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Abstract—Nowadays, the notion of diseases has been extended
from real human diseases to general epidemic information prop-
agations, such as the rumors in distributed systems. Controlling
the spread of a disease is usually done through quarantine, where
people that have, or are suspected to have, a disease are isolated
from having interactions with others. As a tradeoff, normal
human interactions are inevitably degraded by the quarantine.
This motivates us to explore a robust quarantine strategy that
can eliminate epidemic outbreaks with minimal isolation costs.
Our problem is shown to be NP-hard. A bounded algorithm with
an approximation ratio of two is proposed, through utilizing the
feasibility and minimality properties. Finally, real data-driven
experiments demonstrate the efficiency and effectiveness of the
proposed algorithms in real-world applications.

Index Terms—Social network, epidemic outbreak, effective
quarantine strategy, minimal isolation costs.

I. INTRODUCTION

Nowadays, the notion of diseases has been extended from
real human diseases to general epidemic information propaga-
tions, such as the rumors in distributed systems. Controlling
the spread of a disease in a population (human communities
and distributed systems) is usually done through quarantine
where people that have, or are suspected to have, a disease are
restricted from having interactions with others. However, the
human interactions are inevitably degraded by the quarantine.
This motivates us to explore an effective quarantine strategy
that can maximally preserve the human interactions.

This paper uses the classic Susceptible-Infected-Susceptible
(SIS) model to simulate the epidemic spreading, where each
person has a state of being either susceptible or infected [1].
People transfer their states through a cycle in which their
susceptibility (S) causes them to become infected (I), and
they return to being susceptible (S) by recovery. The epidemic
breaks out when the average infection rate becomes larger than
the average recovery rate. In such a case, a large portion of
people in the social network will eventually become infected.
Consequently, it is necessary to isolate a set of people as a
quarantine strategy to depress the infection rate. Epidemic
outbreaks could be controlled once the infection rate is cut
down by isolations, which are usually costly.

Our objective is to explore an effective quarantine strategy
that can eliminate epidemic outbreaks with minimal isolation
costs. In other words, we want to isolate a set of people with
minimal costs to eliminate epidemic outbreaks. Our problem is
extremely challenging, since eliminating epidemic outbreaks
and preserving social connections cannot be simultaneously

achieved. Intuitively, the isolation of an arbitrary person can
help in the elimination of epidemic outbreaks. Moreover,
social networks are structurally heterogenous, meaning that
the impacts of isolations are very hard to quantify. Should we
simply isolate people who have lots of normal social connec-
tions? Or should we isolate people who only have a few, but
important connections? The network structural heterogeneity
should be considered within the quarantine strategy design.

Currently, social network epidemic outbreaks [1] have been
well-studied with very rich literatures. The novelty of this
paper lies in the quarantine strategy with minimal isolations.
Our work casts some new light on real-world quarantines. For
example, in an infectious global epidemic (SARS or Ebola),
we can avoid epidemic outbreaks while isolating a minimal
number of people. Moreover, our work has broader impacts,
since it can be applied to situations aside from real social
networks. Typical applications of our work can include:
• In computer networks, epidemics are worms. Some com-

puters are turned off to eliminate worm spreading. Our
work points out a strategy that can resist worms with
maximally-preserved computers.

• In online social networks (e.g., Facebook and Twitter),
epidemics are rumors (malicious Facebook posts) that can
be shared among friends. The service provider can refer
to our work to control rumors with minimal user blocks.

Our main contributions are summarized as follows:
• We address a novel problem on the effective quarantine

that can restrict epidemic outbreaks with minimal isola-
tions. It has broader impacts on real-world applications.

• An approximation algorithm, which guarantees a constant
ratio to the optimal quarantine strategy, is proposed. The
properties of feasibility and minimality are explored for
eliminating epidemic outbreaks.

• Real data-driven experiments are conducted to evaluate
the proposed algorithms. Evaluation results are shown
from different perspectives to provide insightful conclu-
sions for real-world applications.

