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Abstract—Big data analysis is very important to support rescue
activities when natural disaster happens, through understanding
various situations such as power/water outage regions. The
traditional way to process big data is based on high performance
computation/storage resources in a cloud center. However this is
hard to be guaranteed in a disaster scenario due to destruction of
communication infrastructure. Meanwhile, high latency between
local sensing devices and cloud center sets a big obstacle to
enabling a near real-time big data analysis. On the other hand,
movable BS such as vehicle-based MDRU developed by NTT, is
a possible solution to reconstruct an emergency communication
network and process data at the edge sites with reduced data
transmission time. In this paper, we study the optimal overall
delay in a fog/edge computing platform constructed by vehicle-
based MDRUs with guaranteed data resolution. We formalize
the problem as a Mixed Integer Nonlinear Program (MINLP)
which is a well-known NP-hard problem, and then relax the
original problem to a MILP. Finally, we propose a two-stage
heuristic algorithm to solve it in a time-efficient manner. Through
evaluation, the effectiveness of the proposed heuristic approach
has been validated in terms of minimizing overall delay with
sufficient given data resolutions.

Index Terms—Big Data Processing, Fog/Edge Computing, Data
Resolution, Disaster Scenarios.

I. INTRODUCTION

Big data analytics is to find hidden patterns behind the
data, which can play an important role in supporting rescue
activities after disaster. For example, Kwan et al. [1] explore an
emergency response service by detecting obstructions caused
by a major disaster, such as a hurricane using LiDAR data.

Unfortunately, communication systems can be destroyed
after a disaster. For example, communication networks in the
disaster areas lost their functions in the Great East Japan
earthquake [2]. To deal with this hash scenario, movable base
stations (MBSs), such as vehicle-based MDRUs from NTT [3],
[4], [5], can be deployed in disaster areas to reconstruct a com-
munication network [6], [7]. This emergency communication
network brings new challenges to big data analytics, since it is
generally conducted with high-performance PCs and servers.
The transmission delay will be extremely long when raw data
are collected from mobile phones to cloud center, via an MBS-
based network.

Junbo Wang is with School of Computer Science and Engineering, The
University of Aizu, Aizu-wakamatsu, Japan.
E-mail: j-wang@u-aizu.ac.jp

Manuscript received April 19, 2005; revised September 17, 2014.
Copyright (c) 2015 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

To reduce this delay, fog/edge computing [8] gives a pos-
sible solution by offloading computation tasks from cloud to
edge devices, e.g., routers, closer to the users. Fog computing
has been investigated with different architectures for different
applications [9], and generally it has the following types: Vir-
tualized Fog Data Centers (V-FDCs) [10], Fog Radio Access
Networks (F-RANs) [11], and Cloudlet [12]. In [10], multiple
V-FDCs are considered to offload the service from traditional
massive data centers to local fog nodes. Cloud Radio Access
Networks (C-RANs) [13] are proposed to improve Spectral
Efficiency by more efficient interference management due to
the virtualization of baseband processing of Remote Radio
Heads (RRHs). F-RANs [11] can further reduce the traffic
overhead and latency by adding caching and signal processing
capabilities in fog layer. Cloudlets [14], [12] can be deployed
in an urban city to provide closer computing and storage
to users. However when considering disaster scenarios, fog-
supported big data processing still has the following chal-
lenges:

• MBSs-based emergency communication network is gen-
erally with a mesh structure, which is not matched
with the above studies. It becomes a new challenge to
study fog-supported big data processing in a mesh-based
network considering limited computation and communi-
cation resources in disaster areas.

• Generally speaking, information loses through the data
processing in fog layer. For the areas suffered serious
damages (we call them prioritized areas), the information
detail should be kept as much as possible for comprehen-
sive situation understanding through data analysis. How-
ever, how to quantify information detail, and guarantee
sufficient information detail in priority areas is a new
challenge in fog-supported big data processing in disaster
areas.

• Time-efficient data processing becomes critical in MBS-
based emergency communication network that guarantees
the information quality in prioritized areas.

