed by taking the mean vector of the embeddings from the support set.
- Predict label for query set.

Proposed PTN-IDS (5)



- Calculates the cross-entropy loss between the predicted and true labels of the query set.
- Update the parameters of the feature extractor neural network through backpropagation.

5. Experimental Results Different n, k, and Distance Function

TABLE II: Comparison of Baseline and Proposed Method across Different n-values

Models	Scenario	o1: n=1	Scenario	o2: n=2	Scenario3: n=3		
	Accuracy	F1-score	Accuracy	F1-score	Accuracy	F1-score	
Baseline	0.6271	0.5814	0.5957	0.5488	0.5067	0.4541	
1-shot Proposed	0.7918	0.7651	0.7014	0.6797	0.6345	0.5924	
5-shot Proposed	0.9102	0.9067	0.8297	0.8232	0.7946	0.7785	
10-shot Proposed	0.9312	0.9296	0.8445	0.8370	0.8186	0.8084	

TABLE III: Comparison of using Different Distance Function in PTN with 5-shot.

Models	Scenari	o1: n=1	Scenario	o2: n=2	Scenario3: n=3		
	Accuracy	F1-score	Accuracy	F1-score	Accuracy	F1-score	
Euclidean Distance	0.9102	0.9067	0.8297	0.8232	0.7946	0.7785	
Manhattan Distance	0.8860	0.8779	0.8134	0.8035	0.7797	0.7682	
Cosine Distance	0.9098	0.9048	0.7285	0.6964	0.7691	0.7560	

Scenario 1 :DDoS in the target task Scenario 2: Web Attack and DoS Scenario 3 :Web Attack, DoS, and PortScan

Experimental Results on Zero-day Attacks

1.0

- 0.9

- 0.8

- 0.7

- 0.6

- 0.5

BruteForce - 1.00	0.64	0.52	0.48	0.50	0.49	0.44	0.48		
DoS-Gold - 0.50	1.00	0.50	0.50	0.50	0.50	0.50	0.50		
DoS-Hulk - 0.34	0.45	1.00	0.58	1.00	0.70	0.65	0.47		
DDoS-HTTP - 0.50	0.62	0.50	1.00	0.50	0.64	0.55	0.50		
DDoS-HOIC - 0.36	0.42	0.96	0.56	1.00	0.81	0.79	0.53		
Web-22 - 0.46	0.46	0.95	0.71	0.55	0.99	0.85	0.83		
Web-23 - 0.42	0.42	0.95	0.66	0.50	0.93	0.85	0.75		
Bot - <mark>0.50</mark>	0.49	0.95	0.76	0.51	0.59	0.58	1.00		
All - 1.00	1.00	1.00	1.00	1.00	0.91	0.86	1.00		
Leave-one-out - 0.49	0.99	1.00	1.00	1.00	0.90	0.86	1.00		
CIC-IDS-2017 - 0.43	0.51	0.94	0.48	0.50	0.64	0.61	0.69		
Heroice of Cold Stuff Stuff Stuff Neb 22 Neb 23 Bot									
BULEFORE DOS CONDOS HUNK DOS HUR DOS HOL WED 2 WED 23 BOX									

Zero-day Attack Detection without FSL and PTN

BruteForce -	1.00	0.84	0.69	0.64	0.72	0.72	0.65	0.65	- 1.0
DoS-Gold - (0.74	1.00	0.68	0.71	0.70	0.73	0.66	0.67	0.0
DoS-Hulk - (0.54	0.61	1.00	0.74	1.00	0.79	0.82	0.67	- 0.9
DDoS-HTTP - (0.65	0.79	0.70	1.00	0.74	0.82	0.77	0.73	0.0
DDoS-HOIC - (0.55	0.61	0.96	0.74	1.00	0.88	0.86	0.77	- 0.8
Web-22 - (0.62	0.63	0.98	0.83	0.75	0.99	0.88	0.90	0.7
Web-23 - (0.62	0.61	0.97	0.76	0.74	0.96	0.88	0.87	- 0.7
Bot - (0.68	0.68	0.97	0.89	0.70	0.76	0.75	1.00	0.6
All -	1.00	1.00	1.00	1.00	1.00	0.94	0.89	1.00	- 0.6
Leave-one-out -(0.65	0.99	1.00	1.00	1.00	0.92	0.88	1.00	- 0 5
CIC-IDS-2017 - (0.62	0.75	0.98	0.72	0.74	0.82	0.85	0.78	- 0.5
Brutefor	ve'	pold post	DDost	DDO5-H	OIC Wet	, Net	2 ²	\$ ^{0⁵}	

Zero-day Attack Detection with FSL and PTN

The proposed Model

Experiment Results on Zero-day Attacks

- Scenario 1:
 - Source task is {DDoS, PortScan, Bot}
 - Target task is {Web, BruteForce, DoS}
- Scenario 2:
 - Source task is {Web, BroutForce, DoS}
 - Target task is {DDoS, PortScan, Bot}

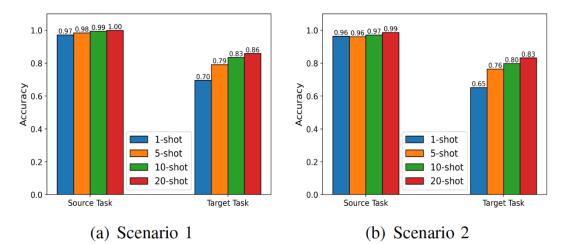
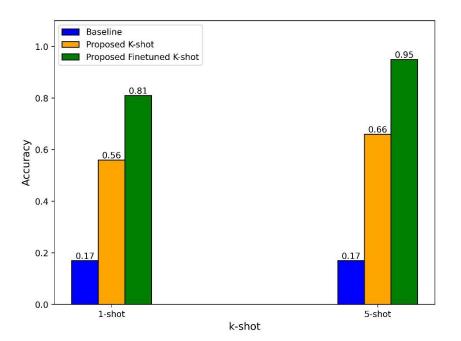


Fig. 7: Detecting Zero-day attack in different scenarios.

As k increases, there is a further improvement in classification accuracy.

Experiment Results on Domain Shift

- Fine-tuning is model's adaptation to the target task in the source task.
- Fine-tuning improves the accuracy in the target task.
- With 5 shots, there is an improvement for accuracy of attack detection.



Conclusions

 Effectiveness of FSL and PTN in scenarios with limited labeled data.

- Reach a high accuracy, using 5 samples from each label.
- Classifying Zero-day attacks with high accuracy.
- Adaptability to domain shift between datasets.