The remainder of this paper is organized as follows. Section
II surveys related works. Section III formulates the problem
and describes the SIS epidemic model with discussions on the
properties of isolations. Section IV studies the effective quar-
antine strategy with minimal isolations. Section V includes
real data-driven experiments. Finally, Section VI concludes
the paper and suggests future research directions.



II. RELATED WORK

Epidemic spreading models have been extensively explored
over the past two decades. As one of the most popular epi-
demic models, the SIS model divides a given population into
two compartments: susceptible and infected. People transfer
their states through a cycle of being infected after being
susceptible, and going back to susceptible by recovery [1].
The SIS model in social networks that have power-law degree
distributions was summarized by Lee et al. [2]. There are many
other epidemic models. For example, the Susceptible-Infected-
Recovered (SIR) model [1] adds one more compartment to
represent vaccinated individuals who are no longer susceptible
to the infection. The SIS and SIR models were also used to
stimulate worm spreadings in distributed systems [3]. A state-
of-the-art review on epidemic models is available in [4].

Social networks have also been extensively studied over the
past decade. Structures of social networks were confirmed to
be scale-free [5], where the node degree follows power-law
distribution. The triadic closure phenomenon (a friend-of-a-
friend is likely to become a friend) is identified [6]. Social
networks are considered to have small-world structures [7].
Compared to random networks, social networks have smaller
network diameters and a larger clustering coefficient [8].

Although epidemic models and social network properties
have been well-studied, to the best of our knowledge, this
paper is the first interdisciplinary study on a quarantine strate-
gy that minimizes isolations without epidemic outbreaks. Our
approximation scheme is based on the classic solutions to the
knapsack problem [9–11] and the set cover problem [12–15].

III. PROBLEM FORMULATION AND EPIDEMIC MODEL

A. Problem Formulation

Our social network model is based on a directed graph
G = (V,E), where V is a set of nodes (persons), and E ⊆ V 2

is a set of directed edges (social relationships). Let | · | denote
the cardinality of the corresponding variable. For example, |V |
and |E| are the total number of nodes and edges, respectively.
To control epidemic outbreaks, some nodes are isolated by the
quarantine strategy. A node v is isolated, if all the incoming
and outgoing edges of v are removed. An isolated node can
no longer interact with its neighbors, but it remains in the
network. The isolation cost of v is Cv . The set of nodes
isolated by the quarantine strategy is denoted by Q. The
objective is to explore a quarantine strategy that eliminates
epidemic outbreaks with minimal

∑
v∈Q Cv .

B. Epidemic Outbreak Model

Our epidemic spreading model is based on the classic SIS
model [2]. Nodes have states of either being susceptible or
infected. Nodes in the susceptible state are people who do not
have the disease, but can potentially catch it. Nodes in the
infected state are people who have the disease and can spread
the disease to their neighbors in G. Infected nodes can go
back into the susceptible state upon recovery, and then can be
reinfected. We consider that the infection rate of a given node
depends on its infected incoming neighbors. For the node v,

each of its infected incoming neighbors independently brings a
constant infection rate (the infection probability per time unit)
of λ to v. Meanwhile, the recovery rate is set to be a constant
of r, as used in many existing models [1, 16, 17].

Let f(t) denote the average fractions of nodes that are
infected at time t. To capture the structural heterogeneity
of the social network, let p(d) denote the fraction of nodes
with in-degree d, and let fd(t) denote the fraction of infected
nodes with in-degree d at time t. By definition, we have
f(t) =

∑
d p(d) ·fd(t). Then, Θ(f(t)) is the probability that a

uniform-randomly selected edge comes from an infected node
at the time t. It can be calculated as:

Θ(f(t)) =

∑
d d · p(d) · fd(t)∑

d d · p(d)
(1)

The fraction of susceptible nodes with in-degree d at time t
is [1− fd(t)]. Each of these nodes has an incoming degree of
d, meaning that it is expected to have d × Θ(f(t)) infected
incoming neighbors. Since each infected incoming neighbor
brings an infection rate of λ, the total infection rate is:

1− (1− λ)d·Θ(f(t)) ≈ λ · d ·Θ(f(t)) (2)