To represent information detail in data, we propose a
new concept called data resolution. Image resolution is the
concept of representing how many details an image holds. Data
resolution has a similar meaning, but shows the detail that the
data keeps. Higher resolution means more information details
in the data. It is a very important concept for studying big data
analytics in fog computing, since losing too many details in
the fog layer will impact the data mining result at the cloud
site.
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To this end, in this paper, we study big data processing
with minimal delay and guaranteed data resolution in disaster
areas. We consider that some MDRUs connect with the outside
of disaster area via satellite, and other MDRUs can decide
to process data locally or in cloud, and forward data to the
MDRUs connecting with satellite hop by hop. We formalize
the problem as a Mixed Integer Nonlinear Program (MINLP)
which is a well-known NP-hard problem, and then relax the
original problem to a MILP. Finally, we propose a two-stage
heuristic algorithm to solve it in real-time.

To the best of our knowledge, this paper provides the first
study on data offloading problem by involving data resolution
in fog computing platform for disaster scenarios. The main
contributions are summarized as follows:
• We formalize a fog-supported big data processing model

in wirelessly connected disaster areas, including the over-
all delay and data resolution variation.

• We formalize a MINLP to minimize the overall delay
with guaranteed data resolution. It is further linearized
to a MILP by introducing new variables. Finally, we
propose a two-stage heuristic algorithm to round the
integer variables in MILP and solve it in a real-time
manner.

• We perform a comprehensive evaluation, by considering
variation of different variables and size of network, to
show its performance.

This paper is organized as follows: section II gives a review
of related works; section III discusses system model; section
IV presents problem formulation to minimize the overall delay
with guaranteed data resolution; section V describes lineariza-
tion of the problem and introduces a two-stage heuristic
algorithm to solve it in a real-time manner; section VI shows
the evaluation methodology and results; finally, section VII
concludes the paper.

II. RELATED WORKS

A. Big Data Analytics in Disaster Scenarios

Big data analytics in cloud has been well studied [15]
and a comprehensive survey [16] has summarized big data
techniques applied to the disaster management. Big data also
presents its power in disaster scenario through several typical
applications e.g. network planning after disaster occurrence
[17], crisis response [18], user mobility [19], sentiment anal-
ysis [20] and so on.

For example, data synchronization problem among several
isolated services after disaster occurrence has been studied in
[21]. They consider the size and the priority of the data at each
isolated data server, and then further formalize the problem as
a stochastic program. However, it causes heavy traffic burden
to synchronize raw data among the isolated servers after
disaster occurrence. Thus it is more suitable to transmit the
pre-processed data to the cloud, e.g., the data after removing
redundant information. Meanwhile, geo-located data becomes
a popular data resource for situation understanding after dis-
aster occurrence, e.g., geo-located message or image data. In
[22], geo-located twitter data are used to understand power
shortage situations at New York city after Hurricane Sandy

in 2012. They have proposed a dynamic spatial clustering
algorithm to process big data in an efficient way. Rathore et. al.
propose a system to process big data from geo-social networks
in [23]. The data processing goes through preprocessing (i.e.,
filtering and classification), text analysis and so on, to provide
services for decision-making. However, the data transmission
delay from the sensing devices/local servers to the cloud
can be extremely big, considering unstable internet access
situations after disaster occurrence. The preprocessing tasks,
e.g., filtering and text analysis, are possible to be performed
at local computation units, to reduce transmission data size
from local server to the cloud. In this paper, we investigate a
new computation and communication structure by offloading
preprocessing tasks from cloud to local computation units.
The related literature in fog-computing supported big data
processing is discussed as follows.

B. Fog Computing Supported Big Data Processing

Fog computing is first introduced by Cisco [8] and leverages
cloud resources for edge devices, bringing the computation and
communication resources closer to the users. Fog computing
can extend cloud functionality from remote cloud center to
fog nodes nearby the users as studied in Virtualized Fog Data
Centers (V-FDCs) [10], and can enhance wireless caching
function extended from cloud in Fog Radio Access Networks
F-RANs [11]. However, it is very difficult to adopt the above
existing research results into disaster scenarios, considering
the destroyed communication infrastructure, and the limited
computation and communication resources in a MBS-based
communication networks.

