Exploiting Outlier Value Effects in Sparse Urban CrowdSensing

En Wang, Mijia Zhang, Yongjian Yang, Yuanbo Xu*

Jie Wu

Speaker: Mijia Zhang

Outlines

- 1. Introduction and challenges
- 2. Contributions
- 3. Model
- 4. Experiments

Section 1: Introduction and challenges

1. Introduction and challenges

1) rarity and unpredictability

2) inconsistency

compared to normal values

3) complex spatiotemporal relations

An example to describe the outlier value effect in data inference problem.

1. Introduction and challenges

Challenges

- recover outlier values from such rare outlier value data
- deal with inconsistent data distribution
- extract the complex spatiotemporal relationship of outlier value data

How to deal with challenges

DMF + OVLoss

Outlier Value Model

Section 2: Contributions

Our work has the following contributions:

- formalize the sparse urban crowdsensing problem
- propose an urban crowdsensing method named DMF-OV
- evaluate the proposed method on three realworld datasets with three typical urban sensing tasks.

Section 3: Model

Framework Overview (DMF + OVLoss)

3. Model

Framework Overview (Outlier Value Model)

Section 4: Experiments

4. Experiments

Statistics of three evaluation datasets.

	Datasets				
	Sensor-Scope	U-Air	Parking in Birmingham		
City	Lausanne (Switzerland)	Beijing (China)	Birmingham (UK)		
Data	Temperature	PM2.5	Parking occupancy rate		
Subarea	57 subareas each with 50 $ imes$ 30 m^2	36 subareas each with $1000 \times 1000m^2$	30 parking lots		
Period & Duration	0.5h & 7d	1h & 11d	0.5h & 77d		
Mean \pm Std. (Unit)	$6.04 \pm 1.87 \ (^{\circ}\text{C})$	$79.11 \pm 81.21 \; (\mu g/m^3)$	53.6 ± 26.3 (%)		

- KNN
- GP
- DMF
- IGMC

4. Experiments

RQ1: Does our method really work for outlier value data effectively?

Fig. 4: Complementary effects of outlier values over *Sensor-Scope*.

Fig. 5: Complementary effects of outlier values over U-Air.

Fig. 6: Complementary effects of outlier values over *Parking in Birmingham*.

TABLE III: RMSE	of	outlier	values	over	all	three	tasks.
-----------------	----	---------	--------	------	-----	-------	--------

	DMF	DMF-OV
Temperature (°C)	0.67	0.45
PM2.5 ($\mu g/m^3$)	20.56	11.74
Parking occupancy rate (%)	10.4	8.9

RQ2: Does our method improve the accuracy of matrix completion and prediction?

Fig. 7: Inference and prediction accuracy under different sensed ratios over *Sensor-Scope*.

Fig. 8: Inference and prediction accuracy under different sensed ratios over *U-Air*.

Fig. 9: Inference and prediction accuracy under different sensed ratios over *Parking in Birmingham*.

RQ3: What are the influences of hyper-parameters in the model?

Fig. 10: Inference accuracy under different hyper-parameters over *Sensor-Scope*, *U-Air*, and *Parking in Birmingham*.

Thanks for listening.

Q&A