λ is assumed to be small. Otherwise, the epidemic is not
controllable due to an overly-large infection rate. We have:

∂fd(t)

∂t
= λdΘ(f(t))[1− fd(t)]− rfd(t) (3)

The first term of λd[1−fd(t)]Θ(f(t)) indicates the fraction of
newly infected nodes that have in-degrees of d. The last term
of rfd(t) shows the recovery. If we consider a stable epidemic
state of dfd(t)

dt = 0, then Eq. 3 can be solved as:

fd(t) =
λdΘ(f(t))

r + λdΘ(f(t))
(4)

According to Eq. 4, Eq. 1 can be rewritten as:

Θ(f(t)) =
1∑

d dp(d)

∑
d

dp(d)
λdΘ(f(t))

r + λdΘ(f(t))
(5)

The epidemic outbreak elimination indicates that Θ(f(t)) = 0
and Θ(f(t)) will not increase with respect to the time:

∂

∂Θ(f(t))

(
Θ(f(t))−

∑
d dp(d) λdΘ(f(t))

r+λdΘ(f(t))∑
d dp(d)

)
≥ 0 (6)

When Θ(f(t)) = 0, Eq. 6 should be satisfied to control the
growth trend of infected nodes. Based on Eq. 6, we can derive
the following prerequisite to control epidemic outbreaks:

λ
∑
d d

2p(d)

r
∑
d dp(d)

≤ 1 or
〈d2〉
〈d〉
≤ r

λ
(7)

Let 〈·〉 denote the mean value of the corresponding variable.
Then, we have

∑
d d

2p(d) = 〈d2〉 and
∑
d dp(d) = 〈d〉 by

the definition. Eq. 7 represents the prerequisite of controlled
outbreaks in social networks. The key insight of Eq. 7 is that
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Fig. 1. Proof of Theorem 1.

both a larger average degree and a larger degree variance bring
a more vulnerable network with respect to epidemic outbreaks:

〈d2〉
〈d〉

=
〈d2〉 − 〈d〉2

〈d〉
+ 〈d〉 (8)

Note that 〈d〉 is the average in-degree and 〈d2〉−〈d〉2 is the in-
degree variance. The ratio of 〈d2〉 to 〈d〉 represents the network
vulnerability to epidemics (the larger, the more vulnerable).
If we want to control epidemic outbreaks, then we need to
control the in-degree distribution though the isolations. Once
a node is isolated, its associated incoming and outgoing edges
are removed, leading to a degradation on 〈d2〉

〈d〉 to control
epidemic outbreaks. For simplicity, let ∆(Q) denote the degra-
dation of 〈d

2〉
〈d〉 , when nodes in Q are isolated by the quarantine

strategy. We introduce a constant coefficient of δ = 〈d2〉
〈d〉 −

r
λ

as the degradation threshold to control epidemic outbreaks.
At this time, our objective can be reformulated as minimizing∑
v∈Q Cv with the constraint that ∆(Q) ≥ δ. Further analysis

is conducted in the next subsection.

C. Feasibility and Minimality

This subsection explores the inherent properties of ∆(Q)
to obtain more insights on the effective quarantine strategy
design. We start with the following definition:

Definition 1: A quarantine strategy, Q, is said to be feasible,
if the constraint of ∆(Q) ≥ δ is satisfied.

Basically, a quarantine strategy that can eliminate epidemic
outbreaks is defined as a feasible quarantine strategy. In reality,
a feasible quarantine strategy usually isolates lots of nodes to
control epidemic outbreaks. But for the sake of the theory,
we still consider the event that {∃v ∈ V |∆({v}) ≥ δ}. It
means that isolating only one node of v may be sufficient
to control epidemic outbreaks. To facilitate the quarantine
strategy design, we make a cutoff on ∆(Q). If ∆({v}) ≥ δ, we
force ∆({v}) to be δ as a cutoff. Note that such a cutoff will
not change the feasibility of an arbitrary quarantine strategy.
Hence, the optimal quarantine strategy is not changed by this
cutoff. We have the following definition:

Definition 2: A feasible quarantine strategy, Q, is said to
be minimal, if Q \ {v} is not feasible for an arbitrary v ∈ Q.