An edge-based computation infrastructure was proposed in
[24] based on ad hoc connectivity in disaster scenarios. And
to process IoT data in disaster scenarios, a fog-computing
based structure was designed in [25]. However, even they
presented possibility to apply a edge/fog-based structure in
disaster scenarios, unfortunately they did not study detailed
algorithms to enable an efficient computation and communi-
cation platform. E. M. Trono et. al. in [26] studied a edge-
computing supported data processing architecture based on
DTN (Delay Tolerance Network) in disaster scenarios. It infers
a pedestrian map based on the trajectory information collected
from smart phones. In the proposed system, local computation
nodes process the trajectory data collected in their covered
areas, and generate subgraphs in a parallel way. However,
sharing of data processing tasks among local and cloud nodes
is not considered in the study, so that it is hard to find
an optimal solution to enable efficient data processing and
transmission. Y. Wang et. al. in [27] have formalized a big data
processing problem in disaster scenario based on a tree-based
communication network constructed by ad hoc connectivity.
Each node can decide the ratio of data to be processed at local
or at cloud. However it is more general to apply a mesh-based
communication network as studied in this paper, to achieve
a more efficient usage of communication and computation
resources.

Cloudlet has similar and possible network structures for
disaster senarios, since it can construct an ad-hoc network
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as studied in Wireless Metropolitan Area Networks [12] and
Mobile Computing Environment [28]. In [12], authors studied
cloudlet placement problem and proposed a set of placement
method to minimize response time, e.g., heaviest-AP first
placement strategy. And further the solution is enhanced to
deal with workload balancing problem when one user can
connect with multi-cloudlets at the same time in [29]. However
the sharing of processing tasks among different Cloudlets is
not tackled in this sutdy. An auction-based incentive mecha-
nism is proposed in [28] to share resources among cloudlets in
an optimal way. Meanwhile, base stations in communication
infrastructure can be considered as fog nodes to support med-
ical cyber-physical system [30] or software-defined embedded
system [31]. However, the above research results cannot be
directly adopted into this study, since (1) this study tackles
a special architecture in disaster scenarios, where some of
MBS are connecting with satellite, and others forward data
to them based on a mesh-structure; (2) the existing researches
treat all fog nodes as same priority level, which is not match
with disaster scenario that prioritized areas need more detailed
information for situation understanding.

III. MODELS

A. System Model

The system model is represented in Fig. 1. After a disaster,
movable base stations (MBSs, a general representation of
MDRU in Section I) can be deployed in the disaster-stricken
areas, to reconstruct a communication network. Users can
upload data through the MBSs.

Priority Area 

Satellite Connected 
Node 

Satellite 

j 

Fig. 1. System Model

Let j denote an MBS, which integrates both wireless com-
munication and computation functions. First, smartphone users
connect with j and upload data; the data size is represented as
dj . Then we assume a part of the big data processing algorithm
has been deployed in the MBS beforehand, and that the data
size compression ratio after processing in node j is ρ, where
0 < ρ ≤ 1. The processing rate in each MBS j is represented
as µ.

We also assume that the MBSs are connected via a wireless
medium, and that the communication rate is represented by

R1, for each link between two MBSs. MBSs are connected
in a mesh shape for data transmission. We assume there are
several MBSs as marked in Fig 1, which have the ability to
communicate with satellite, to transmit generated data outside
of disaster area. The transmission speed is denoted as R2. Each
node j can decide to process parts of data in k, its neighbor
nodes, and cloud. The decision variable is shown in Table I
for details.

Meanwhile, after data is processed locally, information in
data will be lost, while data resolution represents the details
that the data keeps similarly to image resolution. Raw data has
the maximum data resolution i.e. 1 or lossless. The parameter
ξ is defined to be the data resolution variation after data
processing. The notations can be found in Table I.

TABLE I
NOTATIONS

Constants
J A set of Movable BS (MBS), while i, j, k, m are instances

of MBS.
dj Raw data collected in j.
hjk Hops from MBS j to k.
λj Average generation rate of data processing task in j.
µ Data processing rate in local computing node.
R1 Communication speed between two MBSs.
R2 Communication speed with satellite.
ρ Data compression ratio after data is processed locally.
ξ Data resolution variation after data is processed locally.