A minimal quarantine strategy means that each node in this
quarantine strategy is necessarily isolated. If an arbitrary node
in this quarantine strategy is no longer isolated, this quarantine
strategy becomes infeasible and can no longer control epidem-
ic outbreaks. Our key observation is that a minimal feasible
quarantine strategy has the following property:

Theorem 1: A minimal feasible quarantine strategy, Q,
satisfies the property that δ ≤ ∆(Q) ≤ 2δ.

Proof: By the definition of feasibility, we have ∆(Q) ≥ δ.
Therefore, we focus on proving ∆(Q) ≤ 2δ. Let us start with
a special case, where all the nodes in Q do not have outgoing
neighbors. In such a case, the isolation of a node in Q will not
diminish the in-degrees of the remaining nodes. Let d denote
the node in-degree when no node is isolated. dv is the in-
degree of the node v. Then, ∆(Q) can be calculated as:

∆(Q) =
〈d2〉
〈d〉
−
〈d2〉 − 1

|V |
∑
v∈Q d

2
v

〈d〉 − 1
|V |
∑
v∈Q dv

(9)

In Eq. 9, 1
|V | results from the fact that each node in Q is

a fraction, 1
|V | , of all the nodes. As another form of Eq. 7,

〈d2〉 and 〈d〉 can also be computed by 〈d2〉 = 1
|V |
∑
v∈V d

2
v

and 〈d〉 = 1
|V |
∑
v∈V dv , respectively. We assume that 〈d〉 �

1
|V |
∑
v∈Q dv , leading to the following approximation:

1

〈d〉 − 1
|V |
∑
v∈Q dv

≈
1 + 1

〈d〉
1
|V |
∑
v∈Q dv

〈d〉
(10)

Back to Eq. 9 with the substitution in Eq. 10, we can obtain:

∆(Q) ≈ 1

|V |〈d〉

[∑
v∈Q

d2
v−
〈d2〉
〈d〉

∑
v∈Q

dv

]
+o
( 1

|V |〈d〉

)
(11)

In Eq. 11, o( 1
|V |〈d〉 ) represents the second order term that is

relatively ignorable. Eq. 11 implies the following result:

∆(Q) ≤ ∆(Q \ {u}) + ∆({u}) (12)

Eq. 12 is obtained through comparing the first and second
order terms in Eq. 11 for the left and right parts of Eq. 12.
According to the definition of the minimality, we can obtain
the result that ∆(Q\{u}) < δ, since Q\{u} is not a feasible
quarantine strategy. Meanwhile, we have ∆({u}) ≤ δ, since
we have made a cutoff on ∆(Q). Therefore, we have:

∆(Q) ≤ δ + δ = 2δ (13)

Eq. 13 concludes that δ ≤ ∆(Q) ≤ 2δ is true in the special
case, where all the nodes in Q do not have outgoing neighbors.
The insight of this case is that the isolation of each node is
independent to each other. Hence, ∆(Q) can be decomposed,
as shown in Eq. 12, to obtain its upper bound.

Let us go back to the general case, where nodes in Q may
have outgoing neighbors. Note that the isolation of a node in
Q may diminish the in-degree of a node that is not in Q. An
example is shown in Fig. 1, where the isolation of v diminishes
the in-degree of w. Let Q′ denote the set of nodes that are not
in Q, but have diminished in-degrees due to the isolations of
nodes in Q. For the node v ∈ Q′, let ρv denote its in-degree.
Then, for the general case, Eq. 9 is rewritten as:

∆(Q) =
〈d2〉
〈d〉

−
〈d2〉− 1

|V |
∑
v∈Q d

2
v−

1
|V |
∑
v∈Q′(d

2
v−ρ

2
v)

〈d〉− 1
|V |
∑
v∈Q dv−

1
|V |
∑
v∈Q′(dv−ρv)

=
〈d2〉
〈d〉
−
〈d2〉 − 1

|V |
∑
v∈Q∪Q′ d

2
v + 1

|V |
∑
v∈Q′ ρ

2
v

〈d〉 − 1
|V |
∑
v∈Q∪Q′ dv + 1

|V |
∑
v∈Q′ ρv

(14)



Algorithm 1 Marginal Greedy
Input: The social network, G, and the threshold, δ.
Output: The quarantine strategy, Q.