Variables

zk A binary variable to indicate whether MBS k is a connecting
node with satellite.

ljk A raw data transmission link from j to cloud via k, when k
is a connecting node with satellite.

ymk A binary variable to indicate whether MBS m offloads data
processing task to MBS k.

B. Service Model

In this study, we consider that there are limited number of
MBSs connecting with satellite directly, since communication
resources may not enough after disaster occurrence. For the
other MBSs, the generated data are forwarded to the MBS
connecting with satellite hop by hop. Meanwhile, for each
MBS, we consider that there is at least one path to the cloud.
We consider cloud server is located outside of disaster area,
and the data generated inside of disaster area are transmitted to
the cloud via satellite communications. The capacity of cloud
server is considered as sufficient for data processing in disaster
scenario.

C. Data Compression Ratio ρ

The data compression ratio depends on mining types and
data reduction technologies in the data mining algorithms.
Some types of data reduction technologies in spatial clustering
algorithms are summarized as follows to explain the data
compression ratio.
• Representatives based on Core-points: The most basic

technique in data reduction is to represent clusters by core
points inside of each cluster. For example, in DBSCAN
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[32], core points are selected to represent a cluster if in a
given radius (EPs), at least a minimum number of points
(MinPts) exists with the cardinally of the neighborhood
exceeds some threshold.

• Representatives based on Specific Core-points: Specific
core-points are several special points selected from the
group of core points, to represent the cluster. Thus data
size can be further reduced by representing clusters by
specific core-points. The spatial clustering algorithm Mr.
Scan uses minimum set of the core points to represent
a cluster in [33][34]. For a grid cell of arbitrary density,
eight points are selected in [33][34] to represent all core
points in a grid cell.

• Representatives based on Boundary Points: For example
in [35], Boundary Points are used to be representative
points. The number of boundary points depends on the
covered area of the spatial clustering.

Different data reduction technologies can achieve different
data compression ratios. Generally, (1) has smallest data com-
pression ratio, while it increases when adopting data reduction
technology (2) and (3).

IV. PROBLEM FORMULATION

Generally speaking, data analysis in cloud centers will not
start until all the data is collected from the whole area. To
enable quick decision-making in the disaster scenario, in this
paper, we investigate the minimal overall delay between mo-
bile phones and the cloud, through offloading data processing
tasks locally.

A. Data Processing Delay in k

Data processing delay for each node k depends on where
the processing task is allocated, computation rate and idle
situation of the computation node. Suppose node k acts as
a computation node/server with computation rate µ, and is
shared by multiple clients for data processing. Consider data
processing tasks coming from other nodes randomly following
poisson process. The overall data processing task arrival rate
can be calculated as follows,

Λk =
∑
m∈J

$/dm ∗ ymkλm,∀k ∈ J (1)

where $ is a constant value that represents a specific size of
data task is offloaded from one node to the other node. In this
case, data processing task is offloaded from m to k. Due to
the complexity of the whole model, we assume a static $ in
this paper. λm represents generating rate of data processing
rate in node m, which is directly proportionally to data size
dm.

Then task computation time is exponentially distributed on
a local node, which can be represented as M/M/1 queue. And
the average data processing time in node k for each piece of
task can be represented as

τpk =
1

µ− Λk
,∀j ∈ J (2)

with the following constraints,

µ > Λk (3)

B. Transmission Delay from a Node j to Cloud

Besides data processing delay, the data transmission delay
from a node j to cloud is formalized as follows.

First we consider the delay for the data collected in j,
processed in k, and finally be transmitted to cloud. Dl

j denotes
the maximum delay for the data processed locally and can be
represented as follows in Eq. (4).

Dl
j ≥$yjk(hjk/R1 + λjτ

p
k /dj +

∑
i∈J

zilkiρhki/R1 + ρ/R2)

(4)
where the data is offloaded from j to k, and after data is
processed in k with compression ratio ρ, it is finally uploaded
to cloud via MBS i.

Then for the data to be processed in a cloud center, the
transmission delay is denoted by Dc

j and represented as
follows in Eq. (5).

Dc
j =

∑
i∈J

zilji(dj −
∑
k∈J

$yjk)hji/R1 + (dj −
∑
k∈J

$yjk)/R2

(5)
Data analysis task works after all parts of data from j

are collected. The transmission delay is denoted by Dj and
represented as follows,

Dj = max
{
Dl

j , D
c
j

}
(6)

For the whole network, the overall delay is represented in
the worst case as follows,

Do = max{Dj , j ∈ J} (7)

C. System Constraints

To guarantee the whole system works correctly, the follow-
ing constraints are considered.

First, we should guarantee all processed data does not
exceed the whole generated data size as follows,∑

k∈J

$yjk ≤ dj ,∀j ∈ J (8)

Without this constraint, when the system is finding a set
of optimal {yjk} to maximize the overall delay Do, there
is a possibility that the processing data exceeds the whole
generated data size.

Then we assume the MBS connecting to satellite is bounded
by a constant Z0, due to limited communication resources in
disaster scenarios. ∑

k∈J

zk ≤ Z0 (9)

Meanwhile, we consider a single path and at least one path
that exits from each node j to cloud, which is bounded as
follows. ∑

k∈J

zkljk = 1,∀j ∈ J (10)
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∑
k∈J

ljk = 1,∀j ∈ J (11)

D. Data Resolution Variation

Image resolution is the concept of representing how many
details an image holds. Data resolution has a similar meaning
for the information embedded in data. Higher resolution means
more information details in the data. It is a very important
concept in studying big data analytics in the fog computing,
since losing too many details in the fog layer would impact
data mining results at the cloud site. Take spatial big data
analytics as an example, after data processing in local server,
only statistic information for each unit of area will be up-
loaded to the cloud center, where data resolution/details is
correspondingly reduced.

Local Processing 
Raw Data Statistics Information 

after Local Processing 

Fig. 2. An Example of Data Resolution Variation

Then the data resolution for data collected from priority
areas, denoted by Ψp, can be represented as

Ψp =

∑
j∈P

(
dj −

∑
k∈J yjk$(1− ρ)

)∑
j∈P dj

(12)

where P is denoted as a priority area.
To guarantee the propriety area has enough data resolution

for situation understanding, we have the following constraint.

Ψp ≥ Ψ0 (13)

E. An MINLP Problem Formulation

To guarantee a near real-time data analysis to support
decision-making after disaster occurs, our goal is to minimize
the overall delay by choosing the best setting of zk, ljk, and
ymk. By summarizing all definitions and constraints discussed
above, we can formalize Optimal Fog Computing Platform
Problem in Disaster Scenario (OFCP-DS) as a mixed-integer
non-linear programing (MINLP) problem as follows:

MINLP: OFCP-DS:
minimize Do

subject to (1)− (11), (13)

zk ∈ {0, 1}, ljk ∈ {0, 1}
ymk ∈ {0, 1}

(14)

V. A HEURISTIC APPROACH

A. Linearization
MINLP is a well-known NP-hard problem, which may take

a extremely long time for optimal solutions. We discuss how
to linearize it by introducing new parameters as follows. To
reduce the computation complexity, first we relax nonlinear
equation in Eq. (6) and Eq. (7) by adding a new variable D
and new constraints in C1 as follows:

MINLP: OFCP-DS:
minimize D

subject to C1 : D ≥ Dl
j , D ≥ Dc

j , j ∈ J
C2 : (3), (4), (5), (8), (9), (10), (11), (13)

C3 : zk ∈ {0, 1}, ljk ∈ {0, 1}
ymk ∈ {0, 1}

(15)
However, there are still non-linear equations in (4) and (5),

but fortunately we can linearize them as follows.
First, we introduce a new parameter ωjk = hjk/R1 +ρ/R2

to make the equation look simple and have a good shape. Then
we substitute Eq. (1) and Eq. (2) into Eq. (4) and achieve

Dl
jµ−Dl

j

∑
m∈J

$/dm ∗ ymkλm ≥

$µyjkωjk −$yjkωjk ∗
∑
m∈J

$/dm ∗ ymkλm +$yjkλj/dj

+$yjkµ
∑
i∈J

zilkiρhki/R1

−$yjk
∑
m∈J

$/dm ∗ ymkλm
∑
i∈J

zilkiρhki/R1

(16)
In Eq. (16) we still have equations with high degree as

follows: Dl
jymk, yjkymk, yjkzilki, yjkymkzilki. First we

introduce a new parameter σmjk and let σmjk = Dl
jymk.