1: Initialize Q = ∅.
2: while ∆(Q) < δ do
3: v = arg minv∈V \Q

Cv

∆({v}∪Q)−∆(Q) .
4: Q = Q ∪ {v}.
5: return Q as the quarantine strategy.

Eq. 14 has a similar format with Eq. 9. Through a similar
derivation, we find that the analysis in Eq. 12 still holds for
the general case. Therefore, we conclude that δ ≤ ∆(Q) ≤ 2δ
is true, which completes the proof. �

The key insight behind Theorem 1 is that a minimal feasible
quarantine strategy would not lead to excessive isolations.
Unnecessary isolations are saved once the epidemic outbreak is
controlled. In a minimal feasible quarantine strategy, each node
is necessarily isolated. By contradiction, it can be seen that the
optimal solution for our problem must be a minimal feasible
quarantine strategy. We will describe an effective quarantine
strategy through utilizing the minimality property.

IV. EFFECTIVE SOCIAL NETWORK QUARANTINE

A. NP-hardness and Marginal Greedy Strategy

The objective of this paper is to design an effective quaran-
tine strategy that eliminates epidemic outbreaks with minimal
isolation costs. This problem is NP-hard:

Theorem 2: Searching an optimal quarantine strategy of Q,
which minimizes |Q| with ∆(Q) ≥ δ, is NP-hard.

Proof: We prove the NP-hardness by a reduction to the
partial set cover problem [18] in a special case, where node
in-degrees are identical. Note that node out-degrees may not
be the same. In such a case, 〈d

2〉
〈d〉 = 〈d〉, meaning that

the prerequisite of controlling epidemic outbreaks is reduced
to controlling the average node in-degree. In other words,
epidemic outbreaks could be eliminated through breaking up
δ|V | edges. Our problem becomes minimizing

∑
v∈Q Cv with

the constraint that δ|V | edges are broken. If we correspond
an edge to an element, and correspond a node to a set, then
our problem reduces to a partial set cover problem that uses
the sets with minimal costs to cover δ|V | elements. Since the
partial set cover problem is NP-hard by a reduction to the set
cover problem [18], our problem is also NP-hard. �

We first present an intuitive greedy solution, as shown in
Algorithm 1. It iteratively isolates the node v that can min-
imize Cv

∆({v}∪Q)−∆(Q) (i.e., minimal “cost-to-benefit” ratio).
Algorithm 1 will terminate, when the quarantine strategy of
Q becomes feasible, i.e., ∆(Q) ≥ δ. The time complexity of
Algorithm 1 is O(V 2). This is because it has O(V ) iterations,
and each iteration takes O(V ) to go through all the remaining
nodes for the isolation decision. However, Algorithm 1 cannot
guarantee an approximation ratio to the optimal solution. The
difficulty comes from the fact that the number of isolated
nodes in the optimal solution is unknown. Algorithm 1 may

Algorithm 2 Homogeneous Greedy (recursive)
Input: The social network, G, the threshold, δ,

and the incomplete quarantine strategy, Q′.
Output: The quarantine strategy, Q.

1: if δ < 0 then
2: return ∅;
3: v = arg minu∈V \Q′

Cu

∆(Q′∪{u})−∆(Q′) .
4: Set coefficient ε = Cv

∆(Q′∪{v})−∆(Q′) .
5: Q′ = Q′ ∪ {v}.
6: for each u ∈ V \Q′ do
7: C ′u = ε×∆({u}). /* split node cost */
8: Cu = Cu − C ′u. /* residual node cost */
9: Q = Q′ ∪ RECURSIVE(G, δ −∆(Q′), Q′).

10: for each u ∈ Q do
11: if Q \ {u} is a feasible quarantine strategy then
12: Q = Q \ {u}.
13: return Q as the quarantine strategy.

isolate many more, or many fewer nodes than the optimal
solution. On the other hand, even if the number of isolated
nodes in the optimal solution is known a prior, we cannot
guarantee the feasibility of the solution with the same number
of isolated nodes. Further explorations are conducted.