Since ymk is a binary variable, and we can replace quadratic
equation by adding the following new constraints, based on
McCormick envelopes [36].

1

N
ymk ≤ σmjk ≤ Nymk (17)

σmjk ≤ Dl
j −

1

N
(1− ymk) (18)

σmjk ≥ Dl
j −N(1− ymk) (19)

Similarly, we introduce several new variables, $ki = zilki,
δmjk = ymkyjk, φijk = yjk$ki, εmijk = δmjk$ki, with the
following new constraints:
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0 ≤ $ki ≤ zi (20)

zi + lki − 1 ≤ $ki ≤ lki (21)

0 ≤ δmjk ≤ ymk (22)

ymk + yjk − 1 ≤ δmjk ≤ yjk (23)

0 ≤ φijk ≤ $ki (24)

$ki + yjk − 1 ≤ φijk ≤ yjk (25)

0 ≤ εmijk ≤ $ki (26)

$ki + δmjk − 1 ≤ εmijk ≤ δmjk (27)

Then Eq. (16) is simplified as a linear function in Eq. (28)
as follows:

µDl
j −$

∑
m∈J

λmσmjk/dm −$µωjkyjk+

$2
∑
m∈J

λmωjkδmjk/dm −$λjyjk/dj−

$µ
∑
i∈J

ρhkiφijk/R1 +$2
∑
m∈J

λm/dm
∑
i∈J

ρhkiεmijk/R1 ≥ 0

(28)
Similarly, we introduce a new parameter ζjik = γjiyjk, Eq.

(5) is linearized as

C5 : Dc
j −

∑
i∈J

γjidjhji/R1 +
∑
i∈J

∑
k∈J

$ζjikhji/R1 − dj/R2

+
∑
k∈J

yjk$/R2 ≥ 0,∀j ∈ J

(29)
with the following new constraints.

0 ≤ ζjik ≤ γji (30)

γji + yjk − 1 ≤ ζjik ≤ yjk (31)

Finally, original MINLP-OFCP-DS is reformed as a MILP
problem as follows:

MILP:OFCP-DS:
minimize D

subject to C1 : D ≥ Dl
j , D ≥ Dc

j , (28), (29), j ∈ J
C2 : (3), (8), (9), (10), (11), (13)

C3 : zk ∈ {0, 1}, ljk ∈ {0, 1}, ymk ∈ {0, 1}
C4 : (18)− (28), (31), (32)

(32)

B. A Heuristic Algorithm

However, too many integer variables always make solving
the problem time-consuming. We further introduce a two-stage
heuristic algorithm as shown in Algorithm 1. The basic idea is
that in stage 1, relax all integer variables and then round up zj
and ljk. In the stage 2, substitute zj and ljk into the original
problem to reduce two integer variables, and then solve integer
programming to achieve the final results.

Algorithm 1 A Two-Stage Heuristic Algorithm
1: Stage 1: Relax integer variables in MILP-OFCP-DS, and

solving linear programming to achieve z∗j and l∗jk.
2: Sort z∗j in descending order into set Z
3: for all zj ∈ Z do
4: if

∑
j∈J zj ≤ Z0 then

5: zj ← 1
6: else
7: zj ← 0
8: end if
9: end for

10: for all j ∈ J do
11: Sort l∗jk, ∀k ∈ J in descending order into set Lj

12: flag ← 0
13: for all ljk ∈ Lj do
14: if zk == 1 and flag == 0 then
15: ljk ← 1
16: flag ← 1
17: end if
18: ljk ← 0
19: end for
20: end for
21: Stage 2: substitute {zj} and {ljk} into original MILP-

OFCP-DS, and then solve it based on integer programing
to get {yjk}.