B. Homogeneous Greedy Strategy

The key observation of our approach is that a minimal fea-
sible quarantine strategy would not lead to excessive isolations
(Theorem 1). Following this intuition, a homogeneous greedy
solution is proposed, as shown in Algorithm 2. It is a recursive
algorithm that splits the node cost through a homogeneous
function. At each recursion level, it isolates the node v that
can minimize Cv

∆({v}∪Q)−∆(Q) (i.e., minimal “cost-to-benefit”
ratio), as implemented in lines 3 to 5. Then, in lines 6 to 9,
it splits the node cost through a homogeneous function for
a recursive call. Finally, in lines 10 to 12, some nodes in Q
are removed to satisfy the minimality property. We claim that
Algorithm 2 can guarantee an approximation ratio:

Theorem 3: Algorithm 2 guarantees an approximation ratio
of two to the optimal solution for the isolation costs.

Proof: We prove by induction. For the base case, we have
δ < 0 with Q = ∅ and

∑
v∈Q Cv = 0. Therefore, the base case

holds. For the general case, Algorithm 2 isolates the node v
that can minimize Cv

∆({v}∪Q)−∆(Q) , splitting the corresponding
node cost in line 7. The residual node cost is shown in line 8
for a recursive call. We have:∑

u∈Q
Cu =

∑
u∈Q

C ′u +
∑
u∈Q

(Cu − C ′u) (15)

Let Q∗1, Q∗2, and Q∗ denote the optimal solutions for G with
the isolation costs to be C ′u, Cu − C ′u, and Cu, respectively.
According to Theorem 1, we have

∑
u∈Q C

′
u ≤ 2

∑
u∈Q∗1

C ′u
by the minimality property. This is because C ′u scales linearly
with respect to ∆({u}). Meanwhile, by induction, we have



∑
u∈Q(Cu − C ′u) ≤ 2

∑
u∈Q∗2

(Cu − C ′u). Consequently, the
following inequality holds:∑
u∈Q

Cu =
∑
u∈Q

C ′u +
∑
u∈Q

(Cu − C ′u)

≤ 2
∑
u∈Q∗1

C ′u + 2
∑
u∈Q∗2

(Cu − C ′u)

≤ 2
∑
u∈Q∗

C ′u + 2
∑
u∈Q∗

(Cu − C ′u) = 2
∑
v∈Q∗

Cu (16)

The last inequality holds, since Q∗ is not the optimal solution
for G, with the isolation costs being C ′u or Cu−C ′u. The result
in Eq. 16 completes the proof that Algorithm 2 guarantees an
approximation ratio of two to the optimal solution. �

The key idea of Theorem 3 is to utilize the minimality
property. A minimal feasible quarantine strategy will not
have excessive isolations, leading to bounded isolation costs.
Algorithm 2 has a complexity of O(V 2). It has a recursion
depth of O(V ), while each recursion call takes O(V ) to select
the node and keep the minimality.

V. EXPERIMENTS

A. Dataset Information and Settings

Our experiments are based on two datasets of Epinions [19]
and Wikipedia [20]. Epinions is a general consumer review
site, which was launched in 1999. Epinions users can read
new and old reviews about a variety of products to help them
decide on a purchase [21]. Our approach can be applied to
the isolations of users in eliminating online rumor spreading.
Wikipedia is a free encyclopedia written collaboratively by
volunteers (i.e., users) around the world. A small portion of
users are administrators. In order for a user to become an
administrator, a request must be issued and then voted upon.
If a user (say v) votes for another user (say u), then there exists
a directed edge from v to u. Our approach can be applied on
isolating users to control disordered votes in Wikipedia. The
dataset statistics have been summarized in Table I.

Note that these two datasets do not include information on
node isolation costs. Hence, three cost functions are designed:
• The first cost function uses a constant cost for each node,

meaning that all the nodes have identical isolation costs.
• The second cost function determines the node isolation

cost based on the node in-degree with a logarithmic
mapping. For the node v, we have Cv = log(dv + 1).

• The third cost function determines the node isolation cost
based on the node in-degree with a square root mapping.
For the node v, we have Cv =

√
dv .

The node costs are normalized for fair comparison. As for the
parameters on epidemic spreading, we set a fixed infection rate
of λ = 1. The recovery rate, r, is tuned within the experiments.
Note that 〈d2〉/〈d〉 ≤ r/λ shows the prerequisite for control-
ling epidemic outbreaks. Therefore, a smaller recovery rate
means that more isolations (and thus higher isolation costs)
are needed to control epidemic outbreaks.

The following four algorithms are involved for evaluations:

TABLE I
DATASET STATISTICS

Epinions Wikipedia
Number of nodes 18,098 7,115
Number of edges 355,754 103,689
Average degree 19.6 14.6

In-degree Variance 3615.8 1006.9
Network Diameter 11 7

Global clustering coefficient 0.138 0.141
Average edge weight 0.0285 0.0076

• Random. It iteratively and uniform-randomly isolates a
node in G, until the epidemic outbreak is eliminated by
the quarantine strategy.

• MaxDegree. This algorithm ranks nodes by their degrees.
Top ranked nodes are iteratively isolated until the epidem-
ic outbreak is eliminated by the quarantine strategy.

• MargGreedy. This is Algorithm 1, which iteratively iso-
lates the node v that can minimize Cv

∆({v}∪Q)−∆(Q) (i.e.,
minimal “cost-to-benefit” ratio).

• HomoGreedy. This is Algorithm 2, which obtains a
bounded result through the minimality property.

B. Evaluation Results

The evaluation results are shown in Fig. 2, in terms of the
relationship between the recovery rate and the isolation cost.
Fig. 2 has three columns, each of which corresponds to a
different node isolation cost function. Figs. 2(a), 2(b), and 2(c)
are the results for the Epinions dataset, while Figs. 2(d), 2(e),
and 2(f) are the results for the Wikipedia dataset.

It can be seen that the isolation cost decreases monotonously
with respect to the recovery rate. This is because a high recov-
ery rate can resist epidemic spreadings. If the recovery rate is
high enough, then epidemic outbreaks can be eliminated with-
out isolations. HomoGreedy always has the lowest isolation
costs among the comparison algorithms. Another interesting
observation is that, when the cost of a node isolation is a
constant, the total isolation cost is the smallest. This is because
the quarantine strategy tends to isolate large degree nodes,
while their costs are relatively cheap after normalization. On
the other hand, when the cost of a node isolation scales with its
degree (in a logarithmic manner or a square root manner), the
overall isolation costs become very large. This is because the
isolations of large degree nodes take relatively large costs after
normalization. The last observation is that, the total isolation
costs in Epinions are smaller than those in Wikipedia. One
reason is that Epinions has a much larger degree variance than
Wikipedia, as shown in Table I (355,754 to 103,689). Another
reason is that Epinions has more users than Wikipedia (18,098
to 7,115), bringing larger isolation costs.

VI. CONCLUSION

This paper explores a robust quarantine strategy that can
eliminate epidemic outbreaks with minimal isolation costs.
This problem is proved to be NP-hard. The classic SIS epidem-
ic model is introduced to model epidemic spreading, where
people transfer their states through a cycle of being infected
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(a) Epinions with constant cost.
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(b) Epinions with logarithmic cost.
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(c) Epinions with square root cost.
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(d) Wikipedia with constant cost.
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(e) Wikipedia with logarithmic cost.
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(f) Wikipedia with square root cost.

Fig. 2. Evaluation results with respect to the isolation costs.

from susceptible, and going back to susceptible by recovery.
We show that a minimal feasible quarantine strategy will
not have excessive isolations. A bounded algorithm with an
approximation ratio of two is proposed, through utilizing the
feasibility and minimality properties. This algorithm has a time
complexity of O(V 2). Finally, real data-driven experiments
demonstrate the efficiency and effectiveness of the proposed
algorithms in real-world applications.
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