22: return {zk}, {ljk}, {yjk}

In Sec. V-A, we relax the original MINLP to a MILP, by
adding new parameters. The two problems are totally the same
by adding new parameters, so that there is no relaxation gap
exist. In Sec V-B, we further propose a heuristic algorithm
to solve MILP with quick response based on the following
considerations to decrease the integrality gap.
• More MBSs connecting to satellite in the system, smaller

transmission delay the system can achieve. Since the data
transmission delay among MBSs can be decreased when
the number of MBSs connecting to satellite increases.
Therefore, in the Two-Stage Heuristic Algorithm, we fill
up the number of MBSs connecting to satellite as many
as possible in line 2-9, to approach the minimal delay,
i.e., decreasing the integrality gap.

• Solution can be much closer to the ideal one when
rounding rounding bigger value of z∗j and l∗jk to 1. Based
on the definitions in Eq. (4) and (5), the gap to the ideal
solution can be bigger when rounding smaller value of
z∗j and l∗jk to 1.

Meanwhile, in the algorithm
∑

j∈J zj ≤ Z0 is to guarantee
that the total number of MBSs connecting to satellite not
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exceeds the maximal number, and zk == 1 is to guarantee
that k should be a MBS connecting to satellite once setting
ljk as 1. They ensure the feasibility of the results from the
heuristic algorithm. Finally, we substitute {zj} and {ljk} into
original MILP-OFCP-DS, and then solve it based on integer
programing to get {yjk}. The heuristic algorithm can achieve
near-optimization with quick response.

VI. EVALUATION

We evaluate the proposed heuristic approach by comparing
it with other solutions, through varying computation rate and
communication speed in two different sizes of network.

A. Evaluation Methodology

The first baseline case considered in the evaluation is when
all ymk values are set to 0, i.e., a typical cloud computing
system where all of the data is processed at the cloud. The
second case is using the proposed heuristic solution where
each node processes suitable data that it receives immediately.
Meanwhile, we further split the second case into different
specific scenarios based on the number of nodes located in
the priority area. The scenario includes that (1) all the nodes,
(2) half the nodes, and (3) no nodes located in the priority
area.

The modeling and calculations are coded in ruby with
Gurobi to solve LP problem. We evaluate the proposal on
small and medium-sized networks. A small network includes
20 nodes, and a medium network consists of 50 nodes. The
medium network is approximately equivalent to half the island
of Okinawa, which according to the 2016 report by the
Japanese Ministry of Internal Affairs and Communications
stated to have 105 LTE base stations [37].

Meanwhile, through the survey on wireless communication
technologies, WiMax can achieve 17 to 400 Mbps, and WiFi
also can generally achieve 100 to 600 Mbps [38]. Therefore,
in the evaluation, R1 is varied from 50 to 500 Mbps to
evaluate the effectiveness of the proposed solution in different
communication speeds, as shown in Fig. 4 and Fig. 6. For
data communication rate in satellite internet R2, HughesNet’s
Jupiter achieved more than 15Mbps in 2012, and the commu-
nication speed can be further enhanced to 500Mbps with Ka

band in the future [39]. Therefore in the evaluation, we set the
communication rate R2 as 100Mbps.

B. Results when Varying µ and R1 in a Small Size Network

First we discuss the evaluation results when varying µ and
R1 in a small size network.

Fig. 3 and Fig. 4 represent the results of minimal delay
with changing computation rate and communication speed,
respectively. The evaluation is performed by considering the
following four cases: (1) Case 1: all processing done at cloud,
(2) Case 2: the proposed solution where all nodes are located
in the priority area, (3) Case 3: the proposed solution where
almost half of the nodes are located in the priority area, and
(4) Case 4: the proposed solution where no node is located in
the priority area.

First, from the results in Fig. 3 we can see that the
proposed solution worked efficiently to reduce minimal delay
in transmitting data from edge site to cloud, by using the
local computation resource effectively. More specifically, (1)
when the computation rate was set in the range from 4 to
6 Gbps, which can be considered as a normal case, the
proposed solution achieved a 20% decrease in overall delay by
offloading computation from cloud to local edge nodes in wire-
lessly connected disaster areas. (2) Given a high performance
computation mechanism e.g. 12 Gbps, the proposed solution
achieved better results by decreasing around 85% overall delay
in Case 4, and around 78% overall delay in Case 3, where we
set data resolution as 0.9 in the experiment. Even in the worst
case that all the MBSs were located in the priority area in Case
2, the proposed solution achieved almost a 50% decreasing of
overall delay through the experiment.
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Fig. 3. Overall Delay Varying with Computation Rate µ in a Small Size
Network

Meanwhile, we evaluate the proposed solution with different
communication speeds R1 as shown in Fig. 4. When the disas-
ter network is constructed by low speed wireless mediums, e.g.
WiFi, all the cases suffer a bigger delay. However the proposed
solution in Case 2, 3, and 4 can achieve an almost 40%
deceased in overall delay when communication speed was set
as 50 Mbps, and 50% decreased when communication speed
was set as 100 Mbps. In a better communication environment,
the overall delay in all the four cases decreased, while the
proposed solution in Case 2,3 and 4 achieved a much better
performance by reducing around 50% overall delay.

C. Results when Varying µ and R1 in a Medium Size Network

The corresponding evaluation results when we varied µ and
R1 in a medium size network are shown in Fig 5 and 6,
respectively. Also the number of MBSs which connects with
satellite was increased correspondingly to support a bigger
disaster area.

From Fig. 5 we can see that the proposed heuristic solution
achieved effective decreasing in overall delay as the compu-
tation rate µ increased. For a normal case where µ was in the
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Fig. 5. Overall Delay Varying with Computation Rate µ in a Medium Size
Network

range from 4 to 6 Gbps, the overall delays in Case 2, 3 and
4 were decreased around 30% to 60%. The proposed solution
got much more effective with a much more power computation
unit, e.g. around 60% to 80% decreases in overall delay when
µ was larger than 8.

Fig. 6 presents the results when we varied the communi-
cation rate R1, where we can see that the proposed solution
decreased overall delay clearly with different communication
rates, in all the Case 2, 3 and 4.

D. Data Resolution

We further investigate the minimal overall delay by varying
required data resolution for each priority area as shown in Fig.
7. The evaluation was performed in the small network and we
considered two cases, i.e., Case 1: half nodes were located in
the priority area, and Case 2: All the nodes were located in
the priority area. From the evaluation results we can see that

50 100 150 200 250 300 350 400 450 500

Communication Rate R
1
 (Mbps) in a Medium Network

0

20

40

60

80

100

120

140

160

180

200

M
in

in
a
l 

D
el

a
y
 (

s)

Mininal Delay vs Communication Speed

Case 1: All Processing at Cloud

Case 2: Proposed Solution, All Nodes in Priority Area

Case 3: Proposed Solution, Half Nodes in Priority Area

Case 4: Proposed Solution, No Any Node in Priority Area

Fig. 6. Overall Delay Varying with Communication Speed R1 in a Medium
Size Network

with a higher required data resolution, the system suffered
a bigger delay, while system managers could accordingly
get more details in data for data analysis. A balance point
could be found to guarantee acceptable data resolution while
guaranteeing minimal overall delay.
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Fig. 7. Overall Delay Varying with Data Resolution

Finally, we evaluated the performance of the proposed
heuristic approach as shown in Fig. 8. The evaluation is per-
formed by calculating consuming time of the program. From
Fig. 8 we can see that the proposed heuristic approach clearly
reduced the consuming time needed to solve the problem.
Quicker solver is definitely better in disaster scenarios.

VII. CONCLUSION

Big data analysis is important in disaster scenarios, to
better understand the situations and support decision-making.
Traditional cloud-based big data analysis suffers big latency
for data transmission, while the problem is possible to be
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solved in a Fog/Edge supported computation platform. In
this paper, we focus on disaster scenarios while network
infrastructure is reconstructed by MBSs. MBS can collect
data from smartphones, and decide to process data in local
or remote cloud. We have formalized the problem as a Well-
Known MINLP and propose a two-stage heuristic algorithm
to solve it in a real time manner. Through comprehensive
evaluation, we have presented the effectiveness of the proposed
heuristic algorithm in reducing overall delay by varying system
parameters and sizes of network.
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